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Abstract: Holographic microwave imaging (HMI) has been proposed for early breast cancer diag-
nosis. Automatically classifying benign and malignant tumors in microwave images is challenging.
Convolutional neural networks (CNN) have demonstrated excellent image classification and tumor
detection performance. This study investigates the feasibility of using the CNN architecture to
identify and classify HMI images. A modified AlexNet with transfer learning was investigated to
automatically identify, classify, and quantify four and five different HMI breast images. Various
pre-trained networks, including ResNet18, GoogLeNet, ResNet101, VGG19, ResNet50, DenseNet201,
SqueezeNet, Inception v3, AlexNet, and Inception-ResNet-v2, were investigated to evaluate the
proposed network. The proposed network achieved high classification accuracy using small training
datasets (966 images) and fast training times.

Keywords: microwave imaging; breast cancer; deep learning; AlexNet; transfer learning

1. Introduction

Breast cancer is the leading cause of female cancer deaths [1]. Previous studies showed
that early breast cancer detection methods combined with suitable treatment could im-
prove survival rates significantly [2]. X-ray mammography is the current gold-standard
imaging tool for diagnosing breast cancer, but it produces harmful radiation and is un-
suitable for dense breasts [3]. Microwave imaging has been proposed as one of the most
potential breast imaging tools [4]. Researchers have extensively investigated microwave
imaging in many aspects, including measurement of the microwave dielectric properties
of breast tissues [5,6], image algorithms [7,8], numerical models [9,10], data acquisition
systems [11–13], microwave antennas [14–16], clinical trials [17,18], image enhancement
and improvement methods [19–21], and image classification [22–24]. If microwave images
contain specific qualitative and quantitative indicators, this may help characterize benign
and malignant tumors and predict disease. However, this work is challenging because this
interdisciplinary study involves several disciplines, such as microwave science, medical
imaging, machine learning, and computer vision.

Over the past two decades, deep learning has attracted increasing attention and has
achieved excellent performance in medical image classification and disease detection [25,26].
For example, Chen et al. employed the biclustering mining method in ultrasound images
to identify breast lesions with accuracy, sensitivity, and specificity of 96.1, 96.7, and 95.7%,
respectively [27]. However, the image datasets were too small to implement generalizations.
Le et al. applied a deep neural network to enhance microwave images [28]. Khoshdel
et al. investigated the feasibility of using 3D U-Net architecture to improve microwave
breast images [29]. Rana et al. investigated machine learning for breast lesion detection
using microwave radar imaging [22]. Mojabi et al. applied convolutional neural networks
(CNN) to microwave and ultrasound images to classify uncertainty quantification and
breast tissue [24]. However, obtaining big microwave image datasets for training networks
is challenging.
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AlexNet is one of the most popular CNN architectures, and it is exploited on ImageNet
datasets (including 50 million images) [30]. Previous studies demonstrated that small
datasets (a few hundred) are employed for image classification [31]. However, small
datasets are unsuitable for training networks due to easy overfitting. With the help of
transfer learning, the training process can be conducted on a personal computer using
small datasets [32].

In our previous studies, the holographic microwave imaging (HMI) method was pro-
posed and tested for breast lesion detection [33–35]. This paper investigates the feasibility of
using modified AlexNet with transfer learning to identify, classify, and quantify five classes
of HMI datasets (fatty, dense, heterogeneously dense, very dense, and very dense breasts
containing tumors), thereby solving the highly subjective judgment problem of lesions or
abnormal tissues. Experimental validations are conducted on realistic MRI-based breast
models to investigate the effectiveness and accuracy of modified AlexNet with transfer
learning. In addition, a comparison study of several deep learning networks, including
ResNet18, ResNet50, ResNet101, GoogLeNet, Inception v3, AlexNet, and VGG19, was
conducted to evaluate the performance of HMI image classification. The research findings
not only extend the application of deep learning but also help to understand microwave
science from the perspective of deep learning with computer vision. The rest of this paper
is organized as follows: Section 2 describes the proposed materials and method. Section 3
presents experimental validations and results. Section 4 concludes the study.

2. Materials and Method
2.1. Convolutional Neural Network

A typical CNN contains an input layer (that receives pixel values), a convolution layer
(that extracts image features), a pooling layer (that reduces the pixels to be processed and
formulates abstract elements), and an output layer (that maps the extracted features into
classification vectors corresponding to the feature categories) that can be described as:

zl = W l ∗ xl−1 + bl

al = σ
(

zl
) (1)

where l denotes the lth layer and ∗ is a convolution operation. W l , bl , and zl denote the
weights matrix, bias matrix, and weighted input of the lth layer. σ is the nonlinear activation
function. When l = 2, x2−1 = x1 is the image matrix whose elements are pixel values.
When l > 2, xl−1 is the feature maps matrix al−1, which is extracted from the (l− 1)th layer,
i.e., xl−1 = al−1 = σ

(
zl−1

)
. Let L be the output layer and aL is the final output vector.

Nonlinear activation functions are employed from the second layer to the last layer.
The cost function is:

EL
0 = − 1

n

n

∑
i=1

N

∑
k=1

[
tL
k lnaL

k +
(

1− tL
k

)
ln
(

1− aL
k

)]
(2)

where n is the training number and N is the number of neurons in the output layer
corresponding to the N classes. tL

k is the targeted value corresponding to the kth neuron of
the output layer and aL

k is the actual output value of the kth neuron of the output layer.
The output layer error can be defined as:

δL =
∂EL

0
∂zL (3)

where ∂(·) denotes the partial derivative operation. l = { L− 1, L− 2, . . . , 2}, then:

δl = W l+1δl+1◦σ′
(

zl
)

(4)
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where ◦ is the Hadamard product. The partial derivative from EL
0 to W l+1 and bl can be

calculated as follows:
∂EL

0
∂W l =

∂EL
0

∂al
◦ ∂al

∂W l = δl◦xl−1

∂EL
0

∂bl =
∂EL

0
∂al
◦ ∂al

∂bl = δl

 (5)

the changes can be computed by:

∆W l = −η
∂EL

0
∂W l

∆bl = −η
∂EL

0
∂bl

 (6)

where η denotes the learning rate.
The ResNet architecture reduces training errors and network layers [36]. Adding a

quick identity link to the primary network unit is the key to the ResNet architecture:

H(X) = F(X) + X (7)

where H(X) is the ideal image and F(X) is the residual map.

2.2. Datasets

As shown in Table 1, publicly available MRI-derived breast phantoms from 9 human
subjects were used to develop realistic breast models by converting pixel values in MRI
images to complex-valued permittivity [37,38]. Figure 1 shows a sample (breast 9) of
12 phantoms and the real and imaginary parts of the relative complex-valued permittivity.
Figure 2 shows the real and imaginary parts of 12 breast phantoms. The HMI method was
applied to generate HMI breast image datasets using the developed, realistic numerical
microwave breast models. The numerical model simulated a sphere-shaped inclusion as a
tumor (radius of 5 and 10 mm).

Table 1. Characteristics of breast phantoms.

Number Phantom Class Quantity Model Size

No 1 I: fatty 253 RGB 310× 355× 253
No 2 I: fatty 288 RGB 267× 375× 288
No 3 II: dense 307 RGB 316× 352× 307
No 4 II: dense 270 RGB 300× 382× 270
No 5 II: dense 251 RGB 258× 253× 251
No 6 III: heterogeneously dense 202 RGB 269× 332× 202
No 7 III: heterogeneously dense 248 RGB 258× 365× 248
No 8 III: heterogeneously dense 273 RGB 219× 243× 273
No 9 IV: very dense 212 RGB 215× 328× 212
No 10 V: very dense breast contains two tumors 212 RGB 215× 328× 212
No 11 V: very dense breast contains two tumors 212 RGB 215× 328× 212
No 12 V: fatty breast contains two tumors 253 RGB 310× 355× 253
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parts of the relative complex-valued permittivity of breast 4; (i,j) real and imaginary parts of the 
relative complex-valued permittivity of breast 5; (k,l) real and imaginary parts of the relative com-
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dense, and breasts containing tumors. Class V was identified based on tumors that existed, 
and three Class V models were investigated in this study (see Table 1). 

  

Figure 2. (a,b) real and imaginary parts of the relative complex-valued permittivity of breast 1;
(c,d) real and imaginary parts of the relative complex-valued permittivity of breast 2; (e,f) real and
imaginary parts of the relative complex-valued permittivity of breast 3; (g,h) real and imaginary parts
of the relative complex-valued permittivity of breast 4; (i,j) real and imaginary parts of the relative
complex-valued permittivity of breast 5; (k,l) real and imaginary parts of the relative complex-valued
permittivity of breast 6; (m,n) real and imaginary parts of the relative complex-valued permittivity
of breast 7; (o,p) real and imaginary parts of the relative complex-valued permittivity of breast 8;
(q,r) real and imaginary parts of the relative complex-valued permittivity of breast 9; (s,t) real and
imaginary parts of the relative complex-valued permittivity of breast 10; (u,v) real and imaginary
parts of the relative complex-valued permittivity of breast 11 and; (w,x) real and imaginary parts of
the relative complex-valued permittivity of breast 12.

This study used two datasets to train and test the CNN networks (see Table 2).
Dataset 1 consists of the real part of HMI breast images, and dataset 2 consists of the
imaginary part of HMI breast images. According to [37], the dataset in this study includes
five classes of HMI images (12 phantoms), which are fatty, dense, heterogeneously dense,
very dense, and breasts containing tumors. Class V was identified based on tumors that
existed, and three Class V models were investigated in this study (see Table 1).
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Table 2. Training parameters.

Dataset 1 2

Modality Real part of HMI breast Imaginary part of HMI breast
Number of phantoms 12 12

Classes of images 5 5
Number of HMI images 1379 1379

Image size 227 × 227 × 3 227 × 227 × 3
Number of training images 966 966

Number of validation images 275 275
Number of test images 138 138

Number of Class I 160 160
Number of Class II 457 457
Number of Class III 444 444
Number of Class IV 108 108
Number of Class V 210 210

Cross-validation group 8-fold 8-fold
Maximum number of epochs 50 50

Minimum batch size 25 25
Validation frequency 30 30
Initial learning rate 0.0003 0.0003

2.3. Training and Testing Data
2.3.1. Image Segmentation

An original HMI image contains different types of tissues with different sizes and
cannot be applied directly for classification. We applied the image segmentation method
to partition each original HMI image into sub-images and created the total of the sub-
images. Sub-image properties are 227 × 227 pixels (a RGB image). The segmentation
method helps to change the representation to a more meaningful and easier-to-analyze
image while changing the scale to fit AlexNet. Image segmentation makes HMI images in
each sub-image more uniform, which is suitable for classification and facilitates the final
determination of the percentage of each mechanism. In addition, to ensure the authenticity
of extracted features from the training dataset, image augmentation techniques such as
rotation, height, and width shift were not used to ensure the integrity of the original images.

2.3.2. Image Labeling

Both datasets 1 and 2 were classified into five classes (see Figure 2 and Table 2). The
fatty breast (class I) consists of skin, muscle, and fat tissue. Dense breast (Class II) consists of
skin, muscle, fat, and dense tissue (which has higher dielectric properties than fatty tissue).
Heterogeneously dense breast tissue (Class III) consists of skin, muscle, fat tissue, and het-
erogeneously dense tissue. A very dense breast (Class IV) consists of skin, muscle, fat, dense
tissue (which has higher dielectric properties than fat), and very dense fatty tissues (which
have higher dielectric properties than fat and dense tissues). A breast contains tumors (Class
V) consisting of skin, muscle, fat, heterogeneously dense tissue, and two tumors.

The created HMI images illustrate the application behavior of the trained network.
Therefore, their sub-images were not labeled. Different numbers of sub-images from each
class were selected for manual labeling and then used for training and testing the proposed
network. Training and testing datasets were utterly independent to ensure the reliability
and stability of the proposed method.

For each dataset, 70% of the total images were used to train the proposed network,
20% of the total images were used to validate the network, and 10% of the total images were
used to test the network. All breast image datasets were resized to 227 × 227 × 3 pixels.
The training image dataset was applied to tune the network parameters using a gradient-
based method. The testing image dataset was involved in the testing process to generate
predictions. Table 2 shows the parameters used for training the networks.
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2.4. Network Architecture
2.4.1. Modified AlexNet

AlexNet is the most popular CNN architecture due to its better performance in image
classification. Thus, this study applied a modified AlexNet with transfer learning (see
Table 3) to HMI images to improve image classification accuracy. Table 3 shows the structure
of modified AlexNet with transfer learning. The first convolution layer of the network
takes input datasets and passes them through convolution filters. Thus, the input image is
required to be resized to 227 × 227 × 3 pixels, corresponding to the breadth, height, and
three-color channels representing the depth of the input image. The last convolutional layer
implements the reconstructed image process, aggregating the high-resolution patch-wise
representations to produce the output image. The cross-entropy loss function is used
to reduce errors. The batch normalization function is performed before each activation
function to solve overfitting problems. The ReLU layer provides faster and more efficient
training, mapping negatives, and maintaining positive values. The max pooling layer
simplifies the output and reduces the resolution by reducing the number of parameters
needed to learn. The fully connected layer combines all features to classify the images into
four classes. The SoftMax function normalizes the output of the fully connected layer.

Table 3. AlexNet with transfer learning.

Schematic No. Name Type Activations Weights & Bias
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1 data Image input 227 × 227 × 3

2 conv1 Convolution 55 × 55 × 96 Weights: 11 × 11 × 3 × 96;
bias: 1 × 1 × 96

3 relu1 ReLu 55 × 55 × 96
4 norm1 Cross-channel normalization 55 × 55 × 96
5 pool1 Max pooling 27 × 27 × 96
6 conv2 Grouped convolution 27 × 27 × 96

7 relu2 ReLU 27 × 27 × 256 Weights: 5 × 5 × 48 × 128;
bias: 1 × 1 × 128 × 2

8 norm2 Cross-channel normalization 27 × 27 × 256
9 pool2 Max pooling 13 × 13 × 256

10 conv3 Convolution 13 × 13 × 384 Weights: 3 × 3 × 25 × 384;
bias: 1 × 1 × 384

11 relu3 ReLU 13 × 13 × 384

12 conv4 Grouped convolution 13 × 13 × 384 Weights: 3 × 3 × 192 × 192;
bias: 1 × 1 × 192 × 2

13 relu4 ReLU 13 × 13 × 384

14 conv5 Grouped convolution 13 × 13 × 256 Weights: 3 × 3 × 192 × 128;
bias: 1 × 1 × 128 × 2

15 relu5 ReLU 13 × 13 × 256
16 pool5 Max pooling 6 × 6 × 256

17 fc6 Fully connected 1 × 1 × 4096 Weights: 7029 × 9216;
bias: 4096 × 1

18 relu6 ReLU 1 × 1 × 4096
19 drop6 Dropout 1 × 1 × 4096

20 fc7 Fully connected 1 × 1 × 4096 Weights: 4096 × 4096;
bias: 4096 × 1

21 relu7 ReLU 1 × 1 × 4096
22 drop7 Dropout 1 × 1 × 4096
23 fc8 Fully connected 1 × 1 × 4 Weights: 4 × 4096; bias: 4 × 1
24 softmax SoftMax 1 × 1 × 4
25 output Classification output

2.4.2. Transfer Learning

As shown in Table 3, the last three layers of AlexNet were replaced by transfer learning
to avoid overfitting. The proposed AlexNet network consists of a pre-trained network and
a transferred network. The parameters in the pre-trained network were trained on publicly
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available ImageNet datasets. Therefore, it could be adapted to extract features from the
HMI image dataset. The parameters in the transferred network represent a small part of
the proposed AlexNet network. Thus, a small training dataset can meet the requirements
of transfer learning.

2.5. Data Analysis and Image Processing

MATLAB version R2020a with the deep learning library tool was used for data analysis
and image processing. The proposed network was developed on a laptop (ThinkPad P53)
with an Intel i7-8700K CPU (2.60 GHz) and 256 GB of RAM. Stochastic gradient descent
with momentum (SGDM) was selected to train the transferred part of AlexNet.

The MATLAB Transfer Learning of Pretrained Network for Classification tool was
used to train and test various deep learning networks using dataset 2, including ResNet18,
GoogLeNet, ResNet101, VGG19, ResNet50, DenseNet201, SqueezeNet, Inception v3, AlexNet,
and Inception-Res-Net-v2.

2.6. Performance Metrics

The overall performance of the proposed architecture depends on the evaluation
matrix, which contains True Positives (TP), False Positives (FP), False Negatives (FN),
and True Negatives (TN). The AlexNet architecture was evaluated on the testing dataset
using four performance metrics, including precision and accuracy. Precision quantifies the
exactness of a model and represents the ratio of carcinoma images accurately classified out
of the union of predicted same-class images [39].

Precision =
TP

TP + FP
(8)

where TP refers to images correctly classified as breast tumor images and FP represents the
typical images mistakenly classified as breast tumor images.

Accuracy evaluates the correctness of a model and is the ratio of the number of images
accurately classified out of the total number of testing images.

Accuracy =
TP + FN

TP + TN + FP + FN
(9)

where TN refers to the correctly classified standard images.

3. Results and Discussion
3.1. Results

Figure 3a shows the training progress of the proposed network using dataset 1 and
the SGDM method, including classification accuracy and cross-entropy loss for each epoch
of training and validation. At 50 epochs, the highest classification accuracy of training and
validation was 100 and 100%, respectively, and the lowest cross-entropy loss of training and
validation was 0 and 0%, respectively. The training time was 11 min and 13 s for training
966 images from dataset 1.

Figure 3b displays the training progress of modified AlexNet with transfer learning
using dataset 2 and the SGDM method. At 50 epochs, the highest classification accuracy of
training and validation was 100 and 100%, respectively, and the lowest cross-entropy loss
of training and validation was 0 and 0%, respectively. The training time was 10 min and
55 s for training 966 images from dataset 2.

As shown in Figure 4a, the performance of the proposed network was evaluated using
the confusion matrix on testing images (from dataset 1). The actual horizontal row and
predicted vertical column demonstrate the classification accuracy and sensitivity of the
proposed network, respectively. For example, in the first row, 16 images were used to
classify Class IV in the testing dataset, and 16 images (100%) were classified accurately.
Therefore, the classification accuracy of Classes I, II, III, IV, and V was 100, 100, 100, 91.7,
and 67.7%, respectively. In the first column, 16 images were used to predict class I of the
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testing images (from dataset 1), where 16 images (100%) were classified accurately. The
sensitivity of Classes I, II, III, IV, and V was 100, 78.3, 97.7, 100, and 100%, respectively.
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Figure 3. Training progress of the proposed network using (a) dataset 1 and (b) dataset 2.

Figure 4b shows the performance of modified AlexNet with transfer learning on
testing images (from dataset 2). In the first row, 16 images were used to classify Class I in
the testing dataset, and 16 images (100%) were classified accurately. The proposed network
obtained a classification accuracy of 100, 100, 100, 100, and 100% for Classes I, II, III, IV, and
V, respectively. In the first column, 16 images were used to predict Class I in the testing
images, where 16 images (100%) were classified accurately. The proposed network obtained
a sensitivity of 100, 100, 100, 100, and 100% for Classes I, II, III, IV, and V, respectively.

Figure 5a,b demonstrate the randomly selected 16 examples of training images (from
dataset 1) and randomly selected 16 examples of testing images (from dataset 1) using
AlexNet with a transfer learning network, respectively.

Figure 6a,b display the randomly selected 16 examples of training images (from dataset
2) and randomly selected 16 examples of testing images (from dataset 2), respectively.
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Table 4 presents the prediction results of dataset 2 using several deep learning net-
works. MobileNet-v2 obtained the highest accuracy (96.84%), and the training time was
28 min and 38 s. AlexNet used the shortest training time (3 min and 4 s) with relatively low
accuracy (79.89%), Inception-ResNet-v2 obtained the lowest accuracy (79.34%) and used
a long training time (106 min and 48 s), and DenseNet201 used the longest training time
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3.2. Discussion

In this study, five classes of breast phantoms were developed using the method
presented in [37]. The initial HMI breast images were created using the HMI method
detailed in [33]. The initial images were analyzed and processed using the proposed
CNN architecture. The proposed architecture offered higher classification accuracy and
sensitivity for image dataset 2 (imagery-part HMI images; see Figure 4a) than image dataset
1 (real-part HMI images; see Figure 4b). For image dataset 1, the modified AlexNet with
transfer learning offers higher classification accuracy for classes I–III (100%) than classes IV
(91.7%) and V (67.7%), and higher sensitivity for classes I (100%), IV (100%), and V (100%)
than classes II (78.3%) and III (97.7%). However, no significant difference in classification
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accuracy and sensitivity was obtained for dataset 2. Figure 4 demonstrates that image
datasets affect the performance classification accuracy and sensitivity of the modified
AlexNet with transfer learning.

The randomly selected 16 testing examples of image dataset 1 are shown in Figure 5b,
and the 16 randomly selected testing examples of image dataset 2 are shown in Figure 6b.
Although a classification accuracy of 100% was obtained for examples of image dataset 1
(see Figure 5b), it does not mean that the classification accuracy of dataset 1 is as high as
100%. For example, the classification accuracy rates of 91.7% and 67.7% were obtained for
classes IV and V, respectively (see Figure 4a). Although the proposed CNN architecture
provides accuracy and sensitivity of 100% to classify dataset 2 (see Figure 4b), the classifica-
tion accuracy of some testing examples is below 100% (96.36–99.96%; see Figure 6b). This
may be caused by MATLAB calculation errors.

Compared with some popular deep learning networks (see Table 4), modified AlexNet
with transfer learning has apparent advantages in classification accuracy and training time.
For example, modified AlexNet with transfer learning obtained higher accuracy (100% vs.
96.84%) and required shorter training time (10 min 55 s vs. 28 min 38 s) to classify image
dataset 2 than MobileNet-v2. The experimental results demonstrated that the modified
AlexNet with transfer learning could identify, classify, and quantify HMI images with high
accuracy, sensitivity, and reasonable training time. Several factors may affect the test results,
including image preprocessing, the number of training images (in percentages), the total
number of image datasets, and MATLAB calculation errors.

4. Conclusions

In this study, the CNN architecture was introduced for analyzing HMI images. A
modified AlexNet with transfer learning was developed to identify, classify, and quantify
five classes of HMI images (fatty, dense, heterogeneously dense, very dense, and very dense
breasts containing tumors). Various experimental validations were conducted to validate
the performance of the proposed network. Various popular deep learning networks,
including AlexNet, were studied to evaluate the proposed network. Results demonstrated
that the proposed network could automatically identify and classify HMI images more
accurately (100%) than other deep learning networks. In conclusion, the proposed network
has the potential to become an effective tool for analyzing HMI images using small training
datasets, which offers promising applications in the microwave breast imaging field.
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