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Abstract: The memristor-based neural network configuration is a promising approach to realizing
artificial neural networks (ANNSs) at the hardware level. The memristors can effectively simulate
the strength of synaptic connections between neurons in neural networks due to their diverse
significant characteristics such as nonvolatility, nanoscale dimensions, and variable conductance.
This work presents a new synaptic circuit based on memristors and Complementary Metal Oxide
Semiconductor(CMOS), which can realize the adjustment of positive, negative, and zero synaptic
weights using only one control signal. The relationship between synaptic weights and the duration of
control signals is also explained in detail. Accordingly, Widrow-Hoff algorithm-based memristive
neural network (MNN) circuits are proposed to solve the recognition of three types of character
pictures. The functionality of the proposed configurations is verified using SPICE simulation.

Keywords: artificial neural network (ANN); character picture recognition; memristor; memristive
neural network (MNN); synaptic circuit; neural network circuit

1. Introduction

Currently, researchers are giving considerable attention to the implementation of neu-
ral networks on hardware platforms to enhance data processing efficiency. The memristive
neural network (MNN) circuit is a hardware system that can incorporate memory and
computation. It is suitable for high-speed parallel computation and solving the efficiency
issues driven by the bottleneck of Von Neumann. Thus, the MNN circuit is a potential
candidate for the realization of ANN [1-9]. The unique nonvolatile attributes of memristors
and synapses are quite comparable in terms of memory characteristics [10]. To express
the weight of synapses, memristors can be directly utilized, which further recognize the
application of memristors in neural networks.

The essential link in MNN circuit design is the design of the synaptic circuit [11-17]. Four
memristor-based synaptic bridge circuits, which can realize positive, zero, and negative
weights is reported in [18-20]. In [20,21], it is suggested to use two cross arrays with the
same structure, in which two memristors in the same position act as synaptic circuits. The
same input signal is applied to two memristor crossed arrays to obtain the output, and then
the difference between the memristors is mapped to positive, zero, or negative weights.
Then, the neural network circuit based on the memristors is used to realize character
recognition. In [22-24], differential input signals were applied to two rows of a memristor
cross array. The sum of the output voltages was expressed as the difference between the
resistance values of two memristors, thus obtaining positive, zero, and negative weights.
However, when using the array as a synaptic circuit, selecting a certain row or column
of the array is necessary, which leads to the inability to realize parallel programming of
synaptic circuits in the whole network during operation, which limits the development
of accelerated calculation of neural network. In [25], four Metal-Oxide-Semiconductor
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(MOS) transistors and a complementary resistance switch were used to form a memory
cell. Only positive voltage was used to adjust the resistance, thus simplifying the power
supply design and making the control circuit easier to realize. However, this circuit needs
two kinds of control signals to adjust the memristance. A 1T2M (one MOS transistor and
two memristors) structure memristive synapse circuit was reported in [26]. Specifically,
the MOS transistor was used as a switch to determine whether the circuit updated the
weight or saved the weight, but the circuit could only realize the positive weight. In [27],
a 4T2M (four MOS transistors and two memristors) structure memristive synapse circuit
was designed, which required two different control voltages to control the weights in the
circuit. In [28], a 4T1M (four MOS transistors, one memristor, and an inverter) structure
memristor synapse circuit was designed, which required two kinds of control voltage
signals to be applied to the control terminal of the circuit at the same time through an
inverter. According to the characteristics of the above circuits, this paper optimizes the
above circuit structures and reduces the number of control voltages.

In this paper, a simple memristive synapse circuit is implemented which can adjust
the positive, negative, and zero synapse weights through only one control terminal. The
memristive neuron circuit is realized by designing a signal summation and activation
function circuit. Lastly, through combination with the Widrow—-Hoff algorithm, a single-
layer neural network circuit is designed to recognize three types of character pictures.

The remainder of this paper is organized as follows: Section 2 presents the design of
the memristive synapse circuit along with the description of the circuit weighting operation
and weight programming operation; Section 3 presents the design of the neuron circuit,
as well as the simulation outcomes ascertaining the function of signal summation and
activation; Section 4 shows the character recognition network circuit and confirms the
circuit recognition’s accuracy using software; lastly, Section 5 summarizes the paper.

2. Design of Memristive Synapse Circuit
2.1. Memristor Model

The HP memristor is a continuous memristor whose resistance changes continuously
under the action of applied voltage. It has the advantages of nonvolatility and nanoscale
operation, which make it suitable for the design of MNN circuits [3]. The simplified
mathematical model of the HP memristor can be expressed as

Ron Ron
M(g) = Ron™ 52N q(t) + Rore(1 — 25 2Ng(1)) M
where M(g) represents the memresistance (Q2), 4(t) represents the amount of charge (C)
flowing through the memristor, Ron and Ropr represents the resistance of the doped and
undoped region, D represents the length (nm) of TiO,, and y represents the average ion
mobility (cm? /Vs) of the material.

2.2. Weighted Operation

Figure 1a presents a new memristive synaptic circuit by applying the HP memristor
model. The circuit is composed of four MOS transistors (T1-T4) and two memristors
(Ma and Mp) connected in reverse series. Here, T1 and T4 are the PMOS transistors, T, and
T3 are NMOS transistors, and Vi, is the input of the synaptic circuit. The control voltage
VG acts on the gates of the four MOS transistors simultaneously to adjust the positive and
negative sign of the weight.
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Figure 1. (a) Circuit diagram of the memristive synapse circuit; (b) current path with positive weight;
(c) current path with negative weight.

The output voltage, Vot is the voltage difference between nodes A and B under the
given input, i.e., Vout = Vo — Vp. Because the two memristors in this circuit are identical
and connected in reverse series, the resistance changes of M and Mp are always opposite;
hence, their sum remains a constant value, i.e., Ma + Mp = RoN + Ropr. The sign of the
synaptic circuit’s weight can be specified by the control voltage, Vg, as shown in Table 1.

Table 1. Conditions w.r.t the control voltage, V.

Conditions Control Voltage Transistor State
TQ ’ T3 =0On
1 Ve >0 T,, T, = Off
Tl ’ T4 =0On
2 Ve <0 T,, Ts = Off

As shown in Table 1 and Figure 1b, Condition 1 depicts the current path in the circuit.
The direction of the current flowing through the memristor Mg is from node A to node B.
The output voltage Vo is greater than 0 and can be expressed as

Mp

Vout = VA - VB = mvin

2)
Likewise, as shown in Table 1 and Figure 1c, Condition 2 affirms that the current of the

memristor Mg flows from node B to node A, and the output voltage Vot is negative, as

shown below.
Mg

—V;
MA + MB m

Therefore, the following relationship can be observed with respect to the input and
output voltages of the synaptic circuit:

Vout =Va — Vg = — (3)

Ve | Mg
: Vin
Vol Ma + Mg

Vout = wVip =

4)

where w = % . ﬁ, for Ron << Rogr, and the memristances M and Mg are all within

[Ron, Rorrl; thus, when Mp = Ron, w = £Ron/(Rorr + Ron) = 0, and, when Mg = RoFr,
w = £ Ropr/(Ron + Rorr) = 1. It can be concluded that w can be changed in the range
of [-1, 1]. Therefore, w can be used to represent the weight of synaptic circuits and can

/a7

realize “positive”, “negative”, and “zero” weights.
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2.3. Weight Programming Operation

According to the circuit structure and the working mechanism of memristors, the
relationship between the weight change of the synaptic circuit and the action time ¢ of
the programming voltage can be analyzed. Concretely, because the two memristors are
connected in reverse series, when the programming voltage V, = + 5 V is applied to the
input of the synaptic circuit, the changes in M4 (t) and Mgp(f) are opposite, resulting in the
total memristance M(t) = M (t) + Mg(t) in the circuit remaining unchanged. Let M (0) and
Mg(0) represent the initial values of the two memristors; combined with the memristor
model in Equation (1) and the control voltage Vg, the memristances of M4 and Mg in the
weight programming stage can be obtained as follows:

MA(t) = MA(O) — (ROFF — RON) X k %X g1 (t)

{ Mg(t) = Mp(0)+(Rorr — Ron) X k x q2(t) Ve >0 5)
Ma () = MA(0) + (Rorr — Row) Xk g1 (1)

{Mg(f) = Mg(o) - (Rglf:— R;Ij) x k x qzl(t) Ve <0 ©)

where Ropr represents the high-resistance state of the memristor, and Roy represents the
low-resistance state. k=i, X Ron/D? is a constant. Since the amount of charge flowing
through the two memristors in the series circuit is always the same, i.e., g1(t) = 42(t), the
total memristance M(t) of the synaptic circuit can be further expressed as

M(t) = Ma(t) + Mp(t) = Ma(0)+Mg(0) ()

when Vg > 0, according to the current flow direction in Figure 1b and Equations (5) and (7),
the corresponding weight change can be obtained as follows:

AMg(t) _ kx(Rorr —Ron) x () _ 4 o g (9)

A|w(t)| = MA(t) +MB(t) MA(0)+MB(O)

where A = k X (Ropr — Ron) X I/(Ma(0) + Mg(0)) = 30.67 can be obtained by substitute
the parameters into the formula, which is a fixed value. As the resistance of Mp is within the
range [100, 16K], the maximum range of AMg is 15.9 k(); thus, Aw =15.9 k()/16.1 k(2 ~ 0.988.
According to Equation (8), the range of At can be obtained as [0, 0.032].

Similarly, when Vg < 0, the weight change can be obtained as follows:

Aaw(t)] = — M) kx (Rorr — Ron) x Aq(t)
Mau(t) + Mpg(t) M (0)+Mgz(0)

=—-AXAt<0 )

According to the above analysis, the weight change of the synaptic circuit at any time
in the weight programming stage can be expressed as

Vo AMB(t) Vo k % (ROFF — RON) X Aq(t) Vo
Aw(t)] = w7 X it = X =Ax —> XAt 10
O [Vl M)+ Ma() ~ Vel Ma(0)+Mal0) el (0
Thus, the weight w(t) of the synaptic circuit at any moment can be obtained as follows:
1% %
w(t) = = [|w(0)] + Alw(t)|] = = x |w(0)] + A x At (11)
VG| Vel
_ Y Mg(0)
where w(0) = ﬁ X MA(O)]?FMB(O)'

Equation (11) presents the linear functional relationship between the synaptic circuit’s weight w(t) and the
action time t of the programming voltage V;, at any moment. According to the positive and negative control
voltage Vg, the operation of increasing or decreasing the weight of the synaptic circuit can be realized.

A comparative analysis of the functions of the proposed memristor synaptic circuit with previously reported
studies [26-30] is presented in Table 2. The proposed synaptic circuit offers various advantages in terms of the
number of control voltages and the weight range, and it provides good linearity in the programming stage.
Therefore, the proposed configuration has better operability in the weight programming stage.
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Table 2. Comparison of memristive synaptic circuits.

[26] [27] [28] [29] [30] This Work
Input Voltage  Voltage  Voltage  Current  Voltage Voltage
Output Voltage  Current  Current  Voltage  Current Voltage
Weight scope + +0, — +0, — +,0, — + +,0, —
Weight linearity Yes Yes No No No Yes
Number of memristors 2 2 1 5 1 2
Number of control voltages 1 2 2 2 1 1

3. The Neuron Circuit
3.1. The Neuron Circuit Design

The synaptic and neuron circuits are two basic units in the MNN circuit. An example of the proposed
configuration is verified by considering a neuron circuit with two connected synaptic circuits as shown in Figure 2.
The left dashed box represents the two memristive synaptic circuits designed in Section 2, and the right dashed
box represents the neuron circuit. The potential difference between A; and B; (I =1, 2) is obtained using the two
subtractors composed of operational amplifiers Al and A2, and resistors R;_g. Specifically, when R;-Rg are equal,
Vo1 =Va1 — Vg1 =w1 xVip and Voo = Var — Vg = wy X Vipo. The operational amplifier A3 and resistor Rg_13
constitute an in-phase addition circuit. The output voltage is Vo = Vo1 + Voo = w1 X Ving + wz X Vipy, when
RlZ = R9 = R10 = Rn and R() = Rg//Rlo.

Figure 2. The neuron circuit with two connected synaptic circuits.

Similarly, when a neuron circuit is connected to n synaptic circuits, the relationship between its input and
output can be expressed as

Vai M, (t)

n
VO = — X
i=21 ‘VGi‘ MA,‘(t) -‘rMB,‘(t)

n
X Vini = Y wi(t) X Vi (12)
i=1
It can be seen that the neuron circuit realizes the weighted summation of input signals. In Figure 2, the
activation function output of the neuron circuit composed of NMOS transistor Ty and resistor Ry4 is as follows:

. L, ifVo>0
sign(Vo) = {0, i Vo < 0 (13)

3.2. Simulation Analysis

In the simulation, all the operational amplifiers and MOSFETs are chosen as the universal ones. By
considering R; =100 kQ (I =1, ..., 12), R13 =50 kO, R14 =10k, Vg1 =5V, Vg = =5V and the values of HP
memristors Ron, Rorr, D, and i, were set to 100 (), 16 k(2, 10 nm, and 10- B m2.s-1.v-1, respectively. The initial
values of M, and Mg, are 16 k(). According to w = \\‘% X ﬁ, it can be known that the initial values of
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weights at this time are w1(0) ~ 0 and w>(0) = —1, respectively. Figure 3 shows the simulation results of the
LTSpice neuron circuit with two synaptic circuits, where V1 ; are weighted programming voltages applied to the
inputs of two synaptic circuits in the programming stage. I; and I, are the currents of the memristor Mg; (i = 1, 2)
flowing from the negative electrode to the positive electrode in the two synaptic circuits.

-5V,

5.0V

2}
;E. 2.5V
0.0V

Memristance (£2)

Oms

10ms

20ms  30ms  40ms 50ms  60ms  70ms  80ms

(@)

. 0.4mA
_ 05 0.2mA
3 00 N7 O0mA
0.5 -0.2mA
1.0 -0.4mA
1.0 0.4mA
0.5 0.2mA
3 00 ' 0mA
0.5 -0.2mA
-1.0 -0.4mA!
5.0V 0.1V
2.5V =
0.0V 52 0.05V
-2.5V
5.0V ov
Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms Oms 10ms  20ms  30ms 40ms 50ms  60ms  70ms  80ms

(0 (d)

Figure 3. Simulation results of neuron circuit connecting two synaptic circuits: (a) control voltage and
weight programming voltage; (b) resistance curve of the memristor in the synaptic circuit; (c) circuit
weight and summation voltage V; (d) current flowing through memristor and output voltage Vout.

In the time period 0-10 ms, Vp,12 = Vin1 = Vinz = 0V, while the memristance and the weights w1(0) ~ 0 and
w7(0) =~ —1 remain unchanged.

The first weight programming stage initiates at 1040 ms, and the weight programming voltage V12 =5 V.
According to the initial values of the memristors, since the control voltage V; of synaptic circuit 1 is kept at
5V and the initial weight w1(0) ~ 0, the initial value of current I; can be calculated as 0.31 mA. Likewise, the
initial value of current I is —0.31 mA with Vg, = =5V, w,(0) = —1. In this process, according to the initial values
of M1 and Mp; being 16 kQ), M, and Mp; are 100 (); combined with Equations (5) and (6), the instantaneous
resistances of the memristors at each moment can be obtained as follows:

Maq(t) = Mgy (t) = 16K — (16K — 100) x 10° x 0.00031(t — 0.01)
= 16K — 4.929 x 10°(t — 0.01)(Q)

Mg (t) = Mas(t) = 100 + (16K — 100) x 10° x 0.00031(¢ — 0.01)
=100 +4.929 x 10°(t — 0.01)(Q)

(14)

At the same time, according to Equations (10) and (11), the weight changes of the two synaptic circuits and
the weights at any time can be obtained as follows:

_ AMp()  _ kx(Ropr—Ron)x 11 (t-0.01)

Al (O] = S ® = a2 M )
— 30.615(f~0.01) > 0 (15)
 AMp() . kx(Rom—Ron)x I (t—0.01)

Alw2 ()] = S0 e =~ Maa (01 Maa (0]

—30.615(¢ — 0.01) < 0

w1(t) = 6L (w1 (0)] + Alw; (0.03)]] = ~EL[|0] 4 30.615(¢ — 0.01)] = 30.615(¢ — 0.01)

~ Val Vel 16
wWi(t) = 1 [|wa(0)] + Alws (0.08)[] = 12 [|~1] ~ 30.615(t — 0.01)] = 30.615(t — 0.01) — 1 (16)

Furthermore, the sum of weighted signals Vo and the output voltage Vo of the neuron circuit at each time
can be derived as follows:
Vo = wy X Vin1 + wa X Vigy = 306.15(t — 0.01) — 5 (17)

1, if t > 26.33 ms
0, if t < 26.33 ms (18)

Again, Vg changed from +5 V to —5 V, while Vg, changed from —5 V to +5 V in the time period
40-45 ms, and the current path was set in advance for the next weight programming stage. However, since the
weight programming voltage V},1» = 0 V at this stage, the resistance of each memristor and the weight w; (i=1, 2)
in the synaptic circuit remain unchanged, and Voue =0 V.

The second weight programming phase starts at 45-75 ms, and the weight programming voltage is
Vp1,2 = 5 V. At this time, according to Equation (14), the initial value of the memristor is Mg, (0.045) = Ma;

Vout = sign(Vo) = sign(306.15(t — 0.01) — 5) = {
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(0.045) = M1 (0.04) = 1213 ), Mgy (0.045) = Mo (0.045) = M, (0.04) = 14,887 Q). The control voltage Vi
of synapse circuit 1 is at a low level, with the initial weight w; (0.045) = —0.918, the control voltage Vg»
of synapse circuit 2 is at a high level, with the initial weight w, (0.045) = +0.082, and the current I; and
the current I, are —0.31 mA and 0.31 mA, respectively, at 45 ms. The resistances of the memristors are
MAa(t) = Mpp(f) =1213 — 4.929 x 10%(t — 0.045) (Q), Mp1(t) = Max(t) = 14887 + 4.929 x 10° (t —0.045) (Q)).
The weight changes of the two synaptic circuits were A | wy(t) | = —30.615(t — 0.045), Al w;(t) | = —=30.615(t — 0.045),
wi(t) = —0.918 + 30.615(t — 0.045), wo(t) = 0.082 + 30.615(t —0.045). The sum of the weighted signals Vo and output
voltage Vout of each neuron circuit at each time are Vg = —4.18 + 306.15(t—0.045), Vout = 0.1 V (t > 58.65ms), 0 V
(t < 58.65 ms).

Converging with Figure 3, the theoretical investigation is completely compatible with the simulation outcomes that
establishes the correct actualization and analysis of the proposed neuron circuit. However, in [14-21], the relationship
between the acting time of the input signal and the weight change in the synaptic circuit was not given, which is
unfavorable for the training and further research on MNN circuits.

4. Circuit Implementation of the Character Recognition Network

On the basis of the above circuits, a neural network circuit based on the memristors was designed to realize
the character picture recognition, which can be extended to recognize any group of characters. As shown in
Figure 4a, this work utilized three groups of character pictures (z, v, and 1) with the resolution of 3 x 3 as datasets
for the ease of simplicity. Each group of pictures includes three standard pictures and 27 noisy pictures. When
the circuit training is finished, any z, v, or n character picture inputted into the recognition network circuit in a
specific order will be correctly judged by measuring whether the output of the neuron circuit is at a high level.

Standard picture
——

R ERTLT LAY
AP Ry |
n'ﬁﬁﬁﬂﬁiﬁﬁﬁﬁﬁ Sl B

(b)

Figure 4. Picture dataset: (a) z, v, and n character pictures; (b) pixel order of pictures.

The three-character recognition network circuit in this paper is composed of three subcircuits with the same
structure: Subcircuit z, Subcircuit v, and Subcircuit n. This circuit can also be extended to recognize multiple
characters. Different target vectors should be set in the circuit training stage to realize the recognition of each
input character. The neuron circuit of Subcircuit z is taken as an example in Figure 5 to exhibit the specific working
process of the circuit.

Subcircuit z

INy | IN; | IN;

IN, | INs | INg _ Vod(n)

IN; | INg | IN.

AW, (n)
Widrow-Hoff algorithm y

Figure 5. Schematic diagram of neuron circuit of z.
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Because the goal of this paper was to identify a character image with a resolution of
3 x 3, it was designed to map the pixels in the image to be identified to a one-dimensional vector In = [INy IN,
IN3 INy ... INg]T according to the sequence shown in Figure 4b and then input it into the nine-input memristive
neuron circuit. In this process, logic “1” =1V and logic “0” = 0 V were used to represent the black and white in
each pixel to realize the picture recognition.

As shown in Figure 5, when certain data in Figure 4a are input into the character recognition network
Subcircuit z, the mapped input signal In and the synapse weight w, set in the subcircuit are subjected to matrix
multiplication operation to obtain the output voltage Vo, in Figure 5, and then the synapse weight is corrected
through further training. Lastly, the trained output voltage is sent to the activation function circuit to obtain the
output V; of the subnetwork.

Voz(n) = wzx In(n) 19)

Specifically, the Widrow-Hoff algorithm is used to train the character recognition network circuit. The
Widrow-Hoff learning algorithm is an approximate steepest descent method, which uses the mean square error
(MSE) as the loss function. Therefore, it is necessary to set the expected outputs of the three subcircuits to t;, t,,
and t,, respectively, and then calculate the mean square error with the actual outputs of each subcircuit. Specifically,
when the picture z is input to the circuit, [¢,, ¢, ts] = [1, 0, 0] should be set in the algorithm; that is, the expected
output of Subcircuit z is set to 1, and the expected outputs of Subcircuit v and Subcircuit n are both set to 0. When the
input pictures are v and #, [t;, t,, t,] = [0, 1, 0] and [£;, t,, t;] = [0, 0, 1] should be selected. Taking Subcircuit z as an
example, the error signal in the 7 iteration is

e;(n) =t; — Vo, (n) (20)
Then, the loss function can be obtained as follows:
0:(n) = ¢2(n) (21)

Because neural network learning aims to find a suitable w (1), the mean square error 6, (1) is minimum.
Therefore, by using 6,(n), the partial derivative of w(n) is calculated, and, after equating the partial result to zero,
the minimum value of 6,(n) is obtained. The specific gradient vector equation is as follows:

90, (n)

eon(n) —2e,(n) x In'(n) (22)

Finally, the update amount of weight correction is obtained as shown in the following equation:
Aw(n) = 2ae,(n) x InT(n) (23)

where Aw,(n) represents the synaptic circuit weights that need to be updated in the 7 iteration, and « is the
learning rate. The algorithm will be more accurate if the value of « is smaller, but it leads to a slower convergence
speed of the algorithm. Therefore, « is selected as 0.1. The calculation process of the Widrow-Hoff algorithm can
be realized either using a full circuit [28,31,32] or using a combination of software and hardware [33-35]. In this
paper, Matlab software was used to complete the above iterative calculation.

According to the above method, the standard picture of the z character was mapped firstly according to the
sequence shown in Figure 4b, and one-dimensional vector I, = [1100 100 1 1]T could be obtained. The output
terminal Vo, of the neuron circuit was connected to the gate of the NMOS transistor; finally, the output V, could
be obtained through this activation function. Because the expected outputs of the character recognition network
circuits Subcircuit z, Subcircuit v, and Subcircuit n were different for different input characters, the corresponding
correct subcircuit output voltage was 0.1V, i.e., logic “1”, and the output voltages of the other two subcircuits
were all logic “0” = 0V, so that it could be correctly judged which of the input characters was “z”, “v”, and “n”.

The process of realizing the Widrow—Hoff algorithm by combining software and hardware was as follows:
after the circuit output Vo, (1) was obtained in each iteration, the synaptic weight variation Aw, (1) was obtained
by external training (Matlab), and the synaptic weight of the circuit was adjusted synchronously. The specific
steps were as follows:

Step I: Initialization: Set the initial weights of all synaptic circuits in Subcircuit z to zero, the learning rate
« = 0.1, the maximum training times MAX =50, [t,, o, t,] = [1, 0, 0], and the mean square error 6, () < 0.005 as the
judgment condition of network training termination.

Step II: The n-th output Vo, (n) of Subcircuit z is taken out and written into Matlab, the error e,(n) is
calculated, and then the mean square error 6,(n) is obtained to determine whether to stop the training. Calculate
the gradient value of 6,(1) and the weight correction Aw (1) corresponding to the input vector.

Step I1I: Calculate the weight of each synaptic circuit in Subcircuit z, the action time of programming voltage,
and combine the positive and negative control voltage to correct the weight of each synaptic circuit in subcircuit
z. At this time, the input voltage of each synaptic circuit in each subcircuit is zero, and the control voltage Vg
remains unchanged.

In this paper, the character recognition network circuit shown in Figure 5 was simulated using LTSpice
software. During each training, by observing whether the output of each subcircuit of the character recognition
network was correct, the number of incorrectly recognized pictures of the recognition network circuit was
recorded. After the character recognition network circuit was trained, 30 character picture datasets in Figure 4a
were inputted into the circuit in a certain order to verify whether all pictures could be correctly recognized. The
relationship between the number of incorrectly recognized pictures of three neural network circuits and the
training times was obtained as shown in Figure 6. It can be observed that, due to the increase in training time, the
number of incorrectly recognized pictures of each subcircuit gradually showed a downward trend.
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Figure 6. Relationship between the number of misclassifications and training time.

After training the three subcircuits, the accuracy of the identification network circuit was verified. It could
be deduced using Equation (10) that the weight change of the synaptic circuit at 0.01 ms was 6.25 x 1075 ~ 0,
whose effect on the circuit could be ignored. Therefore, it was decided to sequentially input each verification
picture at an interval of 0.01 ms. The verification process was divided into four stages, as shown in Table 3.

Table 3. Various stages of verification.

Stages Time (ms) Observation
1 0-0.03 Input three standard pictures of z, v, and 1 into the circuit in turn.
i 0.03-0.05 Continuously input the noisy pictures of each character into the circuit twice in turn
I 0.09-0.12 Continuously input the noisy pictures of each character into the circuit three times in turn
v 0.18-0.3 Continuously input the noisy pictures of each character into the circuit four times in turn

The simulation results of the circuit verification stages are shown in Figure 7. The green, blue, and red
curves represent the output voltages of the subcircuits z, v, and 7, respectively. The letters between dotted lines
represent the input character pictures at this timepoint. For example, when the picture z was input at 0-0.01 ms,
the output V, of the neural network Subcircuit z was high (0.1 V). The output of other subcircuits was at a low
level (0 V), indicating that the circuit successfully recognized the character picture z. As can be seen from Figure 7,
when the picture datasets were input into the recognition network circuit in the above order, the circuit could
output a corresponding correct waveform. Therefore, the proposed three-character recognition network circuit
could correctly recognize all character pictures after training.

0.1v

=
X 0.05V

ov

0.1v

>
X 0.05V

ov

0.1V

X 0.05v
ov L

1 1
Oms 0.05ms 0.1ms 0.15ms 0.2ms 0.25ms 0.3ms

Figure 7. Simulation results of character recognition network circuit and the number of false recogni-
tion pictures in the circuit.
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5. Conclusions

This paper primarily focused on the application perspective of memristive neural network (MNN) circuits
in the direction of character recognition. A new synaptic circuit based on a memristor and CMOS was proposed.
On the basis of this synaptic circuit, an MNN circuit based on the Widrow-Hoff algorithm was designed to
recognize three kinds of character pictures. The proposed memristive synaptic circuit could only increase or
decrease the weight by inputting the digital logic level. Through mathematical derivation, it was observed that
the synaptic circuit had good linearity at the weight programming stage. As a function of the structure of the
synaptic circuit, positive, zero, and negative weights were realized. Lastly, the proposed character recognition
network was simulated on LTSpice, and the accuracy of the circuit was verified. Therefore, the proposed neural
network circuit based on memristors is a promising direction for the hardware implementation of ANNs.
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