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Abstract: Diabetes remains a great threat to human beings’ health and its world prevalence is pro-
jected to reach 9.9% by 2045. At present, the detection methods used are often invasive, cumbersome
and time-consuming, thus increasing the burden on patients. In this paper, we propose a novel non-
invasive and low-cost biosensor capable of detecting glucose in human sweat using enzyme-based
electrodes for point-of-care uses. Specifically, an electrochemical method is applied for detection and
the electrodes are covered with multilayered films including ferrocene-polyaniline (F-P), multi-walled
carbon nanotubes (MWCNTs) and glucose oxidase (GOx) on Cu substrates (GOx/MWCNTs/F-P/Cu).
The coated layers enhance the immobilization of GOx, increase the conductivity of the anode and
improve the electrochemical properties of the electrode. Compared with the Cu electrode and the
F-P/Cu electrode, a maximum peak current is obtained when the MWCNTs/F-P/Cu electrode is
applied. We also study its current response by cyclic voltammetry (CV) at different concentrations
(0–2.0 mM) of glucose solution. The best current response is obtained at 0.25 V using chronoam-
perometry. The effective working lifetime of an electrode is up to 8 days. Finally, to demonstrate
the capability of the electrode, a portable, miniaturized and integrated detection device based on
the GOx/MWCNTs/F-P/Cu electrode is developed. The results exhibit a short response time of 5 s
and a correlation coefficient R2 of 0.9847 between the response current of sweat with blood glucose
concentration. The LOD is of 0.081 mM and the reproducibility achieved in terms of RSD is 3.55%.
The sweat glucose sensor is noninvasive and point-of-care, which shows great development potential
in the health examination and monitoring field.

Keywords: sweat glucose; biosensor; enzyme-based electrode; noninvasive detection;
electrochemical method

1. Introduction

Diabetes is still one of the major problems endangering human health [1]. Moreover,
the number of global diabetes patients has been increasing over years due to drastic changes
of living habits in recent decades [2,3]. According to the estimation of the International
Diabetes Federation (IDF), by 2045, the prevalence of diabetes among adults aged 18–99
will rise to 9.9% [4]. Such high incidence of diabetes certainly increases the social health
burden and health care costs of households. Diabetic patients need continuous blood
glucose monitoring [5], and possibly drug or insulin intervention in daily life.

Methods applied for glucose monitoring can be categorized into two classes: invasive
and noninvasive. Generally, invasive detection methods use disposable test strips to
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collect blood samples squeezed from punctured skin or finger tips of the patients [6,7].
While such a method is simple and effective, repeating fingertip puncture can be a burden
for the patients, not to mention the cost on the blood test strips and the medical wastes
generated [8,9]. On the other hand, noninvasive methods allow painless blood glucose
detection [10,11]. Electrochemical methods, electro-mechanical methods, optical methods
and miscellaneous techniques have been explored and applied in this regard [11–15]. Malin
used near-infrared light in a specific frequency range to irradiate the skin, as such blood
collection is no longer required, and the absorbance spectrum is applied to measure the
concentration of human blood glucose [16]. However, due to differences of infrared diffuse
reflectance between individuals, errors exist in the calibration curve. Moreover, odor has
also been explored for noninvasive glucose determination. For example, sweat of diabetes
patients often emanates abnormal odor (e.g., fruity smell), thus it has been considered as
a metric for diabetes diagnosis. In 2013, Olarte developed an electronic detection device
for sweat glucose measurement [17]. The results show that the electronic odor system is
sensitive to changes in glucose concentration even when the changes are in the order of
a few mg/dL. However, the accuracy of the system at that resolution is low. Biosensors
based on other types of platforms, for example, screen-printed electrodes [18] and bulk
electrodes (CPE [19–21] or GCE [22,23]) are also being researched to detect glucose.

Indeed, compared with blood, body fluids such as sweat and tears are easier to obtain
and do not impose painful sample collection to patients; thus, these methods hold great
promise for future noninvasive diabetes monitoring. In particular, recent studies show
that human sweat contains a variety of chemical substances, such as lactic acid, glucose,
ethanol, ammonia, urea, etc. [5,12,14,24]. Among them, the sweat glucose concentration
clearly reflects the concentration of blood glucose with a positive proportionality [25].
Therefore, a glucose sensor based on human sweat has opened up a new way for at-home,
wearable and noninvasive glucose monitoring [26], as evidenced by many works reported
in recent years. Vaquer et al. developed a colorimetric wearable biosensor that determines
the glucose concentration in the test subject by comparing the color with a standard color
chart [27]. Though the method is intuitive and simple, results are largely dependent on the
discretion of the users and influence of ambient light; thus, this method is not suitable for
precise quantification. Han designed a micro-electric sensor based on Pt-poly (L-lactic acid)
(Pt-PLA) to measure the glucose in sweat with high accuracy [28]. Moreover, Katseli et al.
created a 3D printed ring-shaped sweat glucose detector with a Pt-PLA electrode at its
core [29]. The limit of glucose detection of this device was 1.2 µM in theory.

Despite extensive progress made for sweat glucose sensing over the years, many
challenges still exist. As the concentration of glucose in human sweat is from 0.06–0.2 mM
and corresponds to 3.3–17.3 mM in blood glucose [12,30], glucose level observation in sweat
is extremely difficult in view of its low concentration; therefore, needs highly sensitive
devices are needed. Improvement of sensitivity remains a significant challenge when
compared to that of the blood glucose sensors. To meet the demand, many methods have
been used, such as changing the three-dimensional structure of the electrode [31], im-
proving the immobilization efficiency of glucose oxidase [32–34], changing the charge
transfer mechanism [35] and special processing of materials to enhance conductivity
and so on.

Glucose oxidase (GOX) is a well-characterized glycoprotein which catalyzes the oxida-
tion of D-glucose to D-gluconolactone and hydrogen peroxide using molecular oxygen as an
electron acceptor. It is widely applied in chemical, pharmaceutical, food, beverage, clinical
chemistry, biotechnology, etc. [36–38]. The applications of GOX in glucose detection biosen-
sors have increased the demand in recent years [5,11,37,39]. Enzyme immobilization can
improve the stability, reusability, and cost-effectiveness of catalytic enzymes [40]. Currently,
a variety of materials have been used to immobilize glucose oxidase, such as graphene nano-
materials [41,42], polyethylene-g-acrylic acid [43], membrane bioreactor [44,45], carbon
nanotubes [46], conductive polymers [47], etc. These materials usually have good me-
chanical strength [48,49], thermal stability and chemical stability [50], with large specific
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surface area and porous structure, thus are capable of loading more enzymes and in-
termediates [51–55]. However, limited charge-electron transfer of enzymatic reaction,
high-cost of used noble metals and difficult preparation are still challenges [56–58]. To
solve the abovementioned problems, the strategy that we have adopted is reasonably de-
signing and manipulating a low-cost composite electrode with Cu substrates to modify the
charge-electron transfer route, and further integrating biofunctional detection of glucose
into one platform.

In this paper, we propose a novel portable, miniaturized and integrated sweat glucose
detection device based on the GOx/MWCNTs/F-P/Cu electrode. The biosensor fulfills
with the new three-dimensional anode, showing high sensitivity, low fabrication cost, more
convenience and high enzyme immobilization. The detection device is highly integrated
and does not need external auxiliary equipment. The glucose concentration can be obtained
through an LCD screen, which is very convenient. Through experimental detection, the
detection device designed by our group has high detection accuracy. In particular, it
can obtain the glucose content in the human body through noninvasive detection, which
shows the broad prospect of the application of this detection device in the field of health
examination and monitoring in the future.

2. Experimental
2.1. Materials and Instruments

Materials: All reagents were applied without additional purification. Specifically,
aniline (C6H7N) and chitosan (CS) were obtained from Macklin Biochemical Co., Ltd.
(Shanghai, China). Hydrochloric acid (HCl, 36.5 wt%), nitric acid (HNO3) and isopropanol
(C3H8O) were purchased from Yongfei Chemical Reagent Co., Ltd. (Shaowu, China).
Ferrocene (C10H10Fe) and glucose anhydrous (C6H12O6) were obtained from ZhiYuan
Reagent Co., Ltd. (Tianjin, China). Bovine serum albumin (BSA) phosphate buffer saline
(PBS) and glutaraldehyde solution (CHO(CH2)3CHO, 5 wt%) from Phygene Biotechnology
Co., Ltd. (Fuzhou, China). MWCNTs were purchased from Tanfeng Tech. Inc. (Suzhou,
China). 5 wt% DuPont Nafion solution from Sigma-Aldrich lab & production materials
Co., Ltd. (Shanghai, China). Glucose oxidase (GOx) was bought from Ekear Biotechnology
Co., Ltd. (Shanghai, China).

Instruments: The MWCNTs were dispersed by an ultrasonic cleaner (Skymen Cleaning
Equipment Shenzhen Co., Ltd., Shenzhen, China). The morphology and microstructure
of F-P film, MWCNTs and anode were analyzed by a scanning electron microscope (SEM,
Quanta 250 FEG, Hillsboro, AZ, USA). The voltage-current curve was measured by an
electrochemical analyzer (CHI660E, Chen hua Instrument Co., Ltd., Shanghai, China).

Process: The Cu substrate was prepared first. Then the Cu electrode was coated by
ferrocene-polyaniline film (F-P film), MWCNTs and GOx successively. The next step is
to fabricate the detection chip. The last step is to design and fabricate the paper-based
enzyme biosensors (PEB) for glucose detection from human sweat. The detailed process is
as follows.

2.2. Electroplating of Ferrocene-Polyaniline Film (F-P Film)

As shown in Figure 1a, the Cu substrate after cutting was first polished with sandpaper,
then immersed in 15 mL HCl for 20 min. Next, the Cu substrate was washed by deionized
water and blow-dried. Then, 0.028 g ferrocene and 1.08 g HNO3 were mixed together
totally, after that a PBS buffer solution was added into the aforementioned mixed solution
until the volume of the mixed solution was 12.5 mL. Afterward, 1.825 g HCl and 0.2325 g
aniline solution were mixed together and stirred until the lumps were dissolved. Then, the
PBS solution was also added dropwise into the mixed solution until the volume reached
12.5 mL as shown in Figure 1b. Several groups of comparative tests were conducted to
explore the effect of separate electroplating and mixed electroplating in an electrolytic
solution. The Cu substrate was immersed in the electrolyte solution. The parameters of the
CV curve were set as 10 scanning cycles at a speed of 0.02 V/s between −0.3 V and +0.3 V.
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The polyaniline film was prepared when the film was brown. At the same time, ferrocene
was modified on the electrode, which was used as the electron transfer intermediate. Then,
the Cu electrodes coated by the F-P film were immersed in 2.5% glutaraldehyde water
solution at 37 ◦C for 30 min. Finally, they were dried at room temperature.
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Figure 1. Characterization and fabrication process of paper-based enzyme biosensors coated with
F-P film, MWCNTs and GOx. (a) step 1: treatment of Cu sheet. (b) step 2: preparation of electrolytic
solution. (c) step 3: dispersion of MWCNTs. (d) step 4: preparation of enzyme solution.

2.3. Modification of Electrodes with MWCNTs and GOx

MWCNTs need to be dispersed before modifying the anode. The procedure is shown
in Figure 1c. 3 mg MWCNTs, 0.25 mL nafion solution and 2.5 mL isopropanol solution were
mixed together and dispersed in an ultrasonic cleaner for 3 h after short shaking. Next, 2 µL
mixture was dropped on the surface of the Cu electrode coated with F-P film to modify the
electrodes. Then, the anode was dried at room temperature for 6 h. After modification, the
electrode was immersed in PBS and stored in a refrigerator at 4 ◦C. As shown in Figure 1d,
3 mg glucose oxidase and chitosan and glutaraldehyde solution were mixed together. Then
the GOx mixture was dipped onto the electrode and put in the refrigerator for 4 h. The
anode coated with GOx was fabricated for the detection of the glucose of the human sweat.

2.4. Fabrication Process of the Detection Chip

The structure and parameters of the detection chip are shown in Figure 2. First of all,
the hydrophilic and hydrophobic areas are printed on the filter paper using atom stamp
printing technology. The detailed procedures are shown as follows. Figure 2a shows step 1
is to print the required figures on the acid paper. Step 2 is to expose the diagram on the
stamp with a photosensitive seal machine as shown in Figure 2b. Step 3 is to put the stamp
into the PDMS solution and immerse for 30 min, after exposing at 350 ◦C. Step 4 is to stamp
the pattern on the filter paper for 2 min. Then, the filter paper is to be placed into a heater
to heat until the hydrophobic channel is formed and the conductive silver glue is brushed
onto it. The next step is to conceal the hydrophobic area by plastic film, which cuts the
hydrophilic microchannel for the electrode and conductive layers by a laser engraving
machine. Finally, the anode is packaged and the cathode on the reserved hydrophilic
microchannel is glued using 3M glue, as shown in Figure 2g.
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Figure 2. The fabrication process of the electrodes. (a) step 1: printing hydrophilic channels on the
paper. (b) step 2: exposing the diagram. (c) step 3: immersing the stamp into PDMS. (d) step 4: stamping
the pattern on the filter paper. (e) step 5: brushing the conductive silver glue. (f) step 6: fixing the
cathode and anode. (g) step 7: packaging the whole detection chip.

2.5. Design and Fabrication of the Paper-Based Enzyme Biosensors (PEB) for Glucose Detection
from Human Sweat

A portable, miniaturized and integrated detection device for real-time detection of
human sweat glucose concentration is designed and developed. As shown in Figure 3, the
detection device is embedded in a 3D printing shell, and the main parts include: power
supply (3.7 V), A/D conversion module, signal amplifier, DC-DC module and LCD display
module. In order to reduce the cost and power consumption, an STM32 A/D converter is
used as the controller, and as many domestic components as possible are used, with a total
weight of 200 g.

The detection process is as follows. Firstly, the encapsulated chip is inserted into the
interface of the detection device. Next, an appropriate amount of sweat is dropped to the
designated position of the chip. After waiting for 5 s, the power is turned on. A small
amount of glucose in the sweat reacts with glucose oxidase on the electrode to produce a
weak current I. The current passes through the conversion resistance R, and a conversion
voltage Vi is equal R times I. The Vi passes through the in-phase amplification circuit, and
an amplification voltage V0 is obtained. The V0 is also in the range of voltage required for
A/D conversion (0–3.3 V). The obtained voltage V0 will be converted into a binary number,
and a current value will be obtained. Then, the glucose concentration in the sweat will be
obtained and displayed by an LCD display.
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3. Results and Discussion
3.1. Characterization of F-P Film and MWCNTs

As shown in Figure 4a, b, it can be clearly found that the peak current of the CV curve
of F-P film prepared by separate electroplating is about 30 mA, which is significantly higher
than that of F-P film (about 10 mA) prepared by mixed electroplating. Figure 4c shows the
CV curves of F-P film prepared by electropolymerization. It can be seen that obvious redox
peaks appear in the process of electropolymerization. With the increase of scanning times,
the peak potentials of redox peaks move from −0.19 V to +0.19 V, and the peak currents
gradually change from ±50 mA to ±100 mA. By analyzing the CV curve, it can be seen that
the voltage difference between the two peaks is 0.38 V, which shows that the electrolytic
solution and CV scanning parameters used by our experimental team can well attach a
layer of F-P film to the Cu substrate. Figure 4d is a 40-times electron micrograph of F-P
film. It can be seen that the F-P film is brownish yellow and covered with golden particles.
The modified MWCNTs were characterized by SEM. As shown in Figure 4e,f, after nafion
dispersion and ultrasonic treatment, the carbon nanotubes are flocculent on the electrode,
which increases the surface area of the working electrode and is conducive to improving
the electron transfer rate and the immobilization effect of the enzyme.
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Figure 4. The results of the experiment. (a) CV curves of F-P film prepared by mixed electroplating.
(b) CV curves of F-P film prepared by separate electroplating. (c) CV curves of F-P film prepared
by electropolymerization. (d) micrograph of F-P film after electroplating. (e,f) SEM photographs of
MWCNTs after dispersion.

3.2. Characterization of the Paper-Based Enzyme Anode

The electrochemical characteristics of the fabricated electrodes were tested before
they were used in the sensor. Figure 5a shows the CV curves of different modified Cu
electrodes (bare Cu, F-P/Cu, MWCNTs/F-P/Cu) at the same scanning rate and scanning
range (−0.3 V to +0.3 V, 0.01 V/s). It can be seen that all electrodes have clear redox peaks
in the range of −0.3 V to +0.3 V. With the increase of surface modifications, the redox
peaks also increase, which indicates that the prepared F-P film and MWCNTs have good
nanostructure and electrochemical properties, effectively improving the electron transfer
rate. Figure 5b shows the CV curves of the final electrode (GOx/MWCNTs/F-P/Cu) in
different concentrations of glucose solution (0, 0.1, 0.3, 0.7, 1.0, 1.3, 1.7, 2.0 mM). As shown
in the figure, the size of the CV curve is obviously proportional to the glucose concentration,
and the shape of all curves are almost the same, with clear redox peaks. With the increase
of glucose concentration, these peaks showed a regular gradient slope, and there was no
significant potential shift between the peaks. The peak currents of redox reaction gradually
change from +4 mA and −3 mA to +10 mA and −11 mA. In order to optimize the working
potential of the glucose sensor, six different potentials (0.10, 0.15, 0.18, 0.22, 0.25 and 0.30 V)
were selected in the potential range of +0.1 V to +0.3 V, and the current response was tested
in the glucose solution with a concentration of 1.0 mM by chronoamperometry. As shown
in Figure 5c, with the increase of potential, the current responses increase gradually, and the
strongest current signal response is observed at 0.3 V. However, it can also be seen that the
current response at 0.3 V is not as smooth as other groups of curves, which may be due to
the instability of the electrode performance at high potential. Therefore, we decided to use
0.25 V as the working potential of the sensor. In order to further study the current response
at this potential, the chronoamperometry test was carried out on the electrode at 0.25 V, and
the results are shown in Figure 5d. When 0.1 mM glucose was added into the PBS buffer
at 100, 300, 500 and 700 s, the current response changed significantly within 10 s, which
indicated that the electrode was highly sensitive to glucose concentration with good test
results at 0.25 V. In order to evaluate the effective working time of the prepared electrode,
the electrode was stored in the indoor environment, and its maximum current response
in 1 mM glucose solution was measured and recorded daily for 20 days. As shown in
Figure 5e, the maximum current in the first 8 days was relatively stable, and it began to
decrease significantly until the 9th day, reaching 60% of the original maximum current on
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the 12th day and 45% after 20 days. It can be seen that the electrode has a long working
time, and the effective working lifetime is up to 8 days.
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Figure 5. Electrochemical characterization of the fabricated anode. (a) CV curves of Cu electrodes
with different modifications (bared Cu, F-P/Cu, MWCNTs/F-P/Cu). (b) CV curves of the fabricated
electrode (GOx/MWCNTs/F-P/Cu) in glucose solution of different concentrations. (c) Chronoam-
perometry curves of the fabricated electrodes (GOx/MWCNTs/F-P/Cu) at different potentials.
(d) Chronoamperometry curve of the fabricated electrode at best potential (0.25 V); (e) Maximum
currents of the fabricated electrodes after several days in indoor environment.

3.3. Performance Analysis of the Biosensor in Human Sweat

In order to verify the feasibility, the detection device with the GOx/MWCNTs/F-
P/Cu electrode was first used to measure the artificial glucose solution. We performed a
quantitative glucose analysis using amperometric response. A micro current meter was
used to measure the glucose solution with different concentrations ranging from 0 to 14 mM.
Each concentration is measured at least ten times, the response current is recorded and the
average of each group is calculated as the final desired result. As shown in Figure 6e, the
current gradually increased with the increase in glucose concentration. The fitted curve
shows the linear relationship between glucose concentration and response current with
the correlation coefficient R2 of 0.9988. The linear regression parameters between glucose
concentration and response current were used to determine the limit of detection (LOD).
Using the equation LOD = 3 * σ/S, where σ is the estimated standard deviation of the
minimum concentration detected and S is the slope of calibration curves, the LOD obtained
was 0.081 mM.
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Figure 6. The experiments of sweat sampling and glucose detection. (a) exercise for sweat sampling.
(b) sampling with a pipette. (c) analysis with the device. (d) the analysis result displaying on LCD.
(e) The relationship between response current and glucose concentration of artificial glucose solution.
(f) The results of volunteers’ blood glucose concentration and response current of sweat. (g) The
correlation degree between response current of sweat and blood glucose concentration.

The next step is to write the sub-function into the system as the basis for detecting
glucose concentration. In order to check the accuracy and repeatability of the detection
device, the device is used to measure glucose solutions of different concentrations five
times, respectively. The detection device exhibits a short response time (5 s) and good
repeatability and reliability. Table 1 shows the comparison of the analytical performance of
some reported glucose biosensors with GOx/MWCNTs/F-P/Cu biosensors. It can be seen
that response time, linear range and LOD of GOx/MWCNTs/F-P/Cu are the same and
even better than other reported glucose biosensors.

Table 1. Comparison of the analytical performance of some reported glucose biosensors.

Electrode Platform Response Time (s) Linear Range (mM) LOD (µM) Ref.

GOD/MAA/AuNPs/TiO2NT/Ti <10 0.40–8 310 [59]
GOx-PoPD/AuNPs-GO/Pt 10 0.1–3.8 75 [60]

GOx/P-L-Arg/f-MWCNTs/GCE <5 0.004–6 0.1 [61]
Cs/GOx/PGA/GCE - 0.5–5.5 120 [62]

GOD/AuNPs-MoS2/Au - 0.25–13.2 0.042 [63]
GOD/GA/MLN/GCE - 1.0–135 100 [23]

GOx/PAA/CPE 4 0.05–1 69.2 [19]
GOx/MWCNTs/F-P/Cu <5 0–14 81 This work

GOD, GOx: glucose oxidase; MAA: mercaptoacetic acid; AuNPs: Gold nanoparticles; TiO2NT: TiO2 nanotube
array electrode; Ti: Titanium foil; PoPD: poly-o-phenylenediamine; GO: graphene oxide; P-L-Arg: poly(L-
arginine); f-MWCNTs: functionalized multiwalled carbon nanotubes; GCE: glassy carbon electrode; Cs: chitosan;
PGA: poly(glutamic acid); GA: glutaraldehyde; MLN: molybdenite; PAA: poly(L-glutamic acid); CPE: carbon
paste electrode; F-P: ferrocene-polyaniline.
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Then, we use the device to analyze glucose concentration in sweat. As shown in
Figure 6a–d, thirteen volunteers’ (average age of 23 years old) sweat was sampled through
exercise and glucose concentration was analyzed by the device. The blood glucose con-
centrations were analyzed simultaneously for comparison. The micro current meter was
also used to measure glucose in sweat. The results were shown as Figure 6f. It can be
observed that blood glucose concentration and response current of sweat vary greatly from
volunteer to volunteer, while the trend is the same. Similarly, the linear regression equation
in Figure 6g was fitted between blood glucose concentration and response current of sweat
with the correlation coefficient R2 of 0.9847. Due to the difference in the corresponding
relationship between the glucose concentration in sweat and the blood of different indi-
viduals, the linear correlation coefficient is not high enough. The reproducibility achieved
in terms of RSD associated with the slope of the calibration curve was 3.55%. Then, the
linear regression equation is written into the detection system. Through measuring sweat,
we can obtain blood glucose concentration data as shown in Figure 6d. The measurement
result indicates that the glucose concentration obtained from sweat by our detection device
is consistent with blood glucose concentration. The portable, miniaturized and integrated
detection device can meet the requirements of glucose concentration detection in sweat.

4. Conclusions

In this paper, we proposed an enzyme-based electrode composed of GOx/MWCNTs/F-
P/Cu, which was used as the anode in a biosensor to detect the glucose in human sweat.
The method is a noninvasive and point-of-care glucose detection. The electrode was tested
by CV and chronoamperometry. The result shows the electrode has a wide glucose detec-
tion range of 0-14 mM with an optimal current response at 0.25 V, which suggests that the
electrode could meet the requirements of sweat glucose detection. A portable, miniaturized
and integrated detection device was fabricated to analyze glucose in human sweat, exhibit-
ing a short response time (5 s) and high reproducibility (RSD = 3.55%). The main advantages
of the sensor include: (1) Cu was used as the electrode substrate, which greatly reduced
the cost of fabrication; (2) the unique three-dimensional structure GOx/MWCNTs/F-P/Cu
was used, which greatly improved the efficiency of enzyme immobilization; (3) the device
is portable, highly sensitive and accurate in detecting glucose in human sweat. The sweat
glucose sensor presented in this paper shows great development potential in the health
examination and monitoring field.

Author Contributions: Y.G. and G.L. designed, directed the study. L.L., S.Y., F.L., M.G., Q.L.,
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