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Abstract: Micromixers have significant potential in the field of chemical synthesis and biological
pharmaceuticals, etc. In this study, the design and numerical simulations of a passive micromixer
and a novel active electroosmotic micromixer by assembling electrode pairs were both presented
with a cosine channel wall. The finite element method (FEM) coupled with Multiphysics modeling
was used. To propose an efficient micromixer structure, firstly, different geometrical parameters such
as amplitude-to-wavelength ratio (a/c) and mixing units (N) in the steady state without an electric
field were investigated. This paper aims to seek a high-quality mixing solution. Therefore, based on
the optimization of the above parameters of the passive micromixer, a new type of electroosmotic
micromixer with an AC electric field was proposed. The results show that the vortices generated
by electroosmosis can effectively induce fluid mixing. The effects of key parameters such as the
Reynolds number, the number of electrode pairs, phase shift, voltage, and electrode frequency on the
mixing performance were specifically discussed through numerical analysis. The mixing efficiency
of the electroosmotic micromixer is quantitatively analyzed, which can be achieved at 96%. The
proposed micromixer has a simple structure that can obtain a fast response and high mixing index.

Keywords: numerical simulation; micromixer; electroosmotic; mixing performance

1. Introduction

Micromixers, such as lap-on-a-chip systems, can be regarded as one of the most
important devices in micromachines and have played an essential role in a wide variety of
applications, such as biomedical diagnosis, chemical detection, and drug delivery [1]. This
makes it an important and challenging operation to realize efficient and rapid mixing of
two or more fluids. The miniaturization characteristics restrict turbulence from occurring
with low Reynolds numbers. The mixing behavior is primarily dominated by molecular
diffusion, namely laminar flow [2]. The slow response process and long mixing channels
limit the effective mixing of samples in the detection operation and increase the experiment
cost. Therefore, with the micrometer scale characteristics of microfluidic devices, improving
the mixing quality of micromixers even at relatively low Reynolds numbers is a subject
that we need to continue to pay attention to and study.

To enhance the mixing performance, researchers have developed many micro-mixers,
which easily achieve mixing, separation, and chemical reactions and can be roughly divided
into passive and active mixers. Most studies have shown that by changing the complex
structural design in passive micromixers, fluids can be stretched, deformed, and flowed
along the wall to achieve effective mixing [3]. Passive micromixers have the advantages
of ease of manufacture and simplicity over active mixers, but molecules mix slowly in
this case, so a rapidly responsive mixing system must be found instead. Also, it is very
important to understand the mixing process inside the mixer to improve the mixing per-
formance. Therefore, through qualitative and quantitative analysis of flow mechanisms
and mixing performance, many effective methods have been developed to enhance the
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fluids mixing in passive micromixers, such as laminar flow micromixers [4,5], chaotic
convection [6–8], split-recombination [9,10] and split-confluence [11,12] micromixers. The
mixing of fluid samples is achieved by generating secondary flow and reflux phenomena.
Researchers have recently discovered that micromixers with trigonometric wall channels
and convergent-divergent geometries have been numerically and experimentally demon-
strated to significantly affect fluid mixing [13,14]. With respect to active micromixers, fluid
mixing is realized by perturbing the fluid with the help of additional components or energy
sources, such as acoustics [15], magnetic fields [16], and electricity [17]. The electroosmotic
flow (EOF) has attracted more attention in developing the perfect mixing performance
of microfluidic systems. Besides, the fluid flow and mass transport can be numerically
simulated by FEM coupled with Multiphysics software [18].

Previous studies have indicated that there are different designs to improve the mixing
quality based on the EOF method for Newtonian and non-Newtonian fluids. For one design,
electrokinetic flows were performed by using a regularly switching electric field to induce
electroosmotic flows. [19,20]. Another method is to apply non-uniform zeta potential
on inlets and outlets to generate vortices on the charged surface. In terms of the above
convergent-divergent geometries of microchannels, several studies were concerned with
developing EOF mechanisms on wavy microchannel surfaces. Ching-Chang Cho et al. [21]
numerically investigated the flow behavior of electrokinetically-driven non-Newtonian
fluids in a microchannel. This study especially emphasized the microchannel roughness
of a complex-wavy surface. The study revealed that the flow behavior index using a
power-law model has an influence on the flow field characteristics. A. Banerjee and A.K.
Nayak [22] carried out simulations of electrokinetically driven flow in a wavy-structure to
study the mixing index and pressure drop by changing zeta potentials. In this research, an
improvement in pressure gradient can be observed for the wavy microchannel compared to
the straight one. Sumit Kumar Mehta et al. [23] conducted numerical simulations of the non-
Newtonian fluids mixing by vortex-induced electroosmosis in a wavy micromixer. They
have considered the effect of the nonuniform surface potential and the phase lag between
surface potential. They concluded that moderate modulation of phase lag and lower surface
potential could bring about efficient mixing. Recently, Sumit Kumar Mehta and Sukumar
Pati [24] investigated the effect of phase lag (∆φ) between the wavy walls by utilizing
surface charge heterogeneity for different values of the diffusive Peclet number (Pe), Debye
parameter (κ), geometrical wave number (n), and dimensionless wall amplitude (α). The
results showed that the phase lag of surface charge heterogeneity could take stronger action
on the mixing performance with the above other parameters. They also found that for
thinner EDL (κ = 150), the mixing index can achieve larger than 90% up to higher values
of Pe with a higher flow rate at ∆φ = π/2 and π. It is worth noting that great progress
has been made in enhancing the efficiency of fluid flow through the wavy channel in the
above investigations.

Alternating current electroosmotic (ACEO) micromixers are widely used because of
their easy integration and high reliability. In this type of micromixer device, the use of
electroosmotic flow to stir the fluid is a popular method. The input signal acts on the
surface of the microelectrode, which can generate induced charge so that electrical double
layer (EDL) is performed. The charge in the diffusion layer in the EDL moves directionally
under the action of the tangential electric field to form an electroosmotic flow. It is worth
noting that the above phenomenon is affected by micromixer structures and depends on the
frequency, voltage, and other characteristics of the AC electric field. Mirzakhanloo et al. [25]
presented a T-shape electroosmotic micromixer with a chamber in the middle. The influence
of several geometry parameters on mixing quality was simulated by numerical analysis.
This analysis revealed the meaningful influence of micromixer design on the mixing
quality. Amir Shamloo et al. [26] pointed out two-dimensional micromixer models with
AC electroosmosis through three different geometries: one-ring, diamond, and two-ring.
It should be mentioned that employing the one-ring geometry under the most favorable
conditions combined with pi radian phase lag can achieve a high mixing performance
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(99.4%). They also found that the effective mixing in micromixers is made available for
both Newtonian and non-Newtonian fluids in terms of blood for biological applications.
Cao et al. [27] used 16 pairs of electrodes embedded in the microchannel with an optimum
location to enhance the mixing quality. Usefian et al. [28] presented a novel type of
electroosmotic micromixer under AC and DC electric fields. PDMS and gold nanoparticles
were employed for making microchips and electrodes, respectively. As the results show, in
both cases, the mixing performance can be enhanced by altering the voltage value and the
fluid inlet velocity. The simulated results are in qualitative agreement with experimental
results. Most recently, Cheng et al. [29] compared three forms of voltage functions applied
on the electrodes of channel walls for the mixing performance of a T-shaped micromixer.
They found that the mixing efficiency first increases and then decreases with the increase of
the frequency values in the wide range of 50 Hz to 400 Hz. Moreover, the best mixing for
the three cases can be achieved at 200 Hz.

Several works considered the influence of wavy channels and electric fields to in-
vestigate the flow properties in the micromixers. Accordingly, there is little attention on
embedding the electrode pairs on the wavy channel walls. In this present study, a simple
passive micromixer was presented with a cosine microchannel wall, as well as a novel
ACEO micromixer equipped with two pairs of electrodes. To deeply investigate the mixing
performance of the proposed micromixer, the structural design of the passive micromixer
in a steady state and the electrode parameters of the ACEO micromixer are considered in
a transient state by means of a sinusoidal AC electric field. By performing Multiphysics
numerical simulations, the introduced AC electric field can cause intense motion, which
was compared with the passive one. The high-quality mixing is finally achieved under the
condition that the fluid flow at the inlet of the microchannel is guaranteed to be stable. The
novel micromixer can provide a new idea for fluid mixing and subsequent applications,
such as chemical reactions, etc.

2. Micromixer Design

As shown in Figure 1, the schematic diagrams of a micromixer with a curved channel
were proposed. To enhance the mixing performance of the micromixer, according to the
convergent-divergent channel recently studied by Afzal et al. [12], the profiles of the channel
walls were depicted by cosine function based on:y = acos(x); x = s× e; c = 2pi× e where:
y, x are the longitudinal and axial coordinates of the function, and s is defined as the
axial coordinates within 0 to 2 pi. Furthermore, the values of a and c are wavy amplitude
and wavelength, respectively, for all models presented in Table 1, e is defined as the
distance in one wavelength, and the value is set as 50 µm. For most two-dimensional (2D)
micromixers, T-shape inlets are merged in the main microchannel. In this model, as shown
in Figure 1a, the two inlets, inlet 1 and inlet 2, are joined to a straight channel with L length
and connected with a cosine channel. The width b of the inlet channel and mixing unit N
were defined here. The length of the exit channel was the same as the inlet channel with a
constant L of 500 µm. Figure 1b presents the geometric structure of the proposed active
micromixer. There are two pairs of electrodes at the bottom of the cosine channel wall. The
longitudinal length of the applied electrodes was 72.42 µm with reference to the bottom of
the microchannel. The red electrodes 1 and 3 show positive polarity, and the blue electrodes
2 and 4 show negative voltage polarity. The alternating electric field is loaded to generate
chaotic flow to promote fluid mixing.
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Figure 1. The schematic diagram of the proposed micromixers: (a) the passive micromixer design, 
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To study the transport phenomenon and flow behavior of the micromixer, the 
Computational Fluids Dynamics (CFD) method was adopted based on the Finite Ele-
ment Method (FEM). The fluid flow in the proposed micromixer was analyzed by solv-
ing the governing equations with the commercial COMSOL Multiphysics (version 5.6) 
software. The COMSOL Multiphysics package is capable of coupling multiple physical 
modules to effectively carry out numerical simulations. Besides, in this research, steady-
state modeling and electric field modeling for transient states have both been considered. 
To reduce the considerable computational cost based on a time-dependent method and 
save memory and storage, two solutions were set up to investigate the mixing efficiency. 
A stationary solution was calculated as t = 0 s without an electric field. For the second so-
lution, the result of the first simulation was selected as the initial value to perform the 
time-dependent solution together with an electric field. 

  

Figure 1. The schematic diagram of the proposed micromixers: (a) the passive micromixer design,
(b) the distribution of electrodes in the active electroosmotic micromixer.

Table 1. Dimensions for the proposed micromixers.

Dimensions Value Unit

Wavelength (c) 2pi× e µm
Amplitude (a) to a/c ratio of 1/2pi 50 µm
Amplitude (a) to a/c ratio of 1/pi 100 µm

Amplitude (a) to a/c ratio of 3/2pi 150 µm
Amplitude (a) to a/c ratio of 2/pi 200 µm

Amplitude (a) to a/c ratio of 5/2pi 250 µm
Amplitude (a) to a/c ratio of 3/pi 300 µm

3. Numerical Simulation Methods
3.1. Analysis Methods

To study the transport phenomenon and flow behavior of the micromixer, the Com-
putational Fluids Dynamics (CFD) method was adopted based on the Finite Element
Method (FEM). The fluid flow in the proposed micromixer was analyzed by solving the
governing equations with the commercial COMSOL Multiphysics (version 5.6) software.
The COMSOL Multiphysics package is capable of coupling multiple physical modules to
effectively carry out numerical simulations. Besides, in this research, steady-state modeling
and electric field modeling for transient states have both been considered. To reduce the
considerable computational cost based on a time-dependent method and save memory
and storage, two solutions were set up to investigate the mixing efficiency. A stationary
solution was calculated as t = 0 s without an electric field. For the second solution, the
result of the first simulation was selected as the initial value to perform the time-dependent
solution together with an electric field.
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3.2. Steady State Modeling

The first mixing process was assumed to be incompressible, viscous, and laminar in
the case of a steady state. It was assumed that aqueous solutions were used here. The flow
in the microchannel is governed by the Navier-Stokes equation and the continuity equation:

ρ
→
u ×∇→u +∇×

[
pI − µ

(
∇→u +

(
∇→u

)T
)]

= 0 (1)

∇ ·→u = 0 (2)

With the velocity field obtained in (1), the convection-diffusion equation under steady-
state flow was solved. The specific equations are as follows [26]:

→
Ji = −Di∇

→
Ci (3)

∂
→
C

∂t
= −∇

→
Ji − (

→
u · ∇)

→
Ci + Ri (4)

where
→
Ji denotes the mass flux of the ith species,

→
u is the velocity of the fluid, ρ is the

density, µ is the dynamic viscosity, p is the pressure, I denotes the identity tensor, and Di is
the diffusion coefficient. In this case, for the steady flow state with the above convection-
diffusion equation, two fluids with the equal viscosity µ = 0.001 Pa·s and the equal density
ρ = 103 Kg/m3 were used. The diffusion coefficient is taken as 10−11 m2/s. It is considered
that there is no action that has an influence on the species concentration. Therefore, Ri = 0
here, and the physical parameters are based on liquid water at 25 ◦C.

The step function was used to calculate the inlet concentration distribution, as shown
in Figure 2. The concentration condition on inlet 1 and inlet 2 gives a sharp but smooth
concentration gradient in the middle of the channel entrance. For the steady state, the
molar concentration at inlet 1 and inlet 2 are set as follows:

C1 = C0 = 1mol/m3 (5)

C2 = 0 (6)
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Figure 2. The step function of the concentration distribution on the microchannel inlet. Figure 2. The step function of the concentration distribution on the microchannel inlet.

In our simulation, the identical fluid velocity of inlet 1 and inlet 2 was selected as
U0 = Uinlet1 = Uinlet2 = 0.1 mm/s. The constant flow velocity and zero fixed pressure
boundary condition at the outlet were specified. The no-slip boundary condition was
assigned at the microchannel walls.
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3.3. Electric Field Modeling

With a time-dependent AC electric field applied to the microchannels, the electroos-
motic flow in the fluid area was driven by Multiphysics models coupling a flow field,
a concentration field, and an electric field. Three Multiphysics fields correspond to the
laminar flow (SPF) module, transport of diluted species (TDS) module, and electric currents
(EC) module, respectively, in the COMSOL software.

The fluid flow behavior in the microchannels was governed by the Navier-Stokes
equation and the continuity equation, as presented below:

ρ
∂
→
u

∂t
+ ρ
→
u · ∇→u +∇ ·

[
pI − µ

(
∇→u +

(
∇→u

)T
)]

= F (7)

∇ ·→u = 0 (8)

where ρ, µ, p and I are the same meaning as the steady state. In this model, the outlet
pressure boundary condition sets equal to zero. In addition, F is the electroosmotic body
forces here. However, in the passive micromixers, the surface effects are stronger than the
volume effects, so it is considered that F = 0.

When the thickness of the EDL is much smaller than the size of the microchannel, the
velocity gradient inside the EDL can be ignored. The Helmholtz–Smoluchowski equation
was used to describe the relationship between the magnitude of the electric field velocity
and the tangential component of the electric field [26,30]:

→
u = − ε0εrζ

µ
E(I − nn) (9)

where
→
u is the fluid velocity on the channel wall, and ε0, εr, and ζ indicate the vacuum

permittivity, the relative dielectric constant of the solution, and the zeta potential of the
channel wall, which are equal to 8.85 × 10−12 F/m, 80.2 and −0.1 V, respectively.

In this mixer, the concentration field of the mixing fluid was described by the convection-
diffusion equation as the same as the steady state Equations (3) and (4).

The boundary conditions of the solute concentration at inlet 1 and inlet 2 were adopted
as well as Equations (5) and (6), respectively, and no species flux boundary was applied to
other walls as Equation (10):

→
n · (−Di∇

→
Ci +

→
u
→
C i) = 0 (10)

At the outlet, the solute transport process was primarily controlled by convection.
Therefore, the boundary condition was applied, as given below:

→
n · (Di · ∇

→
Ci) = 0 (11)

The Laplace equation was used for the AC electric field, and the electric potential V
can be obtained as follows:

∇2 ·V = 0 (12)

With Equation (12), the electric field E can be calculated from the electric potential by
Equation (13):

E = −∇ ·V (13)

Boundary conditions on the electrodes (1, 3) and (2, 4) were specified as
Equations (14) and (15). Other insulated boundaries were presented by Equation (16):

V = V0 sin(2π f t + ϕ) (14)

V = −V0 sin(2π f t + ϕ) (15)
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n · (−σ∇V) = 0 (16)

3.4. Mixing Efficiency Evaluation

In order to evaluate the mixing performance of proposed micromixers, the mixing
efficiency index MI is defined to quantify the mixing degree of two solutions. The mixing
efficiency at the channel outlet can be calculated by the following expression [31]:

MI = 1− 1
C

√√√√√ n
∑

i=1
(Ci − C)2

n
(17)

C =
1
n

n

∑
i=1

Ci (18)

where MI is the mixing efficiency, Ci is the concentration value at each node, C is the
average mass fraction across the section, and n denotes the number of sampling points in
the section. No mixing is defined by MI = 0, whereas perfect mixing is presented by MI = 1.
Therefore, the higher the value (close to 1) is, the better the mixing quality is. To evaluate
the micromixer performance, it is important to consider the characteristic dimensionless
number. The Reynolds number is defined as the following equation to represent the fluid
flow in this study:

Re =
ρ
→
u l
µ

=
ρ
→
u b
µ

(19)

where ρ,
→
u ,µ, represent the density, the velocity of the fluid, and dynamic viscosity, and l

denotes the characteristic width of the channel. In this study, the microchannel width b is
the characteristic width.

3.5. Mesh Independency Test

A high-quality mesh is significant for obtaining accurate solutions. For this model,
an unstructured triangular mesh was used to discretize the computational domain. In
order to eliminate the influence of mesh size and quality on the modeling results, ten
different structure elements experiments were carried out for different mesh resolutions for
the mesh independency test. Figure 3a presents the mesh system of the customized grid
result. For the purpose of gaining the high accuracy of the concentration gradient on the
interface between two fluids from two inlets, the grid system was refined and modified.
In this work, two grid sequences were adopted to specify the size of the mesh elements.
The element size of the first grid sequence was employed for the entire geometry. The
specified mesh refinements were applied to the boundary wall. Figure 3b shows the mixing
efficiency of different grid systems without an AC electric field at a steady state field and
applying an AC electric field, respectively. The maximum element size ranges from 1 µm
to 19 µm. Compared to all mixer index results at micromixer outlets with different grid
systems, the mesh element size of 9 µm can be enough to achieve reasonable accuracy.
Refined mesh with 273,379 elements was employed as the optimal mesh system. Table 2
indicates detailed parameters about the element size of both grid sequences. It shows that
the minimum element quality and the average element quality can be as high as 0.4588 and
0.8462, respectively, by statistics.
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Table 2. Detailed parameters of element size in the grid system.

Element Size Maximum Element Size (µm) Maximum Element Growth
Rate

Whole geometry 9 1.3
Microchannel boundaries 0.5 1.1

4. Results and Discussions
4.1. Mixing Effect of the Structures
4.1.1. Mixing Effect of a/c

The proposed micromixer structures are varied at different amplitude-to-wavelength
ratios (a/c). The microchannel width is constant at 150 µm with mixing units of four. In this
study, the micromixer amplitude-to-wavelength ratio (a/c) was one of the key parameters
for structure optimization, which was increased from 1/2pi to 3/pi in Figure 4.

Figure 4a shows the concentration distribution along the x direction in all ratios of a/c
under a steady state. It can be seen from Figure 4a that the fluid flow in the micromixer
is completely laminar, and the fluid mixing behavior entirely depends on intermolecular
diffusion. As can be seen from Figure 4b, the mixing efficiency improved qualitatively as
the ratio of amplitude-to-wavelength increased. With a/c in the range of 1/2pi to 2/pi, the
two fluid flow paths were almost parallel to each other, and there was no secondary flow.
When a/c = 5/2pi and 3/pi, the mixing length was elongated. Two different fluids can
be relatively fully mixed, and the mixing efficiency was significantly improved. Figure 4b
shows the variation of the mixing index for the six a/c mixer configurations. The mixing
efficiency is proportional to the a/c ratio. When a/c is 3/pi, that is, when the amplitude
is 300 µm, mixing efficiency can be achieved at 78%. The concentration streamlines were
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added to the mixing index curve in Figure 4b, corresponding to a/c of 1/pi,2/pi, and
3/pi. With a low amplitude-to-wavelength ratio, fluid flow was close to the upper and
lower cosinusoidal microchannel walls, and it was not enough to meet the requirements to
generate a vortex. The fluid stay time increased with the ratio increase, and the centrifugal
force near the top and bottom was larger than that at the center of the microchannel [14,32].
The fluid was thrown to the next mixing unit, and the mixing index became larger.

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 21 
 

 

2/pi, the two fluid flow paths were almost parallel to each other, and there was no sec-
ondary flow. When a/c = 5/2pi and 3/pi, the mixing length was elongated. Two different 
fluids can be relatively fully mixed, and the mixing efficiency was significantly im-
proved. Figure 4b shows the variation of the mixing index for the six a/c mixer configu-
rations. The mixing efficiency is proportional to the a/c ratio. When a/c is 3/pi, that is, 
when the amplitude is 300 μm, mixing efficiency can be achieved at 78%. The concentra-
tion streamlines were added to the mixing index curve in Figure 4b, corresponding to 
a/c of 1/pi,2/pi, and 3/pi. With a low amplitude-to-wavelength ratio, fluid flow was close 
to the upper and lower cosinusoidal microchannel walls, and it was not enough to meet 
the requirements to generate a vortex. The fluid stay time increased with the ratio in-
crease, and the centrifugal force near the top and bottom was larger than that at the cen-
ter of the microchannel [14,32]. The fluid was thrown to the next mixing unit, and the 
mixing index became larger. 

 
(a) 

 
(b) 

Figure 4. The effect of the amplitude-to-wavelength ratio: (a) distributions of concentration surface 
along the micromixer for the different amplitude-to-wavelength ratios (a/c), (b) the mixing index 
at the outlet for different values of amplitude-to-wavelength ratios (a/c). 

  

Figure 4. The effect of the amplitude-to-wavelength ratio: (a) distributions of concentration surface
along the micromixer for the different amplitude-to-wavelength ratios (a/c), (b) the mixing index at
the outlet for different values of amplitude-to-wavelength ratios (a/c).

4.1.2. Effect of Mixing Units

In passive micromixers with a steady state, laminar diffusion is the main flow mixing
behavior. To a certain extent, the number of mixing units affects whether the mixer can
achieve a reasonable mixing quality. In this study, the mixing performance of different
mixing units was deeply studied in Figure 5. Figure 5a shows the variations of mixing
efficiency at the outlet of microchannels for six mixing units for six values of a/c ratios
at an inlet velocity of 0.1 mm/s. It can be clearly seen that for the proposed micromixer
at any structural design, the mixing case when the mixing unit of N = 6 outperformed
the other cases. In general, it can be concluded that with the increase of mixing units, the
mixing quality qualitatively improves. Figure 5b presents the mixing concentration at the
outlet for different mixing units. In the case of this simple micromixer, fluid mixing was
not restricted at low inlet velocity by increasing the mixing path. On the other hand, the
curvilinear forms of the micromixer channel increase the two fluids’ contact area and thus
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enhances the mixing performance. As can be seen from Figure 5b, a more sufficient mixing
effect can be achieved with the mixing units of 6.
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4.2. Electroosmotic Flow Mixing
4.2.1. Model Validation

A validation for electroosmotic flow mixing is presented by comparing the electroos-
motic micromixer simulated by Siyue Xiong et al. [33]. As is seen in Figure 6, the effect
of different values of Reynolds number from 0.015 to 10.5 and voltage from 1 V to 8 V is
shown through quantitative comparison. The mixing effect of the micromixer is closely
related to the variations of the Reynolds number. At low Reynolds numbers from 0.01 to
0.15, present results are consistent with the simulation results in [33]. With the increase of
Reynolds number at a low range, the mixing index decreases. Similarly, in Figure 6b, the
value of the voltage is proportional to the mixing efficiency. This model illustrates that the
present work agrees with those investigated by Siyue Xiong et al. [33].

In this study, it can be seen from the above research that adjusting the main parameters
of the micromixer structure, including the amplitude-to-wavelength ratio a/c and the
mixing unit N, can play a role in obtaining a high mixing index of the proposed micromixer.
However, under the appropriate microchannel structure parameters, such as the ratio of
a/c of 2/pi and the value of b at 150 µm, the blending effect can only be at a medium level.
Moreover, in the steady state, when the number of mixing units is at six, a better mixing
effect can be achieved in all cases. Assuming that external energy is added to become an
electroosmotic flow active micromixer, the mixing index will have a chance to improve
further under the above cases. To shorten the mixing channel length while increasing the
mixing efficiency, the number of mixing units is kept at four. The flow field, concentration
field, and electric field of the electroosmotic micromixer can be calculated according to
the governing equations given in (Section 3.3). In this part of the simulation, as shown in
Figure 2, the values of amplitude-to-wavelength ratio (a/c) and channel width (b) were
2/pi and 150 µm, respectively, which were fixed at appropriate values. Concentration
profiles in Figure 7a present that when an AC electric field is applied, the vortices are
generated primarily in the environs of the electrodes, which develop into waves within the
side wall of the cosine microchannel and continue to the straight microchannel. As shown
in Figure 7b, a relatively uniform electric intensity is formed. To assess the mixing efficiency
of the present electroosmotic micromixer, a comparison of time-dependent variations of
both AC and DC electric fields was presented in Figure 8. As can be seen from Figure 8,
AC electroosmosis has a better induction effect than DC electroosmosis.
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4.2.2. Mixing Effect of Reynolds Number

In the present study, in order to further describe fluid flow characteristics within
the micromixer, the Reynolds number should be further studied to understand the fluid
flow phenomenon. Figure 9 presents concentration distribution profiles from the A-A
section to the outlet of the electroosmotic micromixer under six different Reynolds numbers
ranging from 7.5 × 10−3 to 150 × 10−2. The Re number of 1.5 × 10−2 corresponds to the
inlet velocity of 0.1 mm/s. The fluid mixing becomes more uniform related to Reynolds
numbers of 7.5 × 10−3, 1.5 × 10−2 correspondingly to the inlet velocity of 0.05 mm/s and
0.1 mm/s, respectively. With Reynolds numbers increasing to 7.5 × 10−2 and 15 × 10−2,
the fluid distribution is plug-like and continues to the channel outlet. When the Reynolds
number is larger than 15 × 10−2, the fluid concentration basically does not change and
shows basic lateral flow. It can be seen from the results that the mixing quality at the outlet
of the micromixer decreases as the Re numbers increase. This is due to the dominance of
electroosmotic force at low velocities, and the mixing time is extended, leading to increased
mixing quality. However, as the Reynolds number increases, the eddy generated by the
electroosmotic force cannot effectively induce fluid mixing, and the laminar flow plays
a major role at this time. As seen in Figure 10, the mixing efficiency of the proposed
micromixers with steady and transient states was compared. In order to further investigate
the influence of the Reynolds inlet on the mixing performance, numerical simulations of
the micromixer at different amplitude-to-wavelength ratios of each case were carried out.
It is easy to know that smaller inlet velocity shows a better blending effect in all cases. By
comparing Figure 10a,b, the mixing index of the electroosmotic micromixer in the transient
state exceeds that of the passive micromixer in the steady state. At a steady state, the
increase in flow velocity makes laminar diffusion weaker, resulting in the reduction of the
mixing quality. The fluid direction changes due to the alternating electric field. A Reynolds
number of 7.5 × 10−3 and an inlet velocity of 0.05 mm/s produced a mixing efficiency
of 77%, while the mixing index for a Reynolds number of 1.5 × 10−2 is reduced by 22%
compared with 7.5 × 10−3. It can be concluded that the mixing quality can be effectively
improved by reducing the inlet velocity.
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4.2.3. Mixing Effect of the Number of Electrode Pairs

Next, based on the previous simulation conclusions, it is supposed that applying
multiple electrode pairs on the proposed micromixer has an effect on the mixing efficiency.
Figure 11 shows the positions of the different electrode pairs. Previously, two pairs of
electrodes were set up. Based on the physical model in Figure 2, under the same conditions,
four pairs of electrodes were set up. The alternating electric field voltage amplitude value
and frequency were also kept at 2 V and 5 Hz. Figure 12a shows the concentration profiles
of microchannels with four electrode pairs at t = 20 s, respectively. It can be seen from
Figure 12 that when the electrode pairs were applied, the fluid concentration distribution
at the bottom of the channel changed significantly, while there was no obvious mixing
behavior at the wall of straight channels and cosine microchannels away from the electrodes.
As the number of electrode pairs increased, the fluids formed a vortex near the electrode,
causing the fluids to be stretched and folded repeatedly. The fluid mixing contact area
increased, and the mixing effect was considerable. The concentration streamlines for
different pairs of electrodes in Figure 12a have been presented. It can be observed that
the electric field had a significant impact on fluid mixing throughout the micromixer. As
depicted in Figure 12b, the results show that when a pair of electrodes is applied, the mixing
efficiency can reach 62% at t = 20 s, while more pairs of electrodes on the microchannel lead
to a small increment of the mixing efficiency. The rotating vortex at this time weakens the
mixing effect of the fluids, which is caused by the mutual influence of adjacent electrode
pairs on the fluid disturbance in the microchannel. When four pairs of electrodes are
applied, the mixing efficiency reaches 82%, which is a 10% increase over when two pairs of
electrodes are applied.
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f = 5 Hz.



Micromachines 2022, 13, 1933 15 of 19

4.2.4. Mixing Effect of Phase Shift

Besides, the effect of phase shift on mixing efficiency has been carried out. In this part,
the 1, 3, 5, and 7 boundaries of the micromixer in Figure 11d are set as ground, that is, zero
potential. The 2, 4, 6, and 8 boundaries are set as periodic potentials with the opposite
polarity of adjacent electrodes. Moreover, the potential function of boundary 2 is kept as
the initial phase so that its phase shift with other potential functions is 0, pi/4, pi/2, 3pi/4,
and pi, respectively. As shown in Figure 13a, different phase shifts were tried. Four pairs
of electrodes were used. It can be seen from Figure 13 that when the phase shift of the
potential function at the bottom side is changed, the mixing efficiency at the outlet changes.
When the phase shift is 0 and 3pi/4, the effect of electroosmosis and external electric field
on the fluid mixing is relatively stronger. An obvious mixing efficiency larger than 90% can
be achieved. When the phase shift of pi/4, pi/2, and pi, the internal disturbance of the fluid
under the action of the vortex was strengthened so that the mixing effect was enhanced.
When the phase shift is pi/4, the size of the fluid vortex increases starting from the first
mixing cycle unit, and the highly concentrated fluid layer stretches outward for effective
mixing. Figure 13b shows the mixing efficiency within t = 20 s for different phase shifts. As
expected, in the range of 0 to pi phase shift, the electroosmotic and external electric field
driving forces generated by varying the phase shifts are proportional to the mixing index.
The phase shift of 3pi/4 obtains the best mixing for a short time with respect to a mixing
index of 90.3%. It can be seen from Figure 13b that the mixing can be effectively induced by
adjusting the phase shift.
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4.2.5. Mixing Effect of the Voltage

Next, in order to further study the effect of applying electroosmotic flow and AC
electric field on the micromixer, different voltages in the range of 1–4 V were investigated
to find its motion of the effect on the fluid mixing behavior. In this part, no phase shift was
set to explore the effect of voltage on mixing properties. Figure 14a,b present the behavior
of the fluid flow in the electroosmotic micromixer in eight cases. The frequency and the
mean velocity were kept at 5 Hz and 0.1 mm/s, respectively. As shown in Figure 14a, the
mixing index was developed with increased electric voltages. When the voltage was high,
the vortex transported the highly concentrated fluid backward, blurring the boundaries
between the fluids and getting well mixed. The vortex produced by the electroosmotic
flow squeezed the high-concentration fluid downward, significantly improving the mixing
quality. The streamline diagrams on the right of Figure 14a show that several pairs of
symmetrical vortices were formed near the electrodes at the bottom of the microchannel,
and the fluid streamlines were stretched in opposite directions. Moreover, the influence
of the fluid vortex gradually expanded as the voltage increased, presenting a fold and
stretch motion. The mixing efficiency for different voltages applied on the electroosmotic
micromixer is quantitatively compared. When the voltage of V0 = 2 V, the mixing quality
can reach 83%. When beyond the value of the electric voltage of V0 = 3 V, the mixing degree
at the outlet of the micromixer can be greatly mixed. Subsequently, the mixing efficiency
gradually tends to be stable.

Micromachines 2022, 13, x FOR PEER REVIEW 17 of 21 
 

 

present the behavior of the fluid flow in the electroosmotic micromixer in eight cases. 
The frequency and the mean velocity were kept at 5 Hz and 0.1 mm/s, respectively. As 
shown in Figure 14a, the mixing index was developed with increased electric voltages. 
When the voltage was high, the vortex transported the highly concentrated fluid back-
ward, blurring the boundaries between the fluids and getting well mixed. The vortex 
produced by the electroosmotic flow squeezed the high-concentration fluid downward, 
significantly improving the mixing quality. The streamline diagrams on the right of Fig-
ure 14a show that several pairs of symmetrical vortices were formed near the electrodes 
at the bottom of the microchannel, and the fluid streamlines were stretched in opposite 
directions. Moreover, the influence of the fluid vortex gradually expanded as the voltage 
increased, presenting a fold and stretch motion. The mixing efficiency for different volt-
ages applied on the electroosmotic micromixer is quantitatively compared. When the 
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Figure 14. The effect of the voltage: (a) distributions of concentration surface along the micromixer
for four values of voltage, (b) the mixing index at the outlet for different voltages within 0–35 s with
four pairs of electrodes, and a phase shift of pi/4, U0 = 0.1 mm/s, V0 = 2 V, and f = 5 Hz.
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4.2.6. Mixing Effect of the Frequency

In addition to the above factors affecting mixing efficiency, different AC frequencies
were also investigated from 0.1 Hz to 10 Hz to study which frequency would achieve
suitable mixing quality. Figure 15 shows the concentration distribution of the proposed
micromixer with five frequencies to study the effect of frequencies on the mixing quality.
The results show that the mixing index increased when the frequency increased from 0.1 Hz
to 0.5 Hz and then decreased when the value was from 1 Hz to 10 Hz. It is worth noting that
when the frequency increased, the mixing efficiency did not increase as we would expect.
It can be seen from Figure 15a that the concentrations can be uniformly distributed, which
indicates that the fluids achieve good mixing. When the frequency was increased to f = 5
Hz and f = 10 Hz, the mixing effect was not ideal. When the applied frequency was 10 Hz,
the two fluids rotated near the electrodes. From Figure 15b, it can be demonstrated that an
optimal mixing index of 91% is obtained when f = 1 Hz. Figure 15b also extracts the mixing
efficiency at the outlet when the mixture reaches a relatively stable state. Generally, at low
frequencies, there is an optimal frequency contributing to the maximum mixing efficiency.
This is because there is insufficient time to respond and make the electroosmotic flow create
rotating vortices under high frequency, corresponding to a smaller period [29,34,35]. This
may contribute to the change of positive and negative polarity of electrodes when the
electric field changes faster with the increase of the frequency.
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Figure 15. The effect of the frequency:(a) distributions of concentration surface along the micromixer
for different frequencies, (b) the mixing index at the outlet for different frequencies within 0-20 s with
four pairs of electrodes and a phase shift of pi/4, U0 = 0.1 mm/s, and V0 = 2 V.
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5. Conclusions

This paper proposed micromixers with cosine microchannel walls and conducted
various simulations based on a steady state without an electric field and a transient state
with an AC electric field to investigate the mixing characteristics. From the results of the
above research about structural designs of the micromixer in a steady state, adjusting
optimal parameters can effectively improve the mixing performance. The results show that
a high amplitude-to-wavelength ratio and more mixing units result in effective mixing. It
is worth noting that no secondary flow and vortices are generated in the mixer without an
electric field driving force. To further obtain a higher mixing index, electrode pairs were
applied to the walls of the microchannel of the proposed micromixer, which became an
electroosmotic micromixer. The micromixer designs for the above parameters were studied
based on a/c of 2/pi, b of 150 µm, and N of 4. It was demonstrated that the vortices created
by the application of an AC electric field would greatly facilitate mixing. The influence of
a Reynolds number, the number of electrodes, electric phase shift, frequency, and electric
voltage were performed. The simulation results show that for a Reynolds number larger
than1.5 × 10−2 in the range of 7.5 × 10−3 to 150 × 10−2, the molecular diffusion did not
result in high efficiency. Moreover, more pairs of electrodes can reveal a better effect. Also,
the mixing was enhanced significantly with the phase shift of 3pi/4 combined with four
electrodes yielding more electroosmotic vortices. Surprisingly, the results also indicate
that as the relatively low-frequency values decrease with the range of 0.1 Hz to 10 Hz, the
mixing performance first performs better and then becomes poor. A 1 Hz frequency can
achieve a mixing index of 91%. Based on the research on voltages, the mixing effect is
in proportion to the voltages. The voltage of 4 V with the range of 1 V to 4 V leads to a
maximum mixing efficiency of greater than 96%. This electroosmotic micromixer presents
a simple structure with remarkable mixing characteristics. Further investigations about the
structure and parameters optimization would be studied to enhance the mixing quality.
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