Film Thickness and Glycerol Concentration Mapping of Falling Films Based on Fluorescence and Near-Infrared Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluid Preparation
2.2. Film Thickness Measurement by Using Fluorescence Technique
2.3. Glycerol Mass Concentration Measurement by Using the Near-Infrared Technique
2.4. Experimental Setup
2.5. Optical Setup
2.6. Calibration of Film Thickness and Glycerol Mass Concentration
2.7. Imaging Acquisition
2.8. Imaging Analysis
2.9. Film Thickness Determination by Using Fluorescence Technique
2.10. Glycerol Mass Concentration Determination by Using the Near-Infrared Technique
2.11. Statistical Analysis
3. Results
3.1. Results of Film Thickness Determination
3.2. Results of Glycerol Concentration Mapping with 1450 nm
3.3. Results of Glycerol Mass Concentration Mapping with Multiple Linear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christoph, D.; Schmidt, T.; Senge, B. Flow characteristics of pure and technical sucrose solutions in the temperature range of 30 to 130 °C. Zuckerindustrie 1999, 123, 876–882. [Google Scholar]
- Schliephake, D.; Bruhns, M.; Ekelhof, B.; Sittel, G.; Harten, U. Kristallisation mit Doppeleffektverdampfung. Zuckerindustrie 1996, 121, 238–242. [Google Scholar]
- East, C.P.; Fellows, C.M.; Doherty, W.O. Scale in Sugar Juice Evaporators. In Mineral Scales and Deposits; Elsevier: Amsterdam, The Netherlands, 2015; pp. 619–637. ISBN 9780444632289. [Google Scholar]
- Bouman, S.; Waalewijn, R.; Jong, P.; Linden, H.J.L.J. Design of falling-film evaporators in the dairy industry. Int. J. Dairy Technol. 1993, 46, 100–106. [Google Scholar] [CrossRef]
- Jebson, R.S.; Iyer, M. Performances of falling film evaporators. J. Dairy Res. 1991, 58, 29–38. [Google Scholar] [CrossRef]
- Jebson, R.S.; Chen, H. Performances of falling film evaporators on whole milk and a comparison with performance on skim milk. J. Dairy Res. 1997, 64, 57–67. [Google Scholar] [CrossRef]
- Suhadi, S.; Susianto, S.; Altay, A.; Budhikarjono, K. Simulation of Sugarcane Juice Evaporation in a Falling Film Evaporator by Variation of Air Flow. Res. J. Appl. Sci. Eng. Technol. 2015, 10, 322–327. [Google Scholar] [CrossRef]
- Cyklis, P. Industrial scale engineering estimation of the heat transfer in falling film juice evaporators. Appl. Therm. Eng. 2017, 123, 1365–1373. [Google Scholar] [CrossRef]
- Furukawa, K.; Take, K.; Tsukamoto, C.; Ozeki, T.; Yoshizaki, O. Continuous after-Polycondensation of Polycaprolactam by Falling Thin film Evaporator under Reduced Pressure. Kobunshi Ronbunshu 1978, 35, 771–778. [Google Scholar] [CrossRef]
- Xi, Z.; Zhao, L.; Liu, Z. New Falling Film Reactor for Melt Polycondensation Process. Macromol. Symp. 2007, 259, 10–16. [Google Scholar] [CrossRef]
- Woo, B.-G.; Choi, K.Y.; Song, K.H. Melt Polycondensation of Bisphenol a Polycarbonate by Forced Gas Sweeping Process II. Continuous Rotating-Disk Reactor. Ind. Eng. Chem. Res. 2001, 40, 3459–3466. [Google Scholar] [CrossRef]
- Querino, M.V.; Machado, R.A.F.; Marangoni, C. Energy and exergetic evaluation of the multicomponent separation of petrochemical naphtha in falling film distillation columns. Braz. J. Chem. Eng. 2019, 36, 1357–1365. [Google Scholar] [CrossRef] [Green Version]
- Wellner, N.; Siebeneck, K.; Ramunno, M.; Wasserscheid, P.; Scholl, S. Entwässerung ionischer Flüssigkeiten in einem Fallfilmverdampfer. Chem. Ing. Tech. 2011, 83, 1493–1501. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Z.; Dong, H.; Zeng, S.; Bai, L.; Zhang, X.; Wang, Y. Experimental study on hydrodynamics of ionic liquids systems in falling film evaporator. Chem. Eng. Process. Process Intensif. 2022, 170, 108701. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Dong, H.; Hussain, S.; Zeng, S.; Nie, Y.; Zhang, X.; Zhang, S. Hydrodynamics numerical simulation of a vertical falling film evaporator for ionic liquid systems. Chem. Eng. Sci. 2021, 237, 116563. [Google Scholar] [CrossRef]
- Paramalingam, S.; Winchester, J.; Marsh, C. On the Fouling of Falling Film Evaporators due to Film break-up. Food Bioprod. Process. 2000, 78, 79–84. [Google Scholar] [CrossRef]
- Cyklis, P. Effect of fouling on falling film evaporator performance in industrial conditions of fruit juice concentrate production. J. Food Eng. 2022, 317, 110884. [Google Scholar] [CrossRef]
- Morison, K.R. Reduction of fouling in falling-film evaporators by design. Food Bioprod. Process. 2015, 93, 211–216. [Google Scholar] [CrossRef]
- Jin, H.-Q.; Shahane, S.; Zhang, Y.; Wang, S.; Nawaz, K. Modeling of crystallization fouling on a horizontal-tube falling-film evaporator for thermal desalination. Int. J. Heat Mass Transf. 2021, 178, 121596. [Google Scholar] [CrossRef]
- Damsohn, M.; Prasser, H.-M. High-speed liquid film sensor for two-phase flows with high spatial resolution based on electrical conductance. Flow Meas. Instrum. 2009, 20, 1–14. [Google Scholar] [CrossRef]
- Dupont, J. Thin Liquid Film Dynamics in a Condensing and Re-Evaporating Environment. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2017. [Google Scholar]
- Clark, W.W. Liquid film thickness measurement. Multiph. Sci. Technol. 2002, 14, 74. [Google Scholar] [CrossRef]
- Tibiriçá, C.B.; do Nascimento, F.J.; Ribatski, G. Film thickness measurement techniques applied to micro-scale two-phase flow systems. Exp. Therm. Fluid Sci. 2010, 34, 463–473. [Google Scholar] [CrossRef]
- Nußelt, W. Die Oberflächenkondensation des Wasserdampfes. VDI-Z 1916, 1916, 541–546. [Google Scholar]
- Nußelt, W. Der Wärmeaustausch am Berieselungskühler. VDI-Z 1923, 1923, 206–216. [Google Scholar]
- Hopf, L. Turbulenz bei einem Flusse. Ann. Phys. 1910, 337, 777–808. [Google Scholar] [CrossRef]
- Dukler, A.E.; Berglin, O.P. Characteristics of flow in falling liquid films. Chem. Eng. Prog. 1952, 1952, 557–563. [Google Scholar]
- Özgü, M.R.; Chen, J.C.; Eberhardt, N. A capacitance method for measurement of film thickness in two-phase flow. Rev. Sci. Instrum. 1973, 44, 1714–1716. [Google Scholar] [CrossRef]
- Fukano, T. Measurement of time varying thickness of liquid film flowing with high speed gas flow by a constant electric current method (CECM). Nucl. Eng. Des. 1998, 184, 363–377. [Google Scholar] [CrossRef]
- Burns, J.; Ramshaw, C.; Jachuck, R. Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique. Chem. Eng. Sci. 2003, 58, 2245–2253. [Google Scholar] [CrossRef]
- Park, C.D.; Nosoko, T. Three-dimensional wave dynamics on a falling film and associated mass transfer. AIChE J. 2003, 49, 2715–2727. [Google Scholar] [CrossRef]
- Zhou, D.W.; Gambaryan-Roisman, T. Measurement of Water Falling Film Thickness to Flat Plate Using Confocal Chromatic Sensoring Technique [Online]. 2009. Available online: http://www.sciencedirect.com/science/article/pii/S0894177708001337 (accessed on 11 November 2022).
- Schröder, T. Strömungscharakteristika und Wärmeübertragung Eines Angeregten Fallfilms. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2019. [Google Scholar]
- Dumin, D.J. Measurement of Film Thickness Using Infrared Interference. Rev. Sci. Instrum. 1967, 38, 1107–1109. [Google Scholar] [CrossRef]
- Porter, J.M.; Jeffries, J.B.; Hanson, R.K. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness. Appl. Phys. B 2011, 102, 345–355. [Google Scholar] [CrossRef]
- Adomeit, P. Experimentelle Untersuchung der Strömung Laminar-Welliger Rieselfilme. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1996. [Google Scholar]
- Adomeit, P.; Renz, U. Hydrodynamics of three-dimensional waves in laminar falling films. Int. J. Multiph. Flow 2000, 26, 1183–1208. [Google Scholar] [CrossRef]
- Dukler, A.E. Measurement of two phase flow parameters. In AIChE Journal; Hewitt, G.F., Ed.; Academic Press: Cambridge, MA, USA, 1979; Volume 25, pp. 907–908. [Google Scholar] [CrossRef]
- Hewitt, G.F. Disturbance Waves in Annular Two-Phase Flow. Proc. Inst. Mech. Eng. Conf. Proc. 1969, 184, 142–150. [Google Scholar] [CrossRef]
- Liu, J.; Paul, J.D.; Gollub, J.P. Measurements of the primary instabilities of film flows. J. Fluid Mech. 1993, 250, 69–101. [Google Scholar] [CrossRef]
- Heavens, O.S.; Gingell, D. Film thickness measurement by frustrated total reflection fluorescence. Opt. Laser Technol. 1991, 23, 175–179. [Google Scholar] [CrossRef]
- Greszik, D.; Yang, H.; Dreier, T.; Schulz, C. Measurement of water film thickness by laser-induced fluorescence and Raman imaging. Appl. Phys. B 2011, 102, 123–132. [Google Scholar] [CrossRef]
- Al-Sibai, F. Experimentelle Untersuchungen der Strömungscharakteristik und des Wärmeübergangs bei Welligen Rieselfilmen; Cuvillier Verlag: Göttingen, Germany, 2006; ISBN 3-86727-057-0. [Google Scholar]
- Lel, V.V.; Al-Sibai, F.; Leefken, A.; Renz, U. Local thickness and wave velocity measurement of wavy films with a chromatic confocal imaging method and a fluorescence intensity technique. Exp. Fluids 2005, 39, 856–864. [Google Scholar] [CrossRef]
- Al-Sibai, F.; Leefken, A.; Renz, U. Local and instantaneous distribution of heat transfer rates through wavy films. Int. J. Therm. Sci. 2002, 41, 658–663. [Google Scholar] [CrossRef]
- Schagen, A.; Modigell, M.; Dietze, G.; Kneer, R. Simultaneous measurement of local film thickness and temperature distribution in wavy liquid films using a luminescence technique. Int. J. Heat Mass Transf. 2006, 49, 5049–5061. [Google Scholar] [CrossRef]
- Schagen, A.; Modigell, M. Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique. Exp. Fluids 2007, 43, 209–221. [Google Scholar] [CrossRef]
- Lu, Y.; Stehmann, F.; Yuan, S.; Scholl, S. Falling film on a vertical flat plate—Influence of liquid distribution and fluid properties on wetting behavior. Appl. Therm. Eng. 2017, 123, 1386–1395. [Google Scholar] [CrossRef]
- Kessler, R.W. (Ed.) Prozessanalytik: Strategien und Fallbeispiele aus der Industriellen Praxis; Wiley-VCH: Weinheim, Germany, 2006; ISBN 9783527608997. [Google Scholar]
- Yang, H.; Greszik, D.; Dreier, T.; Schulz, C. Simultaneous measurement of liquid water film thickness and vapor temperature using near-infrared tunable diode laser spectroscopy. Appl. Phys. B 2010, 99, 385–390. [Google Scholar] [CrossRef]
- Kübel-Heising, F.; Kunkel, S.; Medina, I.; Hien, A.; Schmitt, L.; Scholl, S.; Repke, J.-U.; Rädle, M. Near-Infrared Image Analysis as Tool for Monitoring Process Activities. ChemBioEng Rev. 2018, 5, 334–342. [Google Scholar] [CrossRef]
- Yang, H.; Wei, W.; Su, M.; Chen, J.; Cai, X. Measurement of liquid water film thickness on opaque surface with diode laser absorption spectroscopy. Flow Meas. Instrum. 2018, 60, 110–114. [Google Scholar] [CrossRef]
- Medina, I.; Schmitt, L.; Kapoustina, V.; Scholl, S.; Rädle, M. Untersuchung von lokalen Schichtdickenverteilungen in Fluiden mithilfe der Nahinfrarot-Bildanalyse. Chem. Ing. Tech. 2019, 91, 1041–1048. [Google Scholar] [CrossRef]
- Lubnow, M.; Jeffries, J.B.; Dreier, T.; Schulz, C. Water film thickness imaging based on time-multiplexed near-infrared absorption. Opt. Express 2018, 26, 20902–20912. [Google Scholar] [CrossRef]
- Schmidt, A.; Kühnreich, B.; Kittel, H.; Tropea, C.; Roisman, I.V.; Dreizler, A.; Wagner, S. Laser based measurement of water film thickness for the application in exhaust after-treatment processes. Int. J. Heat Fluid Flow 2018, 71, 288–294. [Google Scholar] [CrossRef]
- Kong, S.; Wang, Z.; Xu, X.; Sun, H.; Liu, Z.; Fang, Y.; Su, M.; Yang, H. Film thickness measurements in the R1233zd film evaporation and flow processes on a quartz plate. Int. J. Multiph. Flow 2022, 153, 104108. [Google Scholar] [CrossRef]
- Hiby, J.W. Eine Fluoreszenzmethode zur Untersuchung des Transportmechanismus bei der Gasabsorption im Rieselfilm. Wärme-Und Stoffübertragung 1968, 1, 105–116. [Google Scholar] [CrossRef]
- Schagen, A.; Modigell, M. Luminescence technique for the measurement of local concentration distribution in thin liquid films. Exp. Fluids 2005, 38, 174–184. [Google Scholar] [CrossRef]
- Bandi, P.; Modigell, M.; Groß, S.; Reusken, A.; Zhang, L.; Heng, Y.; Marquardt, W.; Mhamdi, A. On reduced modeling of mass transport in wavy falling films. AIChE J. 2018, 64, 2265–2276. [Google Scholar] [CrossRef]
- Nachtmann, M.; Feger, D.; Sold, S.; Wühler, F.; Scholl, S.; Rädle, M. Marker-Free, Molecule Sensitive Mapping of Disturbed Falling Fluid Films Using Raman Imaging. Sensors 2022, 22, 4086. [Google Scholar] [CrossRef] [PubMed]
- Matcher, S.J.; Cope, M.; Delpy, D.T. Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy. Phys. Med. Biol. 1994, 39, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Dorado, M.P.; Pinzi, S.; de Haro, A.; Font, R.; Garcia-Olmo, J. Visible and NIR Spectroscopy to assess biodiesel quality: Determination of alcohol and glycerol traces. Fuel 2011, 90, 2321–2325. [Google Scholar] [CrossRef]
- Tan, B.; You, W.; Huang, C.; Xiao, T.; Tian, S.; Luo, L.; Xiong, N. An Intelligent Near-Infrared Diffuse Reflectance Spectroscopy Scheme for the Non-Destructive Testing of the Sugar Content in Cherry Tomato Fruit. Electronics 2022, 11, 3504. [Google Scholar] [CrossRef]
- Dong, J.; Guo, W. Nondestructive Determination of Apple Internal Qualities Using Near-Infrared Hyperspectral Reflectance Imaging. Food Anal. Methods 2015, 8, 2635–2646. [Google Scholar] [CrossRef]
- Pan, R.; Jeffries, J.B.; Dreier, T.; Schulz, C. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy. Appl. Phys. B 2016, 122, 4. [Google Scholar] [CrossRef]
- Kakuta, N.; Yamashita, H.; Kawashima, D.; Kondo, K.; Arimoto, H.; Yamada, Y. Simultaneous imaging of temperature and concentration of ethanol–water mixtures in microchannel using near-infrared dual-wavelength absorption technique. Meas. Sci. Technol. 2016, 27, 115401. [Google Scholar] [CrossRef]
- Lubnow, M.; Dreier, T.; Schulz, C. NIR sensor for aqueous urea solution film thickness and concentration measurement using a broadband light source. Appl. Opt. 2019, 58, 4546–4552. [Google Scholar] [CrossRef]
- Lubnow, M.; Dreier, T.; Schulz, C.; Endres, T. Simultaneous measurement of liquid-film thickness and solute concentration of aqueous solutions of two urea derivatives using NIR absorption. Appl. Opt. 2021, 60, 10087–10093. [Google Scholar] [CrossRef]
- Medina, I.; Deuerling, J.; Kumari, P.; Scholl, S.; Rädle, M. Visualization of Local Concentration and Viscosity Distribution during Glycerol-Water Mixing in a Y-Shape Minichannel: A Proof-of-Concept-Study. Micromachines 2021, 12, 940. [Google Scholar] [CrossRef] [PubMed]
- Lehnberger, A. Wärmeübergang im Fallfilmverdampfer mit Glatten und Profilierten Rohren bei Kleinen Temperaturgefällen. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2002. [Google Scholar]
- Goedecke, R. (Ed.) Fluidverfahrenstechnik; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; ISBN 9783527623631. [Google Scholar]
- Robergs, R.A.; Griffin, S.E. Glycerol. Biochemistry, pharmacokinetics and clinical and practical applications. Sports Med. 1998, 26, 145–167. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Abdul Aziz, A.R.; Aroua, M.K. Glycerol production and its applications as a raw material: A review. Renew. Sustain. Energy Rev. 2013, 27, 118–127. [Google Scholar] [CrossRef]
- Ferreira, P.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catal. Commun. 2009, 10, 481–484. [Google Scholar] [CrossRef]
- Sánchez, J.A.; Hernández, D.L.; Moreno, J.A.; Mondragón, F.; Fernández, J.J. Alternative carbon based acid catalyst for selective esterification of glycerol to acetylglycerols. Appl. Catal. A Gen. 2011, 405, 55–60. [Google Scholar] [CrossRef]
- Berger, M.; Laumen, K.; Schneider, M.P. Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sn-diacylglycerols. J. Am. Oil Chem. Soc. 1992, 69, 955–960. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Zhao, H.; Hou, Z. Esterification of glycerol with acetic acid over SO3H-functionalized phenolic resin. Fuel 2019, 255, 115842. [Google Scholar] [CrossRef]
- Fluhr, J.W.; Darlenski, R.; Surber, C. Glycerol and the skin: Holistic approach to its origin and functions. Br. J. Dermatol. 2008, 159, 23–34. [Google Scholar] [CrossRef]
- Sousa, G.M.; Yamashita, F.; Soares Júnior, M.S. Application of biodegradable films made from rice flour, poly (butylene adipate-co-terphthalate), glycerol and potassium sorbate in the preservation of fresh food pastas. LWT—Food Sci. Technol. 2016, 65, 39–45. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, F.; Li, J.; Zhan, X.; Wei, H.; Li, H.; Wang, H.; Zheng, X. Formulation of food-grade microemulsions with glycerol monolaurate: Effects of short-chain alcohols, polyols, salts and nonionic surfactants. Eur. Food Res. Technol. 2008, 226, 613–619. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Tan, C.P.; Taherian, A.R. Effect of glycerol and vegetable oil on physicochemical properties of Arabic gum-based beverage emulsion. Eur. Food Res. Technol. 2008, 228, 19–28. [Google Scholar] [CrossRef]
- Setianto, W.B.; Wibowo, T.Y.; Yohanes, H.; Illaningtyas, F.; Anggoro, D.D. Synthesis of glycerol mono-laurate from lauric acid and glycerol for food antibacterial additive. IOP Conf. Ser. Earth Environ. Sci. 2017, 65, 12046. [Google Scholar] [CrossRef]
- Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Leblanc, J.-C.; et al. Re-evaluation of glycerol (E 422) as a food additive. EFSA J. 2017, 15, e04720. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.; Abdullah, A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 2012, 16, 2671–2686. [Google Scholar] [CrossRef]
- Segur, J.B.; Oberstar, H.E. Viscosity of Glycerol and Its Aqueous Solutions. Ind. Eng. Chem. 1951, 43, 2117–2120. [Google Scholar] [CrossRef]
- Hoyt, L.F. New Table of the Refractive Index of Pure Glycerol at 20 °C. Ind. Eng. Chem. 1934, 26, 329–332. [Google Scholar] [CrossRef]
- Delgado, D.R.; Martínez, F.; Fakhree, M.A.A.; Jouyban, A. Volumetric properties of the glycerol formal + water cosolvent system and correlation with the Jouyban–Acree model. Phys. Chem. Liq. 2012, 50, 284–301. [Google Scholar] [CrossRef]
- Cheng, N.-S. Formula for the Viscosity of a Glycerol−Water Mixture. Ind. Eng. Chem. Res. 2008, 47, 3285–3288. [Google Scholar] [CrossRef]
- Demtröder, W. Laserspektroskopie 2; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-21446-2. [Google Scholar]
- Ritgen, U. Analytische Chemie II; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-60507-3. [Google Scholar]
- Earp, A.; Hanson, C.E.; Ralph, P.J.; Brando, V.E.; Allen, S.; Baird, M.; Clementson, L.; Daniel, P.; Dekker, A.G.; Fearns, P.R.C.S.; et al. Review of fluorescent standards for calibration of in situ fluorometers: Recommendations applied in coastal and ocean observing programs. Opt. Express 2011, 19, 26768–26782. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, Y.; McClure, W.F.; Christy, A.A. Near-Infrared Spectroscopy in Food Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 9780470047705. [Google Scholar]
- Hertel, I.V.; Schulz, C.-P. Atome, Moleküle und Optische Physik 1; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-662-46807-4. [Google Scholar]
- Huck, C.W. Advances of vibrational spectroscopic methods in phytomics and bioanalysis. J. Pharm. Biomed. Anal. 2014, 87, 26–35. [Google Scholar] [CrossRef]
- Ritgen, U. Analytische Chemie I; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-662-60494-6. [Google Scholar]
- Cheng, J.-H.; Liu, C.-K.; Chao, Y.-L.; Tain, R.-M. Cooling performance of silicon-based thermoelectric device on high power LED. In Proceedings of the 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; pp. 53–56, ISBN 0-7803-9552-2. [Google Scholar]
- Kim, H.-H.; Choi, S.-H.; Shin, S.-H.; Lee, Y.-K.; Choi, S.-M.; Yi, S. Thermal transient characteristics of die attach in high power LED PKG. Microelectron. Reliab. 2008, 48, 445–454. [Google Scholar] [CrossRef]
- Huang, B.-J.; Tang, C.-W.; Wu, M.-S. System dynamics model of high-power LED luminaire. Appl. Therm. Eng. 2009, 29, 609–616. [Google Scholar] [CrossRef]
- Lu, X.; Hua, T.-C.; Wang, Y. Thermal analysis of high power LED package with heat pipe heat sink. Microelectron. J. 2011, 42, 1257–1262. [Google Scholar] [CrossRef]
- Lu, X.; Hua, T.-C.; Liu, M.; Cheng, Y. Thermal analysis of loop heat pipe used for high-power LED. Thermochim. Acta 2009, 493, 25–29. [Google Scholar] [CrossRef]
- Luo, X.; Hu, R.; Liu, S.; Wang, K. Heat and fluid flow in high-power LED packaging and applications. Prog. Energy Combust. Sci. 2016, 56, 1–32. [Google Scholar] [CrossRef]
- Wall, F.; Martin, P.S.; Harbers, G. High-power LED package requirements. In Proceedings of the Third International Conference on Solid State Lighting, Optical Science and Technology, SPIE’s 48th Annual Meeting, San Diego, CA, USA, 3 August 2003. [Google Scholar]
- Schagen, A. Methode der Laser-Induzierten Lumineszenz zur Experimentellen Analyse des Stofftransportes in Laminar-Welligen Flüssigkeitsfilmen. Ph.D. Thesis, Technische Hochschule Aachen, Aachen, Germany, 2014. [Google Scholar]
kg m−3 | mPa s | - | Ka - | |
---|---|---|---|---|
0 | 998.2 | 1.005 | 1.333 | |
10 | 1019 | 1.310 | 1.345 | |
20 | 1041 | 1.760 | 1.357 | |
30 | 1065 | 2.500 | 1.371 | |
40 | 1091 | 3.720 | 1.384 | |
50 | 1117 | 6.000 | 1.398 | |
60 | 1143 | 10.80 | 1.413 | |
65 | 1155 | 15.20 | 1.420 |
Calculation | |
---|---|
Γ/L/(m h) | 231 | 462 | 692 | 923 | |
---|---|---|---|---|---|
0 | /mm | 0.25 | 0.33 | 0.39 | 0.44 |
Relative error/% | - | - | - | +153 | |
20 | /mm | 0.29 | 0.38 | 0.44 | 0.49 |
Relative error/% | - | - | +34.8 | +29.3 | |
30 | /mm | 0.32 | 0.41 | 0.48 | 0.54 |
Relative error/% | +58.4 | +85.1 | +18.2 | +14.4 | |
40 | /mm | 0.36 | 0.46 | 0.54 | 0.60 |
Relative error/% | +10.5 | +25.6 | −3.15 | −6.70 | |
50 | /mm | 0.43 | 0.53 | 0.62 | 0.68 |
Relative error/% | +10.0 | −2.19 | −2.20 | +1.94 | |
65 | /mm | 0.61 | 0.74 | 0.84 | 0.92 |
Relative error/% | −8.12 | −8.39 | −4.91 | −5.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, I.; Scholl, S.; Rädle, M. Film Thickness and Glycerol Concentration Mapping of Falling Films Based on Fluorescence and Near-Infrared Technique. Micromachines 2022, 13, 2184. https://doi.org/10.3390/mi13122184
Medina I, Scholl S, Rädle M. Film Thickness and Glycerol Concentration Mapping of Falling Films Based on Fluorescence and Near-Infrared Technique. Micromachines. 2022; 13(12):2184. https://doi.org/10.3390/mi13122184
Chicago/Turabian StyleMedina, Isabel, Stephan Scholl, and Matthias Rädle. 2022. "Film Thickness and Glycerol Concentration Mapping of Falling Films Based on Fluorescence and Near-Infrared Technique" Micromachines 13, no. 12: 2184. https://doi.org/10.3390/mi13122184
APA StyleMedina, I., Scholl, S., & Rädle, M. (2022). Film Thickness and Glycerol Concentration Mapping of Falling Films Based on Fluorescence and Near-Infrared Technique. Micromachines, 13(12), 2184. https://doi.org/10.3390/mi13122184