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Abstract: The enhanced red photoluminescence (PL) from Si-rich amorphous silicon carbide (a-SiCx)
films was analyzed in this study using nitrogen doping. The increase in nitrogen doping concentration
in films results in the significant enhancement of PL intensity by more than three times. The structure
and bonding configuration of films were investigated using Raman and Fourier transform infrared
absorption spectroscopies, respectively. The PL and analysis results of bonding configurations of
films suggested that the enhancement of red PL is mainly caused by the reduction in nonradiative
recombination centers as a result of the weak Si–Si bonds substituted by Si–N bonds.
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1. Introduction

Efficient Si-based light sources are indispensable components for realizing Si-based
monolithic optoelectronic integrated circuits. Silicon-based materials, such as silicon ox-
ide (SiOx), silicon nitride (SiNx), silicon carbine (SiCx), and silicon oxycarbide (SiCxOy),
have been extensively investigated over the past decade to obtain efficient Si-based light
sources [1–10]. However, light emission efficiency is still very low and commercial ap-
plications are difficult to meet. The low emission efficiency is mainly limited by the
strongly nonradiative recombination originating from defects and low carrier injection
efficiency [11]. Compared with the wide bandgap of SiO2 and SiNx, SiCx features a smaller
bandgap, which is more conducive to carrier injection and achieving electroluminescence at
lower driving voltages in SiCx-based light-emitting devices [5,12]. Although SiCx possesses
these advantages, research of its luminescence is still progressing slowly due to the strong
nonradiative recombination derived from band tails and defect states in SiCx induced by
its structural disorder. In order to reduce nonradiative recombination, hydrogen treatment
is often used to passivate defective states and improve structural order by etching weak
Si–Si bonds [13]. However, the hydrogen used for passivation will fall off at high temper-
atures and lead to the recovery of defective states. Therefore, the regulation of defective
states has become a key process for obtaining efficient SiC-based devices with suppressed
nonradiative recombination centers. In previous research, the passivation of nitrogen on
the Si nanocrystals surface was found to effectively increase the probability of radiative
recombination [14]. Li et al. reported surface nitrogen-capped Si NPs with PL efficiency up
to 90% at wavelength of 560 nm. However, up to now, there is no report on the effect of
nitrogen passivation on the luminescent properties of SiCx films [14].

In this study, the red luminescent Si-rich a-SiCx films doped with N were fabricated
using very high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD).
The increase in nitrogen doping concentration in films significantly improves red light
emission by more than three times. The enhanced red PL is discussed, which is mainly
caused by the reduction in nonradiative recombination centers as a result of the weak Si–Si
bonds substituted by Si–N bonds.
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2. Experimental Details

Amorphous Si-rich a-SiCx films doped with N were prepared via very high frequency
plasma-enhanced chemical vapor deposition using SiH4, CH4, and NH3 as reaction gas
sources. These fabrications were carried out at a temperature of 250 ◦C. The RF power and
the deposition pressure for the growth were kept at 30 W and 20 Pa, respectively. Flow
rates of SiH4 and CH4 were maintained at 2.5 and 5 sccm (standard cubic centimeter per
minute), respectively, while those of NH3 varied from 0 sccm to 2 sccm. The PL spectra
of the films were recorded by an Edinburgh FLS1000 fluorescence spectrometer equipped
with a 450 W steady Xe lamp. The PL decay curves were measured by an Edinburgh
FLS1000 spectrometer using a 372 nm picosecond laser (pulse width 44 ps, repetition
rate = 20 MHz). The absorption spectra of the films were obtained with a Shimadzu
UV-3600 spectrophotometer (Shimadzu UV-3600, Shimadzu Corporation, Kyoto, Japan).
Microstructures of the films were evaluated using a Horiba LabRAM HR Evolution Raman
spectrometer. Bonding structures were recorded via Fourier transform infrared absorption
(FTIR) spectrometry (Shimadzu IR Pretige-21).

3. Results and Discussion

Figure 1 shows the PL spectra of thin films prepared at different NH3 flow rates under
an excitation wavelength of 325 nm. The prepared film without NH3 only shows weak
red light emission that peaks at ~780 nm. The emission peak position of the film changes
minimally but the red light emission gradually intensifies with the addition of NH3. The
red light emission of the film is nearly three times stronger than that of the film prepared
without NH3 when the NH3 flow rate increases to 2 sccm. This phenomenon is consistent
with improvement of the photoluminescence properties in a-SiNx films by the introduction
of hydrogen [15]. Figure 2a,b reveal that the change in emission peak position and the full
width at half maximum with the variation of the excitation wavelength is insignificant.
This finding clearly features defect luminescence characteristics similar to those observed
in defect-related luminescent Si-based materials, such as SiCx and SiCxOy [6,8].
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Figure 1. PL spectra of thin films prepared at different NH3 flow rates under an excitation wavelength
of 325 nm.

The microstructure of films was characterized using Raman scattering spectra to
clarify the luminescence enhancement (Figure 3a). The Raman spectra show the typical
features of a-Si vibration modes. The Raman peaks at around 150 cm−1 and 480 cm−1

are attributed to transverse acoustic (TA) and transverse optical (TO) phonon frequencies,
respectively [16,17]. This finding indicates that amorphous silicon clusters exist but Si and
SiC nanocrystals are absent in the films. Moreover, with an increased NH3 flow rate, one
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can see that the intensity ratio of the TA mode (150 cm−1) to the TO mode (480 cm−1) tends
to decrease. These observations suggest a reduced short-range and medium-range disorder
of the Si–Si4 network [17]. This phenomenon is closely related to the increase in N content
in the film. The weak Si–Si bond in the film will be gradually etched and replaced by the
Si–N bond with the addition of N given that the Si–N bond energy (355 kJ/mol) is greater
than the Si–Si bond energy (222 kJ/mol). It seems that the reduction in weak Si–Si bonds is
responsible for the significant enhancement in red PL [18]. The surface morphology of the
films was further revealed by atomic force microscopy (AFM) as shown in Figure 3b,c. The
average RMS values for the films are around 20 nm. No obvious change can be observed
in the surface morphology between the films prepared by different NH3 flow rates. This
ruled out the possibility that the enhanced PL was caused by the increasing light extraction
from the films.
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Films were analyzed with an FTIR spectrometer to further explore the bonding config-
uration of films prepared with different NH3 flow rates. The results are shown in Figure 4.
The FTIR absorption spectrum for the film prepared without NH3 mainly displays the
following vibrational bands [6,16]: the absorption band at 640 cm−1 corresponds to the
rocking vibration mode of SiHn, the 780 cm−1 band is related to the stretching vibration
mode of Si–C, the 1250 cm−1 band corresponds to the stretching vibration mode of Si–C,
and the 2100 cm−1 band is attributed to the stretching vibration mode of H–Si–Si3. The
FTIR absorption spectrum clearly showed the feature of Si-rich SiCx. One can see that
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the rocking vibration mode of SiHn at 640 cm−1 and the stretching vibration mode of
H–Si–Si3 at 2100 cm−1 gradually weaken with the increase in NH3 flow rates. In contrast,
the stretching vibration mode of Si–N appears and becomes intense with the addition of
NH3. With the NH3 flow rate increasing from 0.5 to 2 sccm, the density of Si–N bond is
estimated to be increased from 0.2 × 1022 cm−2 to 0.7 × 1022 according to the following
equation [19]:

N = A
∫

α(ω)

ω
dω (1)

where α(ω) is the absorption coefficient, ω is the wave number of the corresponding
absorption band, and A is equal to 6.3 × 1018 cm−2, which is related to the absorption
cross-section of the Si–N vibration mode. This finding strongly indicates that the weak
Si–Si bond is gradually replaced by the Si–N bond with the continuous incorporation of N.
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Figure 5 shows the PL decay traces of films prepared under different NH3 flow
rates. The decay process in each case can be properly fitted with a biexponential function
as follows:

I(t) = I0+A1 exp(
−t
τ1

) + A2 exp(
−t
τ2

) (2)

where I0 is the background level; τ1 and τ2 are the weight fraction and lifetime of each
exponential decay component, respectively; and A1 and A2 are the corresponding ampli-
tudes [20]. Thus, the average lifetime τ can be estimated as follows [20]:

τ = (A1 × τ1
2 + A2 × τ2

2)/(A1 × τ1 + A2 × τ2) (3)

Figure 5 shows that all measured films feature a fast dynamic decay with lifetimes of
nanoseconds. Moreover, the PL lifetime gradually increases from 3.2 ns to 3.8 ns with the
increase in NH3 flow rates. The comparison of Figures 1 and 5 shows that the evolution
of the PL lifetime with NH3 flow rates is the same as that of PL intensity with NH3 flow
rates. This finding strongly indicates that the improved red light emission is due to the
reduction in nonradiative recombination centers in the film. As demonstrated by Raman
spectra in Figure 3, the amorphous silicon component in the film gradually decreases with
the increase in the NH3 flow rate. Meanwhile, the Si–N bond density increases with the
increase in the NH3 flow rate (Figure 4). These results clearly demonstrate that some Si–Si
bonds are replaced by Si–N bonds. The weak Si–Si bond in the film will likely be gradually
etched and replaced by the Si–N bond with the addition of N, given that the Si–N bond
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energy (355 kJ/mol) is greater than the Si–Si bond energy (222 kJ/mol). The addition of
nitrogen evidently reduces the nonradiative recombination centers in the film. Therefore,
the increase in NH3 flow rate increases the PL lifetime and significantly enhances red
light emissions.
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Figure 5. PL decay traces of the films prepared at different NH3 flow rates.

4. Conclusions

Red luminescent Si-rich a-SiCx films doped with N were fabricated using VHF-PECVD.
The increase in nitrogen doping concentration in the films significantly improves red light
emissions by more than three times. The PL results and analyses of bonding configurations
of films demonstrated that the significant enhancement in red PL is caused by the effective
reduction in nonradiative recombination centers from the reduction in weak Si–Si bonds
substituted with Si–N bonds.
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