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Abstract: The triboelectric nanogenerator (TENG) is a promising research topic for the conversion of
mechanical to electrical energy and its application in different fields. Among the various applications,
self-powered bio-medical sensing application has become popular. The selection of a wide variety
of materials and the simple design of devices has made it attractive for the applications of real-time
self-powered healthcare sensing systems. Human activity is the source of mechanical energy which
gets converted to electrical energy by TENG fitted to different body parts for the powering up of
the biomedical sensing and detection systems. Among the various techniques, wearable sensing
systems developed by TENG have shown their merit in the application of healthcare sensing and
detection systems. Some key studies on wearable self-powered biomedical sensing systems based
on TENG which have been carried out in the last seven years are summarized here. Furthermore,
the key features responsible for the highly sensitive output of the self-powered sensors have been
briefed. On the other hand, the challenges that need to be addressed for the commercialization of
TENG-based biomedical sensors have been raised in order to develop versatile sensitive sensors,
user-friendly devices, and to ensure the stability of the device over changing environments.

Keywords: triboelectric nanogenerator; self-powered sensor; biomedical application

1. Introduction

The evolution of technology continues to miniaturize electronic gadgets from the time
of the invention of semiconductor technology [1]. The electronic gadgets used daily are
mostly battery-dependent for their power requirements [2,3]. The drawback of batteries
comes under consideration of their limited lifetime, and they becomes environmental
hazards after their expiry [4–6]. Furthermore, the inclusion of DC circuitry in a device
makes it heavy and expensive [7,8]. The research on renewable energy technology con-
tinues to give promising alternative to the use of conventional energy-based electronic
equipment [9–11]. Among the alternative energy sources, the solar cell possesses some
advantages over others for alternative energy generation, and a lot of research is investi-
gating this solution [12–14]. However, its main drawback is its dependency on sunlight.
Due to clouds and rainy seasons, the yield of the solar cell degrades [15–17]. On the other
hand, a lot of mechanical energy gets lost due to our daily activities, such as walking,
running, vibrations, body movements, or cars passing, and by nature’s activities, such as
wind flow and tides [18,19]. To convert these mechanical energies to electrical energy, a
lot of conversion techniques have been established by researchers, such as electrostatic,
piezoelectric, electrochemical, and magnetostrictive methods [20–24]. To convert mechani-
cal energy, the piezoelectric effect has shown a great contribution, and a lot of research has
been carried out and continues to be on it [25,26]. Currently, for scavenging mechanical
energy, the triboelectric nanogenerator [TENG] has attracted the attention of the scientific
community and plenty of research has continued into different applications for the tech-
nology, which was invented a decade ago by Z. L. Wang [27–35]. The main advantage
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of this energy scavenger is the choosing of diverse materials, since almost every material
takes part in triboelectrification in contact with other materials, and they become positively
and negatively charged [36–41]. The working mechanism of a triboelectric nanogenerator
for the mechanical energy scavenging and its conversion to electrical energy is based on
contact-electrification and the induction effect [27,28]. Until now, several reports have
been published on the self-powered sensing and detection applications of TENG [27,42–46].
As there is no use of a battery for the power source and each material can show tribo-
properties when using bio-friendly materials, people have developed a lot of self-powered
bio-medical sensors using triboelectric nanogenerators [47–50]. Wearable electronics for
bio-medical sensing applications using triboelectric nanogenerator is a promising field in
futuristic gadgets for the healthcare sector [51–58]. There are two categories of TENG-based
sensors or detectors used for healthcare monitoring; one is wearable devices, and another
is implantable devices. Wearable TENGs are attached to different parts of the human
body to obtain a source of mechanical energy from various kind of movements, such as
stretching, squeezing, running and, simultaneously, they give the corresponding physio-
logical signals [42,44,52,53]. On the other hand, bio-friendly and biocompatible materials
are used to develop implantable devices to implant in human organ, such as the stomach
or muscle to obtain the corresponding physiological signal of the body organs [49,59,60].
As TENG converts mechanical to electrical energy and human body movements can be a
mechanical energy source, by using TENG fitted to human body we can obtain electrical
energy and, simultaneously, the device can act in self-powered sensing applications. The
biggest advantage of using TENG-based sensing systems for bio-medical application is
that there is no use of an external power source; additionally, they are lightweight, have
simple features, and are low-cost. However, there are some challenges, such as sensitivity
for very weak forces, and stability of performance over various ambient conditions.

In this review, we have presented a brief description about the fundamentals of
TENG and a comprehensive overview of the wearable electronics and human machine
interface for bio-medical sensing applications using triboelectric nanogenerator over the last
7 years. We will discuss the bio-medical sensing applications for the various body motions,
monitoring heartbeats, detection of physiological signals, and respiration, vibration, and
tactile sensing. The factors influential to the sensitivity of the bio-medical sensors has been
discussed. In every section we have presented the materials, structures, working principle,
and performance of the applications according to the corresponding cited work in the
literature. Finally, the potential development and challenges of implementation of wearable
TENGs in future have been discussed.

2. Fundamentals of TENG

Triboelectrification is a natural phenomenon observed in our daily life, and it occurs
when two different materials come in contact with each other. Initially, it was considered
as one of the adverse phenomena to the industries, until the first useful implementation
of the triboelectric effect was developed by Van de Graaff through the famous Van de
Graaff generator [61]. Later on, a triboelectric series was established by Alpha lab in 2009,
whereby they have shown the triboelectrification of different materials and created a table
with the polarity of them [62–64]. On the basis of electron affinity and, hence, the ability of
attraction or repulsion of electrons by a material while it is brought under contact to other
materials, it is classified as a positive and negative tribo-material, as shown in Figure 1a;
human hair, skin, and nylon are positive, while cellulose, PVC, and Teflon are negative
tribo-materials [62]. It will be a highly efficient triboelectric nanogenerator if two materials
are chosen from the top opposing ends of the triboelectric series because, after friction,
the produced surface charge density will be higher. There are several factors affecting
the output performance of a TENG other than surface charge density. Figure 1b shows
that the factors responsible for the output of TENG come under the surface properties
of materials and environmental effects. The influencing factors, such as frequency and
force, and the environmental factors, such as humidity, temperature, and presence of
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gaseous molecules, are also the considerable parameters which decide the output. In 2015,
Wang, et al., established a formula of the figure of merits for TENG, which is summarized in
Figure 1c [35,64]. It is shown that the performance figure of merit (FOMP) for TENG consists
of a material FOM (FOMM) and structural FOM (FOMS). The FOMP is considered as a
standard equation to determine the performance of TENG. The most important material-
dependent parameter is surface charge density, although there are some external factors
which restrict the ability to generate surface charge [64].
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schematic representation of factors affecting the triboelectrification. (c) The figure of merits (FOM) for
TENG. Reproduced with permission [35], copyright 2020, Elsevier.

The fundamental principle of TENG was first established by Z. L. Wang to scavenge
mechanical energy, and his group showed for the first time the utilization of triboelectric
effects for industry use [27,65]. The working principle of TENG is a coupling effect of
contact electrification and electrostatic induction [27,66]. Here, when a material comes in
contact with another material, the surface charge transfer takes place between the materials.
Depending on the transfer of electrons from one material to another, one material becomes
positively charged and another becomes negatively charged and, accordingly, a triboelectric
series is established [64]. Due to the electron induction phenomena, an opposite kind of
surface charge is induced on the electrodes attached to the materials and, hence, an electric
potential develops in-between the two electrodes attached to the materials [27,64]. This
developed electric potential in-between the two electrodes changes its polarity with the
contact separation process and delivers alternating current at the output load. The two tribo-
layers are separated by a gap, and this can be considered as a parallel plate capacitor [67,68].
The fundamentals of the presented TENG are based on Maxwell’s displacement current [66].
There are four fundamental modes of operation of TENG, as follows.

2.1. Vertical Contact-Separation (C-S) Mode

This mode is the widely applied mode for developing TENG configurations, as it is
easy to fabricate and straightforward, as shown in Figure 2a. The working principle is as
follows: when two different materials with attached electrodes comes into contact with each
other under the presence of external force, they produce a surface charge depending on their
electron affinity. When the two charged surface starts to separate, an electrical potential
develops, which induces the opposite kind of charges on the surface of the electrodes. This
induction of charges comes from the transfer of electrons from one electrode to the other
electrode. During the approach, the potential difference tries to minimize and the direction
of flow of the electrons becomes opposite to the case of the separation. Hence, in this way,
we obtain alternating current at the output [38,69,70].
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2.2. Lateral Sliding (LS) Mode

As the name suggests, it generates electricity by sliding the top dielectric layer over
the bottom layer, as shown in Figure 2b. The top layer is positive, and bottom later is
triboelectrically negative, as per the triboelectric series. When the two layers are in full
contact with zero relative displacement, they possess equal and opposite charge density
and, thus, no net potential develops at the electrodes. While the top layer slides outward
with respect to the bottom layer, a large number of charges becomes unpaired, and that
is why a potential develops between the two electrodes and, thus, electrons flow from
one electrode to other electrode to counter the potential difference. The flow of current
continues until the top tribo-layer slides completely with respect to bottom layer. Again,
when the top layer tends to slide inward, the direction of flow of electrons becomes opposite
to the previous case. Furthermore, the flow of electrons continues until the electrostatic
equilibrium is established between the materials and, hence, the electrodes. In this fashion,
the alternating current we obtain at the output is generated [38,71].

2.3. Single Electrode (SE) Mode

Although vertical C-S mode is widely used and more effective friction takes place in
the lateral slide mode, these are not suitable for developing a miniaturized device because
of the large device size and relatively complex circuitry. Here, a single electrode mode
comes into play to take the part of the role for a small-sized device. Here, only one electrode
is needed, and the ground acts as another electrode, so the effective flow of electrons
for electricity generation takes place between the electrode and the ground, as shown in
Figure 2c. It is the simplest working mode of TENG which operates in both vertical C-S
mode and lateral sliding mode [71].

2.4. Freestanding Triboelectric (FST) Layer Mode

When a triboelectric layer is movable, such as by sliding or rotating, this mode comes
into play with greater efficiency than the single electrode mode. There is no need to
attach an electrode and connect wires to the moving triboelectric object. In this mode,
two symmetrical electrodes are placed at the same plane and parallel to each other with
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a small gap, as shown in Figure 2d. The size of the dielectric tribo-layer is the same as
the electrode. The movement of the free tribo-layer in-between the electrodes develops
potential between them and, consequently, to balance this, the potential electrons flow from
one electrode to another. With the change in direction of the moving dielectric layer, the
flow of electrons changes its direction and produce alternating electric output [72–74].

Of the self-powered systems for human health monitoring based on TENG, there are
two available ways which have been developed by researchers, namely an implantable
device and a wearable electronic system. The implantable TENGs are environmentally
friendly and biodegradable, and are implanted into different parts of the human body,
such as the muscles, heart, stomach, etc., to harvest electrical energy from their stretching,
vibrations, or dynamicity; this helps to diagnose health conditions by monitoring and
analyzing the electrical signals coming from the self-powered TENG [74–76]. On the other
hand, wearable TENGs are attached to human body parts, specifically different joints, the
chest, and the throat, to scavenge electrical signals from the movements and to obtain
different physiological electrical signals.

Here, we will be briefing the research work carried out previously based on self-
powered wearable TENG used for healthcare monitoring, which is divided into two major
parts. One is breathing/respiration sensing systems, and another is tactile/human activity
sensing. A schematic is shown in Figure 3 representing some versatile applications of
self-powered TENGs.
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permission [54] for a gait detector, copyright 2018, Elsevier. Reproduced with permission [55] for
strain sensor, copyright 2015, American Chemical Society. Reproduced with permission [56] for
respiratory monitoring, copyright 2018, American Chemical Society Reproduced with permission [57]
for apex cardiogram recording, copyright 2016, Elsevier. Reproduced with permission [58] for a body
temperature sensor, copyright 2014, American Chemical Society.

3. TENG Based Tactile/Human Activity Sensing
3.1. TENG for Humidity Resistor and Gait Sensor

Wearable and flexible electronic gadgets are an emerging technology for the next-
generation electronic devices to simplify the communication between the human body and
multifunctional electronic devices. Sweat is one of the most popular ways to diagnose
the health of the human body. In most cases, sweating occurs due to physical work by
the human body and, by analyzing the presence of the components of sweat, such as the
concentration of electrolytes, people can monitor and diagnose the health conditions of the
human body [76]. Indeed, if the relative humidity inside shoes is detected then it will be
easier to an athletic person to know when to change their shoes for better performance [54].
Therefore, in 2018, Zong-Hong Lin and his co-workers developed the wearable sweat
sensor, humidity sensor, and gait sensor by varying the electrodes and positioning the
TENG at suitable positions [54]. In this case they have used flexible and biocompatible
chitosan–glycerol-based wearable C-TENG. When the chitosan–glycerol is used as both
a triboelectric material and electrode, as shown in Figure 4a, it shows constant output
voltage, which is independent of the relative humidity, as shown in Figure 4b. However,
the beautiful property is observed when the chitosan–glycerol is used only as a dielectric
material, i.e., when a metal film is attached with the film of chitosan–glycerol and another
dielectric material PTFE is attached with a metal film, and the output performance is
measured under external force and at a different relative humidity. The conductivity
increases with the increase in humidity of the chitosan–glycerol film and, consequently,
the surface charge density decreases, as shown in Figure 4c. Based on the two results,
they developed a humidity resistor through a combination of chitosan–glycerol film and
C-TENG. Here, chitosan–glycerol film acted as an electrical component in the outer circuit,
as shown in Figure 4d. The schematic for real-time application is shown in Figure 4e for
the humidity resistor. The output voltage is taken across the film, and its conductivity
decreases with the increase in humidity. At 20% relative humidity, the output voltage was
30 V, whereas the voltage decreases to 8 V in the presence of 80% relative humidity, as
shown in Figure 4f. The gait phase analysis is an important measurement wing because of
its application in sports, rehabilitation, and the health diagnosis of athletic people [77,78].
It is used to characterize and monitor human locomotion, specifically in athletes [79]. To
do so, the Zhonh-Hong Lin group attached the C-TENG at four positions on the foot, as
shown in Figure 4g, i.e., at the toe, inner side of the forefoot, outer side of the forefoot, and
heel. The different shaped foot is identified by observing the electric output of a chitosan–
glycerol-based gait phase detector. The electric output under force by a normal foot is at
its maximum at different positions, as shown in Figure 4h; this is because the force due to
body weight is distributed almost equally in the case of a normal foot. However, in the
case of pigeon-toed and splayfoot feet, the force distributes unequally and, thus, we obtain
unequal voltages at different positions, as in Figure 4h. The voltage bar of Figure 4h shows
the visualized data coming from the different shaped foot. This experiment showed that
the C-TENG can be fabricated using textiles for a self-powered humidity resistor-to-gait
sensor.
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Figure 4. (a) Schematic for C−TENG. (b) Output voltage at different relative humidity. (c) The
electrical conductivity and surface charge density of chitosan−glycerol film at different relative
humidity. (d) Schematic for humidity sensor. (e) Photograph describing a self-powered humidity
sensor combining a C−TENG and chitosan–glycerol base humidity resistor. (f) Electrical output
voltage of a humidity resistor under the parameter of different humidity. (g) Photograph of gait
detector whereby different positions are encircled for C−TENG fitting. (h) Sensing of different shaped
feet. Reproduced with permission from [54], copyright 2018, Elsevier.

3.2. Transparent and Stretchable Tactile Sensing

Since the introduction of TENG, the working mechanism of which is based on the
coupling effect of triboelectrification and the induction of current, a lot of work has been car-
ried out to develop a multifunctional self-powered sensor [80–82]. It gives some enormous
advantages for wearable electronics because of its reduced circuitry, lightweight nature,
and because it is applicable for a wide variety of materials. Self-powered wearable elec-
tronics for tactile sensing is an important field of research for futuristic applications in the
area of healthcare. Transparency and stretchability are two important factors for wearable
electronic gadgets. There are reports based on a stretchable and transparent TENG based
on hydrogel and, mostly, these are single electrode systems and, thus, less efficient than
a two-electrode system. However, the aqueous electrolytic solution used for the solution
hydrogel becomes dehydrated over time, which causes a lagging of ionic conductivity and,
hence, decreases the overall performance of the device [83–85]. To overcome this disad-
vantage, in 2019, Zhong Lin Wang and his co-workers proposed self-powered transparent
and stretchable triboelectric nanogenerator for tactile sensing using a poly(2-ac-rylamido-
2-methyl-1-propanesulfonic acid) (PAMPS) ionogel-based TENG [81]. Here the ionogel
acted as both the triboelectrification layer and electrode. Therefore, a less complicated
structure was created, which was also highly sensitive due to the patterned PDMS surface
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and the good conductivity of the ionogel. The patterned PDMS is sandwiched by PAMPS
ionogel and, finally, it is encapsulated using PDMS, as shown in Figure 5a. The SEM
image of the patterned PDMS film is shown in Figure 5b and the molecular structure of the
ionogel network is presented in Figure 5c. The miniaturized device’s working mechanism
is presented in Figure 5d(i–v). It is shown that the TENG sensor is highly sensitive under
very low forces, which makes it attractive for wearable sensor applications. In Figure 5e–h
some real-time applications related to human motions or detection of pulse have been
presented. The versatility of this TENG sensor appears when its performance was tested
under the flow of air. Figure 5e shows that it delivers distinct output voltage under the
blowing air. This self-powered sensor can detect the pulse beat when it is attached to the
wrist of a hand. Figure 5f shows it delivers 78 beats/min corresponding current pulse,
which we receive at the output. It can sense stretching/twisting related to human activity
and delivers corresponding output; in each case, the nature of the output is different, as
shown in Figure 5g,h. It also can detect touching by a fingertip and also the bending of
a finger. These features are attractive parts of this TENG sensor for real-time healthcare
applications.
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3.3. TENG for Exercise Monitoring and Rehabilitation Therapy

There are several reports based on stretchable TENGs for scavenging electrical energy
and sensing for biomedical applications [84–87]. However, the most sensible and effective
stretchable TENG was presented by Zhou Li and his group in 2022, whereby they reported
a multi-mode triboelectric nanogenerator for energy harvesting and a self-powered sensing
using a liquid metal EGaIn (eutectic gallium–indium alloy) electrode [51]. Due to good
deformability, good electrical conductivity, non-toxicity, and low viscous the msw-TENG is
an attractive device in the field of triboelectric nanogenerators, specifically in the domain
of healthcare applications, due to its stretchable property. The msw-TENG is based on
EGaIn liquid metal and silicone (Ecoflex 00-10), where the silicone is used to provide the
desired shape for the liquid metal. The fluid nature of the liquid metal is responsible for the
continuity of the conductivity during stretching or deformation. A structural view and the
mechanical stability of msw-TENG are presented in Figure 6a. Figure 6b shows the working
mechanism under contact-separation mode, where silicone rubber acted as a dielectric
layer and the liquid metal as the electrode; hence, it is seen that the device works under
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the mechanism of a single electrode mode TENG. The electrical output measurements are
depicted in Figure 6c, and these are 39 V, 0.7 µA, and 13 nC, respectively. Figure 6d shows
the versatility of the msw-TENG in different states where the device performances are not
affected by its stretched or twisted condition compared to the original state. Because of the
distribution of the liquid metal through the patterned shape in the silicone, the connectivity
and conductivity remains intact even when the strain is around 300%. The bottom side
figures of Figure 6d are the simulation of stress distribution using COMSOL software
under the stretched condition of msw-TENG. The higher output is shown in Figure 6e. The
output voltage of msw-TENG has been examined using different bending angles of the
finger, as shown in Figure 6f. In the stretching condition, the coupling between stretched
state and contact-separation process helps to generate higher surface charge density. The
attractive feature of the device as an active sensor is its sensitivity up to the level whereby
we can measure the radial artery pulse, Figure 6g. The msw-TENG can record the vascular
movement due to its structural advantage and presence of liquid metal, the properties
of which remain the same under the deformed state. In Figure 6g, we can see that it
detects the real-time pulse under various physiological states, i.e., at rest condition, post-
exercise, and in a break state. Furthermore, by analyzing the peaks of the peripheral artery,
cardiovascular disease can be diagnosed. By varying the size and attaching the device at
suitable positions it can be applicable for monitoring purposes in various sport-related
fields, as shown in Figure 6h. The versatility of healthcare applications makes the device a
promising one in the field of the sensing applications of TENG.
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Figure 6. (a) Photographs of msw−TENG. (b) Working mechanism. (c) Output voltage, current, and
generated charge by the TENG. (d) The simulated schematics for the stretched mode. (e) Output
voltage at different stretched condition. (f) Normal and tremor state of a patient. (g) Output signal of
the TENG for monitoring radial artery pulse signals in different motion states, showing different heart
rates. (h) Potential application scenarios for joint monitoring based on the msw−TENG. Reproduced
with permission from ref [51], copyright 2022, Elsevier.
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4. Respiration Sensing

Respiration is one of the top physiological process among the important biological
activities of human body. By analyzing the rate of breathing, people can sense the other
physical activities, such as abnormalities in the lungs, heart, sleeping, exercise, and the
emotional states of human body [88–90]. Researchers have developed a lot of sensors for
the early diagnosis of breathing rate abnormalities, as these sensors are highly necessary
for providing proper medical assistance [91–95]. Among the various types of sensors,
research on self-powered sensors has emerged as a topic of mass interest. Indeed, TENG
has occupied this research field due to its versatility when choosing suitable materials and
its reduced complexity for bio-medical applications. Therefore, a lot of research has been
carried out on respiration/breathing sensors using varying tribo-materials and into the
structure of the devices during the past seven years [96–105]. In the following, we will
summarize some potential work on pulse sensor/respiration/breathing sensors based on
triboelectric nanogenerator.

4.1. Self-Powered Pulse Sensor for Cardiovascular Disease

Nowadays, it is seen that cardiovascular diseases are one of the most concerning
matters to the medicinal industry. Indeed, it is said that around 90% of cardiovascular
diseases are preventable when considering the early detection of abnormalities [106,107].
There are some sensors available on the market for monitoring the cardiovascular signals,
such as ambulatory blood pressure, the electrocardiograph, the sphygmograph, and elec-
trophysiology [108,109]. In addition, with the existing sensors, in 2017, Z. Li, Z. L. Wang,
and Y. Fan led a group which developed a self-powered flexible ultrasensitive pulse sensor
(SUPS) based on TENG, which is highly sensible over 107 cycles [107]. It consists of a
combination of two tribo-active materials, namely Kapton and copper. On one side, the cu
film on the back side of Kapton act as the electrode and, on the other side, a nanostructured
cu film act as both the material for triboelectrification and the electrode. The TENG is based
on a vertical contact-separation mode, where the TENG SUPS was encapsulated using an
elastomer. The advantage of the device is based on the nanostructured surface of both
copper and Kapton, which is highly beneficial for effective friction at the molecular level.
The schematic of the SUPS is shown in Figure 7a. Kapton and cu serve as dielectric layers.
The SEM image of the nanostructured cu and Kapton is shown in Figure 7b,c. In this study,
they used a linear motor to apply a vertical force of 50 N. To show the effectiveness of the
nanostructured film, different pairs were selected, using flat Kapton, flat Cu, n-Kapton, and
n-Cu. Figure 7d,e reveals that the highest electrical output comes from the combination
of a differently patterned surface of cu and Kapton. The open-circuit voltage and current
for n-cu and n-kapton was 109 V and 2.73 µA, respectively. To show the real impact of
the SUPS, it is fitted to the radial artery of a 24-year-old man and the electrical output is
recorded. It is seen that the highest output arises from the nanostructured Kapton and
copper, as is shown in Figure 7f. Therefore, it is revealed that the nanostructured surface has
the highest impact when it comes to the nature of the surfaces. The detectivity of the device
is shown in Figure 7g, where a 10 kHz mechanical vibration signal from a loudspeaker was
detected and converted to an electrical output. A faster response time of 50 µS is seen in
the stable output. The stability test was carried out using a linear motor with an applied
force of 30 N, and this force is 100 times higher than pulse pressure. Under this high force,
the SUPS has delivered a stable output of 20 V for 0.5 million cycles, as shown in Figure 7h.
The ultrasensitive property has been shown in Figure 7i, where the low amplitude of the
wing of a honeybee is recorded by SUPS. The most important application of SUPS is pulse
wave monitoring, which is shown in Figure 7j, and summarized in the following sentences.
It is considered that the R – R interval of ECG is perceived as the sign of heart beats, and
it is used as a reference for the accuracy and reliability of the pulse sensor used to track
heart beats. From Figure 7j, it is seen that the peak waves of output voltage of SUPS,
PPT, and PPG are synchronous to the corresponding R waves in the ECG. Again, the R–R
intervals from the ECG, P-PSUPS, P-PPPT, and P-PPPG were recorded and, by comparing and
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analyzing the peaks and intervals, it is shown that that SUPS has the potential for clinical
use in pulse measurement.
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surface. (d) Voltage output of SUPS. (e) Current output of SUPS. (f) Voltage output of a 24−year−old
man when the SUPS was fitted to the radial artery. (g) Output voltage of SUPS under a high-frequency
signal. (h) Stability test of the device. (i) Real-time optical image of bee wings and corresponding
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4.2. TENG for Physiological Signal Sensing

Physiological signals are of great importance when recognizing the emotional state of
a human being, and this is important for the applications of safe driving, social security,
and healthcare [110,111]. The emotion recognition can be evaluated through the signals
from speech, facial expressions, and gestures towards others [112,113]. Indeed, the apex
cardiogram, radial pulsilogram, and carotid pulsilogram carry information for health
assessment and the diagnosis of diseases. To sense the physiological signals, a lot of
studies have been carried out using various methods [114–116]. In 2016, Li Wang and his
group developed an ultrasensitive triboelectric sensor (T-sensor) using the rough surface of
aluminum and PET as the triboelectrification layer for a vertical contact-separation mode
TENG, as shown in Figure 8c. The versatile applications have been confirmed by them to
show the potential of the device, which will be summarized in follows. Figure 8a shows
the sensing of the corresponding movement of human hand from the stretch state to the
clench state.

Weak and strong movement creates low and high output voltage, respectively. The
movements of the jaw and corresponding muscles while the eyes blink is recorded by
the T-sensor; although their voltage amplitude changes, the nature of their movements is
clearly distinct, as shown in Figure 8b,d. We know that respiration is one of the important
signals for healthcare, and it can be detected by the T-sensor. Figure 8e reveals the breathing
rate in two states of the body, with the rest state and post-exercise state marked using black
and red curve, respectively. The different amplitude peaks and number of peaks carry the
information about the state of the body at that time. The most distinct sensing property of
the T-sensor was in apex cardiogram recording, as in Figure 8f–i. The apex cardiogram is
important in order to know the cardiac performance of a human. A T-sensor was attached
in different positions, such as at the aorta (AO), pulmonary artery (PA), cardiac apex (CA),
and tricuspid valve (TV), to measure low-frequency signals coming from the heartbeat of
a healthy and fit man, as shown in Figure 8f. The apex cardiogram recording is shown
in Figure 8g, where it was seen that uniform peaks corresponded to the heartbeats of a
healthy man in a resting state. The ultrasensitive property of the T-sensor was presented in
Figure 8h, which is the enlarged view of single heartbeat. All the phases shown in the figure
are well-matched with the typical characteristics of a commercial apex cardiogram. The
device can detect different important physiological pressure signals, as shown in Figure 8i,
which shows its high potential in the healthcare sector.
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Figure 8. Application of T-sensor. (a) Detection of the clenching and stretching of hand. (b) The
jaw movement recording. (c) Schematic for T−sensor. (d) Corresponding signal to eye’s blink.
(e) Heart rate monitoring. (f) The position of the sensors mounted on different positions on the
chest, such as the aorta (AO), pulmonary artery (PA), tricuspid valve (TV), and cardiac apex (CA)
to record physiological signals. (g) Apex cardiogram (ACG) recording data of a 22−year−old man.
(h) Detailed information of the ACG curve. (i) Aorta pressure curve (APC), pulmonary artery pressure
curve (PAPC), and tricuspid valve pressure curve (TVPC) recorded in a healthy 22−year−old male.
Reproduced with permission from [57], copyright 2016, Elsevier.

4.3. Air-Flow-Driven TENG for Self-Powered Real-Time Respiratory Monitoring

There are some established sensing systems related to blood pressure, arterial pulse
pressure, and heart rate systems, but respiration sensing systems comes out as the most
important and widely accepted sensing systems for personal health monitoring and man-
agement systems [113–116]. In this matter, in 2018, Xudong Wang and his co-workers
proposed an air-flow-driven TENG for self-powered real-time respiratory monitoring.
Here, the authors developed a flexible TENG using the nanostructured surface of PTFE
film and copper for tribo-materials [95]. This was a wavy-shaped PTFE film on flat copper
film in an acrylic box where one end of the PTFE film was attached to the acrylic box and
the other end was free to vibrate for the effective friction, with the flat copper film attached
to the acrylic plane, as shown by the schematic in Figure 9a. The porosity of nanostructured
PTFE film is shown using the SEM image in Figure 9b. The friction takes place in-between
the PTFE and copper under the flow of air through the acrylic box, when air-flow contact-
separation occurs due to the wavy pattern; the corresponding voltage and current are
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2.4 V and 1.7 µA, respectively, as shown in Figure 9c,d. The operation cycle for electrical
energy generation is shown in Figure 9e, the contact-separation process is illustrated by six
stages in Figure 9e(i–vi), and the corresponding generated electric potential distribution
developed using COMSOL software is shown in Figure 9f. Due to its wavy structure, the
gap changes position-wise and, hence, the transferred charge density varies with the wavy
pattern, as shown in Figure 9g, where the iv-th state generated maximum charge density
and the i-th state generated the lowest charge density. The nanostructured pattern makes it
highly sensitive under the force coming from air flow by respiration and, hence, inspired
the development for respiration sensor. For real-time respiration sensing, the TENG was
embedded inside a commercial medical mask, as demonstrated by the inset in Figure 9h.
The working function is based on the air-flow by exhalation which causes vibrations of
PTFE film and, hence, gives electrical output. Here, four different breathing patterns are
considered, namely the deep, shallow, slow, and rapid behavior of breathing. Different
breathing rates produce unequal voltage amplitude, as shown in Figure 9h–k. Figure 9l–o
is the corresponding enlarged view of each voltage peak of Figure 9h–k, respectively, where
it is seen how, over time, the voltage amplitude increases to peak value and decreases to
zero on the basis of the contact-separation of different portions of the wavy shaped PTFE
film. This successfully demonstrates the possible commercialization of the device for the
monitoring of human respiration.
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Figure 9. (a) Schematic of air-flow-driven TENG. (b) SEM image of the nanostructured surface
of the film of PTFE. (c,d) Electrical output voltage and current at a rate of air flow of 120 L/min.
(e) Schematic for working mechanism. (f) The distribution of electric potential which is simulated
using COMSOL software. (g) Corresponding generated charge at each cycle. Real-time respiratory
signal from various breathing rates. (h) Slow breathing rate. (i) Rapid breathing rate. (j) Shallow
breathing rate. (k) Deep breathing rate. (l–o) Corresponding output voltage when the TENG was
embedded with a medical mask. Reproduced with permission [56], copyright 2018, American
Chemical Society.
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There are several reports for respiratory monitoring using TENG but, in most cases,
these are not suitable for versatile real-time application due to the following factors: they do
not have a user-friendly structure for comfortable use, or have a complex structure [97,104].
To address these issues, in 2022, Zhong Lin Wang and his group developed a comfort-
able and wearable real-time respiratory monitoring system, the helical fiber strain sensor
(HFSS) [104]. A helical structure made using PTFE and nylon as tribo-materials; the main
advantage arises because of its helical structure, which produces electrical signal even un-
der a very small strain. The structure is shown in Figure 10a. Three states have been shown
for contact-separation under strain. The working mechanism under strain is schematically
presented in Figure 10b, and the corresponding distribution of potential developed using
COMSOL software is given in Figure 10c. The uses of strain material and the helical
structure have given the advantage of sensitivity to the device and, hence, inspired them
to develop a wearable chest strap for respiration sensing. The effectiveness of the device
is illustrated in Figure 10d by the real-time sensing of the breathing process. Inspiration-
and expiration-led stretching and contraction was recorded. An entire breathing cycle and
the corresponding voltage signal are given in an enlarged view in Figure 10d. The strap
was fitted at the upper part of the abdomen for taking an electrical signal and, for each
inspiration and expiration, how different body parts behave is illustrated in Figure 10e.
The efficiency of the device was compared with a commercial spirometer. The results from
the spirometer (Figure 10f) and from the HFSS (Figure 10g) suggest that the trend lines are
a good match for each other over a similar time scale, which suggests the potential capacity
for commercialization of the HFSS device for respiration monitoring.
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expiration. (e) Movements of different body parts while breathing. Comparative performance by
(f) commercial spirometer and (g) HFSS. Reproduced with permission from [104], copyright 2022,
American Chemical Society.

5. Conclusions and Outlook

In summary, in this review, we have outlined and presented some high-potential
works on self-powered biomedical applications using TENG which focused on flexibility,
responsivity, sensitivity, stability, and user-friendly nature. These works took place during
the last seven years, specifically in the period lasting from 2015 to the present time. Our
focus was on the self-powered wearable electronic sensor, because it can be used for
daily health monitoring as well as in cases of smart clothing for patients admitted to
hospital for medication. We have presented only the biomedical applications which cover
human motions sensing, tactile sensing, heart rate sensing, and respiration sensing. The
advancement of the TENG sensors on the basis of structures, materials, and the nature
of applied forces has been depicted. We have seen TENG sensor output voltage from
hundreds of volts to the millivolt level, which clearly conveys the corresponding force
behind the output and, hence, shows potential as the replacement for the commercial
battery-functionalized biomedical sensor.

A lot of research has been carried out and is still continuing concerning the TENG-
based healthcare sensor, and some of the research has shown phenomenal commercial
potential. However, there are some key points researchers need to care about. Most of
the TENG devices are bulky in nature, which restricts the acceptability of device. The
output performances of the TENG sensor should be tested in different environments or
by changing the parameters which badly affect electrical output, because a stable output
in different conditions make a device attractive for use. The materials used are mostly
polymer-based, so more research needs to be carried out using bio-friendly materials,
such as covalent organic frameworks, or using thin films of organic molecules for further
miniaturizing the TENG sensor and to obtain ultra-sensitivity of the healthcare sensors to
the level where they can compete with the existing commercial biomedical sensors.
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