On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces
Abstract
:1. Introduction
2. Numerical Simulation Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gric, T. Spoof plasmons in corrugated transparent conducting oxides. J. ElEctromagnEtic WavEs Appl. 2016, 30, 721–727. [Google Scholar] [CrossRef]
- Feldmann, J.; Stegmaier, M.; Gruhler, N.; Rios, C.; Bhaskaran, H.; Wright, C.; Pernice, W. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 2017, 8, 1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Xiao, S.; Ye, D.; Huangfu, J.; Wang, Z.; Ran, L.; Zhou, L. Fractal plasmonic metamaterials for subwavelength imaging. Opt. Express 2010, 18, 10377–10387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanphuang, V.; Yeo, W.G.; Volakis, J.L.; Nahar, N.K. THz transparent metamaterials for enhanced spectroscopic and imaging measurements. IEEE Trans. Terahertz Sci. Technol. 2014, 5, 117–123. [Google Scholar] [CrossRef]
- Wang, W.; Yadav, N.; Shen, Z.; Cao, Y.; Liu, J.; Liu, X. Two-stage magnifying hyperlens structure based on metamaterials for super-resolution imaging. Optik 2018, 174, 199–206. [Google Scholar] [CrossRef]
- LI, Y.; LIU, C.; ZHOU, J. Progress of metamaterial cloaking in multiple physical fields. Mater. China 2019, 38, 30–41. [Google Scholar]
- Zhang, F.; Li, C.; Fan, Y.; Yang, R.; Shen, N.H.; Fu, Q.; Zhang, W.; Zhao, Q.; Zhou, J.; Koschny, T. Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal-Dielectric Hybrid Metamaterials. Adv. Mater. 2019, 31, 1903206. [Google Scholar] [CrossRef]
- Beni, T.; Yamasaku, N.; Kurotsu, T.; To, N.; Okazaki, S.; Arakawa, T.; Balcytis, A.; Seniutinas, G.; Juodkazis, S.; Nishijima, Y. Metamaterial for hydrogen sensing. ACS Sensors 2019, 4, 2389–2394. [Google Scholar] [CrossRef]
- Drexler, C.; Shishkanova, T.V.; Lange, C.; Danilov, S.N.; Weiss, D.; Ganichev, S.D.; Mirsky, V.M. Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers: A feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer. Microchim. Acta 2014, 181, 1857–1862. [Google Scholar] [CrossRef]
- Nisar, M.S.; Cui, Y.; Dang, K.; Jiang, L.; Zhao, X. Near-Field Spot for Localized Light-Excitation of a Single Fluorescent Molecule. Photonic Sens. 2020, 10, 364–374. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Kumar, S.; Singh, R.; Zhang, B.; Bai, C.; Pu, X. Development of glucose sensor using gold nanoparticles and glucose-oxidase functionalized tapered fiber structure. Plasmonics 2020, 15, 841–848. [Google Scholar] [CrossRef]
- El Eter, A.; Hameed, N.M.; Baida, F.I.; Salut, R.; Filiatre, C.; Nedeljkovic, D.; Atie, E.; Bole, S.; Grosjean, T. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip. Opt. Express 2014, 22, 10072–10080. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Luo, J.; Ma, Q.; Rajabalipanah, H.; Nisar, M.S.; Zhang, L.; Abdolali, A.; Cui, T.J. Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces. J. Phys. D: Appl. Phys. 2020, 54, 035305. [Google Scholar] [CrossRef]
- Ma, Q.; Bai, G.D.; Jing, H.B.; Yang, C.; Li, L.; Cui, T.J. Smart metasurface with self-adaptively reprogrammable functions. Light. Sci. Appl. 2019, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, J.; Youngblood, N.; Li, X.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 8301807. [Google Scholar] [CrossRef] [Green Version]
- Nisar, M.S.; Yang, X.; Lu, L.; Chen, J.; Zhou, L. On-chip integrated photonic devices based on phase change materials. Photonics 2021, 8, 205. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Luo, S.S.; Ye, F.J.; Cui, H.Y.; Cui, T.J. Touch-Programmable Metasurface for Various Electromagnetic Manipulations and Encryptions. Small 2022, 18, 2203871. [Google Scholar] [CrossRef]
- Luo, X. Directly wireless communication of human minds via mind-controlled programming metasurface. Light. Sci. Appl. 2022, 11, 182. [Google Scholar] [CrossRef]
- Siegrist, T.; Merkelbach, P.; Wuttig, M. Phase change materials: Challenges on the path to a universal storage device. Annu. Rev. Condens. Matter Phys. 2012, 3, 215–237. [Google Scholar] [CrossRef]
- Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Ghosh, S.; Zhang, H.; Zhou, L.; Rahman, B. Design, optimization, and performance evaluation of GSST clad low-loss non-volatile switches. Appl. Opt. 2019, 58, 8687–8694. [Google Scholar] [CrossRef] [PubMed]
- Muramoto, K.; Takahashi, Y.; Terakado, N.; Yamazaki, Y.; Suzuki, S.; Fujiwara, T. VO2-dispersed glass: A new class of phase change material. Sci. Rep. 2018, 8, 2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhou, L.; Xu, J.; Lu, L.; Chen, J.; Rahman, B. Silicon microring resonators tuned with GST phase change material. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar]
- Wu, C.; Yu, H.; Li, H.; Takeuchi, I.; Li, M. Programmable metasurface using phase change material for waveguide mode conversion. In Proceedings of the CLEO: Science and Innovations, Optical Society of America, Washington, DC, USA, 10–15 May 2020. [Google Scholar]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Le Gallo, M.; Sebastian, A. An overview of phase-change memory device physics. J. Phys. D Appl. Phys. 2020, 53, 213002. [Google Scholar] [CrossRef]
- Miscuglio, M.; Adam, G.C.; Kuzum, D.; Sorger, V.J. Roadmap on material-function mapping for photonic-electronic hybrid neural networks. APL Mater. 2019, 7, 100903. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Soman, A.; Mao, D.; Kananen, T.; Gu, T. On-chip wavefront shaping with dielectric metasurface. Nat. Commun. 2019, 10, 3547. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisar, M.S.; Iqbal, S.; Zhou, L. On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces. Micromachines 2022, 13, 2185. https://doi.org/10.3390/mi13122185
Nisar MS, Iqbal S, Zhou L. On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces. Micromachines. 2022; 13(12):2185. https://doi.org/10.3390/mi13122185
Chicago/Turabian StyleNisar, Muhammad Shemyal, Shahid Iqbal, and Linjie Zhou. 2022. "On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces" Micromachines 13, no. 12: 2185. https://doi.org/10.3390/mi13122185
APA StyleNisar, M. S., Iqbal, S., & Zhou, L. (2022). On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces. Micromachines, 13(12), 2185. https://doi.org/10.3390/mi13122185