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Abstract: Microgrippers are devices that have found applications in various fields of research and
industry. They are driven by various actuation methods. In this article, an electrothermal rotary actua-
tor recently proposed in the literature is explored to obtain a novel microgripper design (Model 1). In
addition, the use of the rotary actuator as part of the chevron actuated microgrippers (Model 2) is also
discussed. The theoretical analysis of the rotary actuator is supported by an equivalent U-shaped-like
microactuator. The small error values validate the approximation used. Numerical modeling is
performed with ANSYSTM (Student version 2022, ANSYS, PA, USA). A comparison of theoretical
and numerical results provides acceptable error values. The total inter-jaw displacement values
obtained for models 1 and 2 are 12.28 µm and 21.2 µm, respectively, and the reaction force is 8.96 µN
and 34.2 µN, respectively. The performance parameters of both microgrippers could make their use
feasible for different nanoapplications. Model 2 can be used when higher force and displacement
are required.

Keywords: microgripper; V-shaped; rotary actuator; AnsysTM; FEM; MEMS; electrothermal actuation

1. Introduction

Microelectromechanical systems (MEMS) are classified as sensors and actuators. They
have awakened a wide interest in various areas of research, both at institutional and
business levels, due to their wide applications in daily life and their impact on social
welfare. Their use has improved the level of comfort in various areas, such as automotive
and residential, and has allowed for the monitoring of environmental variables, improving
safety conditions, among many other applications, which are constantly emerging. Recently,
new, or optimized microactuators [1,2] have been reported, such as micropositioners [3,4],
microswitches [5], microgrippers [6,7], piezoelectric devices [8,9], microgenerators [10,11],
micropumps [12], and bimorph actuator [13,14].

Microgrippers are widely used in different research fields, including health, biology,
chemistry, materials science, etc., as well as in manufacturing processes, where microassem-
bly is a fundamental task. According to the characteristics of the clamping object, several
geometries and microfabrication technologies have been proposed in the literature, as
shown in Table 1.

A review of different microgrippers for manipulation and assembly of microwires to
Printed Circuit Board (PCB) connectors is provided in [15], where the two major classifica-
tions based on their structures are also given: cantilever and flexible hinge. In addition, the
main advantages of each microgripper’s group are presented. For the case of microgrippers
with cantilever type structures, among their main advantages are their ease of manufacture
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and the large displacement between their tips with larger dimensions [16,17]. The main
disadvantages provided are the difficulty in scaling them down to lower microscales, their
jaw tips not consistently being parallel, and their increased arm length, resulting in an
increase in jaw aperture size but a decrease in applied force. The actuation types reported
for these microgrippers are electromagnetic, piezoelectric, electrostatic, electrothermal, and
shape memory alloy.

On the other hand, in [17] a micro-tweezer based on a pneumatically actuated can-
tilever is reported. The actuator is essentially a flexible membrane that applies force to the
gripper pad when the air inlet is pressurized, producing arm or cantilever deflection. The
output force is in the order of 450 mN, whereas the input force is 48 mN. The tests were
performed manipulating acid-washed zirconium microbeads of 200 µm diameter in air
and underwater.

In this work, the interest focuses on the microgrippers based on the cantilever type
structure because the architecture of the proposed prototype has cantilevers as part of
its jaws and as essential parts of its actuator arrangement. The research is focused on
demonstrating that a microgripper can be developed from a rotational microactuator,
taking advantage of the thermal effects on the structure, mainly from the deformation and
buckling effect of beams, allowing for the development of a complex device from simple
structural elements.

As can be seen in Table 1, no microgripper was found to have any similar rotary
microactuator, so part of the novelty is its implementation and use. It is noteworthy that
this rotary actuator arrangement was previously reported [18], where the dimensions of the
microactuator and the microgripper Model 2 were optimized by simulation. In addition,
the theoretical model of the actuator of microgripper Model 1 is proposed. It should be
noted that the individual rotary actuator has been reported in [1].

Table 1. State-of-the-art of recent microgrippers, their actuators, and fundamental parameters.

Ref. Microgripper
Type

Microactuator
Type

Structural
Material

Software for
Simulation

Dimensions
(µm) Feed

Displacement
of Tips
(µm)

Initial
Gap
(µm)

Force on
Tips
(µN)

Stress
(MPa)

[7] Electrothermal U-Beam Silicon Gmsh and
MATLAB NA 397.5 ◦K ≈2.6 NA NA NA

[19] Electrothermal Hot arms
SU-8 and

Cr/Au/Cr-
based

ANSYSTM

Solid 98 ≈1000 × 140 × 20 180 ◦C at
650 mV

≈50.5
and 47.8

30.5
and 30.1 NA NA

[20] Compliant External
actuation SU-8 ANSYSTM ≈1000 × 390 × 20 NA ≈35 10 ≈25 32.94

[21] Electrostatic Comb drive NA FEA NA 80 V ≈30 NA ≈140
to 160 NA

[22] Electrothermal U-Beam Polysilicon CoventorWareTM ≈400 × 42 × 2 5 V 15 5 NA NA

[23] Electrothermal Beams SU-8 and Au NA ≈1300 × 610 × 10 0.65 V
and 0.7 V 11 and 8 40 NA NA

Note: Not Available (NA). Finite Element Analysis FEA

In Section 2, the design, modeling, and simulation of the proposed microgripper mod-
els are shown. In Section 3, results obtained from analytical and numeric models are given
and compared, for both microgripper models, as well as with some other microgrippers.
The corresponding discussion is also given in Section 3. Section 4 provides some details
about the feasibility of the microgrippers’ fabrication. Finally, some concluding remarks
are provided in Section 5.

2. Materials and Methods
2.1. Design Concept and Simulation

Microcantilevers [24,25] are widely used and studied devices. These microelements
can be thermally, electrically, mechanically, optically, or magnetically powered. They are
fundamental parts of simple and complex systems. In this work, a micro electrothermal
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actuator designed with silicon and based on an array of four orthogonally distributed
cantilever beams is used. The guided ends of the beams are joined at the central junction
point, while the fixed ends are connected to a positive or negative potential, according to
Figure 1, where in the first block the construction sequence of the rotary microactuator is
observed [18]. A similar structure is given in [1] using polysilicon and silicon, respectively.
This actuator is called rotary according to the shape of the displacement generated in
the beams under polarization. Table 2 describes the geometrical variables showing the
dimensions of the microactuator design and of the microgripper, in accordance with
Figure 1.

Table 2. Geometrical parameters of the microgrippers’ designs (Model 1 and 2).

Element Description Size (µm) Element Description Size (µm)

Anchor length, MTB (Lp_1) 100 Length 6 of HMD (Lg_6) 45

Anchor width, MTB (Wp_1) 100 Width 1 of HMD (Wg_1) 7

Beam length 1, MTB (Lb_1) 450 Width 2 of HMD (Wg_2) 5

Beam length 2, MTB (Lb_2) 470 Length 1 of CM (Lh_3) 1020

Beam width 2, MTB (Wb_1) 10 Length 2 of CM (Lh_4) 1611.5

Total Length 1 of MFB (Lh_1) 1120 Initial gap (IG) 54.53

Total Length 2 of MFB (Lh_2) 1120 Total length microgripper (Lh_5) 1873.2

Length 1 of HMD (Lg_1) 650 Total width microgripper (Lh_6) 2070

Length 2 of HMD (Lg_2) 664.21 Anchor length of MVB (Lp_2) 170

Length 3 of HMD (Lg_3) 704.21 Anchor width of MVB (Wp_2) 200

Length 4 of HMD (Lg_4) 50 Beams width MVB (Wb_2) 3

Length 5 of HMD (Lg_5) 853 Distance between beams MVB
(Wb_3) 13

Thickness (t) 10 Beam length MVB (Lb_3) 850.13

Length GF 1049

Element Description Size (Degrees) Element Description Size (Degrees)

Angle 1 of HMD (θ1) 101.9◦ Angle 3 of HMD (θ3) 126.3◦

Angle 2 of HMD (θ2) 103◦ Angle 4 of MVB (θ4) 1◦

MTB = microactuator of two beams, MFB = microactuator of four beams, HMD = half microgripper with damping,
CM = complete microgripper (design 1), and MVB = V-shaped beam or chevron microactuator.

In the case of two beams (first step, Figure 1), the polarization is performed with a
potential difference, positive in one of the pads and 0 V in the other one, assigning the room
temperature in the pad considered as the electrical ground. For the 4-arm microactuator,
2 arms are fed with a positive potential and the other two are grounded, the last assigned
the ambient temperature, as shown in the second step of Figure 1. In step 3, one of the two
sections of the gripper, consisting of an arm and a 4-beam actuator, is shown. In step 4, a
damping arm element is added to the corresponding arm.

The design of the complete normally open microgripper (Figure 1, step 5) is made
by joining both symmetrical sections of the microgripper. The two actuators form a new
arrangement, which shares a central anchor, forming a new 7-beam microactuator, 3 of
which are fed with the positive potential and 4 of which are grounded; in the last ones, the
ambient temperature is also assigned.

The positive potential-fed beams deform thermally in a directional manner, allowing
buckling, generated by the Joule effect, favored by the constraint generated by the central
joint of each array. The electrically grounded trampolines also exhibit electrothermic
deformation. The buckling occurs in opposite directions in each array, causing the gripper
arms, additionally supported by the damping elements, to move in a symmetrical and
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stable manner, causing the jaws to close. When the positive potential is removed, the
gripper arms return to their original positions.

The microgripper proposed can be alternatively driven by a chevron actuator (case
Model 2), as shown in Figure 2, where the central connection anchor of the two rotary
actuators is now considered as a sliding joint mass driven by the chevron. The remaining
anchors (A, B, C, D, E, and F) will be considered in this case as mechanical anchors. In this
case, the deformation of the orthogonal arrays is like Model 1.
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Table 3 shows the electrical, mechanical, and thermal parameters of silicon (Si) consid-
ered in the simulations with ANSYSTM (Student version 2022, ANSYS, PA, USA) as well
as in the development and evaluation of analytical models. The geometric dimensions of
the microgripper elements are taken from Table 2. The electrothermal actuators for micro-
gripper designs 1 and 2 will be fed with 2 V. The thickness of the structure was determined
according to the SOI wafers used in the process in which they could be fabricated.

Table 3. Mechanical and electrical properties of materials [7,18,25].

Parameters Silicon Values

Density, ρ (kg/m3) 2329

Thermal expansion coefficient, α (C−1) 2.568 × 10−6

Young’s modulus, E (GPa) 130.1

Poisson’s ratio, ν 0.33

Isotropic thermal conductivity, κ (W/m ◦C) 148

Isotropic resistivity, ρ0 (Ω ×m) 0.00015

Room temperature, Ta (◦C) 22

Average heat transfer coefficient, h (W/m2 K) 25

Convection coefficient (W/m2 ◦C) 25

In the following section, the equations that theoretically validate the relevant parame-
ters of the orthogonal and chevron microactuators, for design cases 1 and 2, respectively,
are developed. The force and displacement generated by the orthogonal actuators with
2 and 4 beams were analyzed, for case 1, where the theory of the U-beam microactuators
was adapted, i.e., considering hot and cold beams. For design 2, the equations correspond-
ing to the parameters that characterize the performance of the chevron actuator are shown,
mainly those of force, displacement, stress, electric current intensity, and power.
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2.2. Modelling of Microactuators
2.2.1. Thermal Elongation of Beams

In this subsection, the equations are provided that model the electrothermal behavior
of the microactuator consisting of two beams joined at their guided ends, by means of a
small step, while their opposite ends are fixed by means of an anchor, respectively, as can
be seen in step 1 of Figure 1.

The thermally induced elongation of a differential segment of each beam is given
by [26]:

dL = α(T − Ta)dS (1)

The total displacement of each beam is obtained by integrating the differential elonga-
tion of the beam as follows:

∆L =
∫ L

0
dL =

∫ L

0
α(T − Ta)dS = α∆TL (2)

The force is obtained combining the expressions of stiffness and displacement:

F =
EA
L

∆L ≡ ke∆L (3)

where F is the actuating force of the device due to elongation generated by the thermal
effect, ∆L is the deformation of the beams due to the Joule effect, and ∆T is the temperature
difference between the ambient temperature and the temperature generated by applying
the voltage source to the actuator’s pads.

2.2.2. Electromechanical Modeling of Two Beams to a U-Beam-like Microactuator

For the electromechanical modeling, the validation of the microactuator with two
horizontal beams was carried out taking as a reference the model of a U-shaped beam
microactuator, as can be seen in the diagrams shown in Figure 3.
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Figure 3. (a) Microactuator of two beams (MTB) transformed as a U-shaped beam microactuator, and
(b) simplified rigid frame of the thermal actuator with three redundant elements.

The transformation and equivalence, as well as the modeling of a two-beam microac-
tuator to a U-beam-like microactuator, are based on [1,27], respectively. In Equation (4),
the initial behavior of the rotary microactuator is defined. It is important to mention that
the force applied at the free end of the device is the force obtained by applying an electric
potential difference [7].

Applying the matrix force method for X1, X2, and X3, the general equation describing
the displacement of the microactuator can be obtained with Equation (4):
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 f11 f12 f13
f21 f22 f23
f31 f32 f33

X1
X2
X3

 =

 0 0 0
∆Lh −∆Lc −∆L f

0 0 0

 where ∆Lc1 = ∆L f , ∆Lb1 = ∆Lc, and ∆Lb2 = ∆Lh (4)

Then: 
1

3EIh

(
L3

b2 + (Lb1 + Wb1)
3
)
+ 1

3EIc

(
3L2

b2Lg + L3
b2 − (Lb1 + Wb1)

3
)

− 1
2EIh

(
(Lb1 + Wb1)

2Lg

)
− 1

2EIc

(
L2

gLb2 + L2
b2Lg − (Lb1 + Wb1)

2Lg

)
− 1

2EIh

(
L2

b2 + (Lb1 + Wb1)
2
)
− 1

2EIc

(
L2

b2 + 2Lg − (Lb1 + Wb1)
2
)

− 1
2EIh

(
(Lb1 + Wb1)

2Lg

)
− 1

2EIc

(
L2

gLb2 + L2
b2Lg − (Lb1 + Wb1)

2Lg

)
1

3EIc

(
L3

g + 3Lc1L2
g

)
+ 1

EIh

(
(Lb1 + Wb1)L2

g

)
1

2EIc

(
L2

g + 2LgLc1

)
+ 1

EIh

(
Lg(Lb1 + Wb1)

)
− 1

2EIh

(
L2

b2 + (Lb1 + Wb1)
2
)
− 1

2EIc

(
L2

b2 + 2Lg − (Lb1 + Wb1)
2
)

1
2EIc

(
L2

g + 2LgLc1

)
+ 1

EIh

(
Lg(Lb1 + Wb1)

)
1

EIh
(Lb2 + (Lb1 + Wb1)) +

1
EIc

(
Lc1 + Lg

)
×

X1
X2
X3



=


0 0 0

1
6E

(
L2

c1
Ic
(2(Lb1 + Wb1) + Lb2) +

(Lb1+Wb1)
2

I f
(2Lc1 + (Lb1 + Wb1))

)
Lg
2E

(
L2

c1
Ic

+ Lb1+Wb1
I f

(Lc1 + Lb2)

)
1

2E

[
L2

c1
Ic

+ Lb1+Wb1
I f

(Lc1 + Lb2)

]
0 0 0

 (5)

Therefore, to calculate the redundant elements X1, X2, and X3, as shown in Figure 3b,
the matrix equation is solved. The following relationships are applied:

X1 = F
∆1

∆
; X2 = F

∆2

∆
and X3 = F

∆3

∆
. (6)

The deflection of the free section of the microactuator is calculated by the virtual work
method, obtaining:

u =
∫ MM

EIh
ds =

L2
b2

6EIh
(X1Lb2 − 3X3) (7)

The equation that allows one to approximate the displacement results from an external
force applied to the end of the U-beam-like microactuator and that analogously models the
4-beam microactuator is:

u =
∫ MM

EIc
ds =

(Lb1 + Wb1)

6EI f

{(
(2× Lc1) + Lb2)

[
X3 + X2Lg − X1(Lb2 − Lc1)

]
+ (2Lb2

+Lc1)
(
X3 + X2Lg

))
}+

L2
c1

6EIc

[
3
(
X3 + X2Lg − X1Lc1

)
+ 2X1Lc

]
(8)

To calculate the stiffness constant of the element, the following equation is used:

kc =
3E
L3

b1

(
t× w3

b1

12

)
=

3E
L3

b1

× I (9)

2.2.3. Electromechanical Modeling of V-Shaped Beam Microactuator

The microgripper can also be electrothermally actuated by means of a V-shaped
actuator (Model 2, Figure 2). The coupling is made by connecting the shaft of this device
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at the junction point of the rotary actuators, whose anchors in this case function only as
mechanical anchors. To support the functional description of this model, the equations of
displacement and actuating force of the V-shaped actuator are described.

The V-shaped micro-actuator is a device that is integrated by two fixed elements or
anchors, and the fixed extremes of the symmetrical beams are connected to the anchors with
an inclination angle. The other beam extremes are joined to the shaft. Thermal expansion
of beams generates the shaft displacement. The equation describing the displacement
behavior of the device due to temperature increase is given by [28,29]:

Uy =
∆TαL sin θ

s2 + c2
(

12I
Ac L2

) (10)

where ∆T is the temperature difference between ambient temperature and the thermoelec-
trically generated temperature. Ac is the cross-section area, c = cosθ and s = sinθ, L is the
beam length, and I is the second inertia moment of the cross-section area of the beams.
The thermic energy generated by electric charges generates a unidirectional thermal force,
which can be calculated by:

Fb = AcE
∆L
L0

= AcE∆Tα (11)

where ∆L is the increment of the beam length, defined by ∆L = L0∆Tα, where α is the
thermal expansion coefficient, and E is Young’s modulus. The beam force due to the thermal
effect, and considering the inclination angle, can be obtained from:

Fby = AcE∆Tα sin θ (12)

The stiffness constant k can be obtained from Hooke’s Law, k = Fby/Uy.

2.3. Pseudo-Rigid Body Model of Microgripper Model 2

The displacement modelling of the microgripper Model 2 is obtained by the pseudo
rigid body model (PRBM) [30] method. Due to the microgripper symmetry, the model is
performed considering a half of it, which includes one arm and one of the rotary actuators.
The linkages are considered as rigid bodies and the beam ends as torsional springs. Figure 4
shows the equivalent simplified model of the middle microgripper. The input displacement
is provided by the shaft of the chevron actuator.
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The simplified model corresponds to 4 rigid beams with a torsional spring at each
anchored end, which form the orthogonal geometry with the center in O. The following
equations were used:

ω =
2π

T
and ω =

v
r
→ v = ωr (13)

vE = ω1lEO, vF = ω1lFO, vout = ω1lGF, vin = ω1lAF (14)

whereω and v are angular and instantaneous velocities, respectively; T is the period, and
all r and l values correspond to the respective radii.

Considering that velocities, or displacements, of orthogonal beams are near to zero,
that means vE = vF ≈ 0, in congruence with the simulation results.

Then, the amplification factor of the microgripper, considering both parts, can be
approximated by:

RAMP =
2xout

xin
=

2vout

vin
=

2ω1lGF
ω1lAF

=
2lGF
lAF

(15)

3. Results of Theoretical and Numerical Models and Discussion

Simulation results were obtained using Ansys Workbench Software by coupling the
tools -> Thermal-electric -> Static Structural, that is, by means of the finite element method.
Subsequently, the comparison of the results of the analytical and numerical models is
shown in Section 3.

Numerical models correspond to:

1. Validation of the 2-beam microactuator as a U-beam-like microactuator.
2. Validation of the 4-beam microactuator as a U-beam-like microactuator.
3. The V-shaped beam microactuator with 2 and 16 beams.

Finally, the results of the microgrippers corresponding to Models 1 and 2 are given, as
well as the amplification factor of Microgripper Model 2.

3.1. Thermal Beams Elongation

The lengths of the beams that make up the 2-beam microactuator were parameterized
to select the geometric dimensions that allowed the displacement and force parameters
generated by the deflection of beams when thermal energy was applied to be improved.

Figure 5a shows the results of the parameterization; it was observed that a length of
450 µm was an adequate value of displacement. With this length, without considering
the dimensions of the junction point, a low stress value was given. Figure 5b shows the
temperature distribution, where in the red color can be seen the place where the highest
deflection occurred, which was used for the implementation of structural elements (arms
of the microgrippers of Models 1 and 2).

Therefore, the microactuator was considered with two beams embedded at its ends,
with the dimensions described in Table 2. For comparison, the elements described in
Section 2.2 of the microactuator and Equations (2) and (3) were used, and the displacement
results were taken at the middle part of the microactuator or point of analysis (Figure 6a).
The acting force was considered directly at the section of maximum deflection of the beam,
as can be seen in Figure 6b.

The following conditions were used as part of the operating and simulation conditions
of the device: voltage source of 2 V, ambient temperature of 22 ◦C. Only the parameteriza-
tion was performed considering a sweep from 0 V up to 3 V to observe in a wide range
of values the microactuator performance of the two beams. The same voltage sweep was
used for the case of the actuator with four beams.

Table 4 shows a comparison of the results of the theoretical and numerical models,
considering a 2 V voltage source. This voltage value was the one considered in the final
designs of the microgrippers of Models 1 and 2.

The error margins were very low, so the approximations used were considered ade-
quate, as well as the boundary conditions used in both models.
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Table 4. Parameter results for the microactuator of two beams.

Model Parameters Temperature
at 2 V

Analytical
Results

Simulated
Results Error %

Displacement, ∆L (m)
112.09 ◦C

1.353 × 10−7 1.341 × 10−7 0.85
Force, F (N) 3.745 × 10−3 3.712 × 10−3 0.89
Stiffness, ke (N/m) 27680.85 27669.36 0.041

3.2. Electromechanical Modeling of Two Beams vs. U-Beam-like Microactuator

The geometrical relationship of the beams of the two-arm actuator and that obtained
by bending both beams, generating an actuator like the U-shaped microactuator, can be
seen in Figure 3. For simulation of the U-beam-like actuator, it was fed at one of the fixed
ends with a positive voltage and at the other end of the device with a negative potential,
like the simulations reported on the U-beam microactuator. One then had one hot arm and
one cold arm, so that Equations (4)–(8) could be used. The simulation results are shown in
Figure 7, where a voltage sweep was applied from 0 V to 3 V at an ambient temperature
of 22 ◦C.
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As can be seen from Figure 7, the analytical and numerical approximations were close,
with a greater deviation at the extremes of the curves representing displacement. The
maximum values for displacement, force, and stiffness are presented in Table 5. In the case
of the two-arm U-beam-like microactuator, for which the analytical approximation was
available, it was observed that the maximum error corresponded to the force, with a value
of 26.5%, while the minimum corresponded to the displacement in the Y-axis, with a value
of 12.89%.

3.3. Electromechanical Modeling of Four-Beam Microactuator

As can be seen from Figure 6, the analytical and numerical approximations were close,
with a greater deviation at the extremes of the curves representing displacement. The
maximum values for displacement, force, and stiffness are presented in Table 5. In the case
of the two-arm U-beam-like microactuator, for which the analytical approximation was
available, it was observed that the maximum error corresponded to the force, with a value
of 26.5%, while the minimum corresponded to the displacement in the Y-axis, with a value
of 12.89%.
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For the modeling of the four-arm U-beam microactuator, the distribution of these
elements was performed with an analogous arrangement to a U-beam microactuator
(Figure 8a,b). In addition, the simulation of the rotary actuator (Figure 8c) was carried out
to compare results and validate the four-arm U-beam-like actuator approach.
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Figure 8. Comparison of analytical and numerical modeling of microactuator with four beams:
(a) 2D, values of force and displacement at 2V are marked with the blue oval marker, and (b) 3D
under a voltage sweep from 0 V up to 3 V. (c,d) Results of temperature and displacement of the rotary
microactuator at 2 V, respectively.

The parameter values obtained, simulated at 2 V, and from the analytical model, are
shown in Table 5.

Considering Equation (9) to calculate the stiffness and the effective length of the
rotating microactuator rod, 450 µm + 10 µm of the central part, the following results were
obtained from Table 5.

In Table 5, it can be observed that the largest errors correspond to the U-beam-like
microactuator with two beams for displacement and stiffness coefficients, at 1.5 V, with
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values of 31.8% and 68.5%, respectively. For 1.8 V up to 2 V, these errors were considerably
reduced. A similar performance was observed for the U-beam-like microactuator with four
beams, but with a lower error range, where the largest errors corresponded to the same
variables; at the same voltage level, the corresponding values were 21.91% and 42.21%. For
the last actuator, force and displacement parameters were within an acceptable range, as
they were the within the range of values found in the state of the art reported in relation to
the modeling and simulation results because of boundary conditions, temperature effects,
and material properties [6,31].

Table 5. Parameters results for microactuators.

Device Voltage
(V)

Uy
Ansys
(µm)

Uy
Analytical

(µm)
|Error %|

F
Ansys
(µN)

F
Analytical

(µN)
|Error %|

Kc
Ansys
(N/m)

Kc
Analytical

(N/m)
|Error %|

U-beam-
like

microactua-
tor with
2 beams

1.5 0.315 0.239 31.8 0.312 0.399 21 0.99 1.67 68.5

1.6 0.358 0.309 15.7 0.404 0.516 21.7 1.13 1.67 47.74

1.7 0.403 0.384 4.86 0.502 0.641 21.6 1.25 1.67 33.95

1.8 0.451 0.463 2.69 0.606 0.773 21.6 1.34 1.67 24.20

1.9 0.501 0.547 8.38 0.715 0.913 21.6 1.43 1.67 16.98

2 0.555 0.636 12.8 0.830 1.06 17 1.50 1.67 11.43

U-beam-
like

microactua-
tor with
4 beams

1.5 0.146 0.114 21.91 0.282 0.380 25.7 1.93 3.34 42.21

1.6 0.164 0.151 7.92 0.373 0.504 25.9 2.27 3.34 32.03

1.7 0.183 0.190 3.6 0.469 0.634 26 2.56 3.34 23.35

1.8 0.204 0.231 11.6 0.571 0.771 25.9 2.79 3.34 16.46

1.9 0.226 0.274 17.5 0.679 0.915 25.79 3 3.34 10.17

2 0.248 0.320 22.5 0.793 1.06 25.18 3.19 3.34 4.49

3.4. Validation Electromechanical Modeling of V Beam Microactuator

In this section, the focus is on the V-shaped microactuator device, which has been
widely studied. Its characteristic equations of operation, which were presented in Section 2,
are Equations (9)–(11), which characterize the displacement and force of the microactuator
due to electrothermal effects.

Figure 9a shows the chevron microactuator. When it is fed by a potential difference in
its anchors, a heat distribution is generated, which produces the thermal expansion of its
beams, producing in turn the linear displacement of the shaft in the Y axis. As visualized in
the color palette, red corresponds to the largest value. Figure 9b,c show that the analytical
and numerical approximations were quite close, since, as mentioned, this is an actuator
that has been extensively studied, and a fairly accurate model is already available.

Table 6 summarizes the results of the analytical and numerical models of the displace-
ment, force, and stiffness of the V-shaped microactuator when fed with 2 V; an average
temperature of 588 ◦C and room temperature at 22 ◦C were considered.

Table 6. Parameter results for V-shaped microactuator.

Device
Umax
(µm)

Ansys

Umax (µm)
Analytical Error (%)

Force
Ansys
(µN)

Force
Analytical

(µN)
Error (%) kc Ansys

(N/m)

kc
Analytical

(N/m)
Error (%)

Two beams V-shaped to
2 V with average

temperature = 584.5 ◦C
76.8 70.4 8.35 222.73 203.9 8.47 2.9 2.89 0.34

Sixteen beams V-shaped
to 2 V with average

temperature = 588.7 ◦C
74.1 70.9 4.33 1718 1643 4.40 23.18 23.16 0.086
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Figure 9. Simulation results of V-shaped microactuator. (a) Displacement at 2 V. (b) Displacement
and (c) force responses under voltage sweep from 0 V up to 2 V.

The following boundary conditions were considered: ambient temperature and voltage
0 across the left pad contour. On the other hand, a positive voltage was applied to the right
pad contour, as well as an average ambient temperature.

3.5. Results by Element Finite Method of Microgrippers Models 1 and 2

The location of the microgripper arms was determined by parameterizing the position
along the horizontal beams (with length of 450 µm) of the rotary microactuator, as can be
seen in Figure 10a. The best location points of the arms corresponded to the maximum
buckling values of the rotary microactuator beams. The parameterized microgripper design
(left section) is shown in Figure 10b.

Applying the mirror technique at one of the anchors of geometry shown in Figure 10b
generated the complete Model 1, as can be seen in Figure 11. In the red anchors, 2 V was
applied. The blue anchors are electrical grounds. All anchors were fixed. The potential
generated the closing and opening movement of the jaws, as seen in Figure 11b.

The simulation results are summarized in Table 7. As can be seen, the reaction force
was in the order of µN, so it could be useful in cases where the gripping objects are fragile.
The total force was obtained from the constraint of the two gripper jaws, and then the
results given in Table 7 corresponded to the force generated by the two gripper jaws.
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Table 7. Parameters values for microgripper Model 1 at 2 V.

Device Fx (N) Fy (N) Fz (N) Total Force (N) Ux (m) Uy (m) Uz (m) U total (m)

Microgripper
Model 1 3.76 × 10−10 8.96 × 10−6 7.36 × 10−11 8.96 × 10−6 5.65 × 10−6 2.5 × 10−6 5.63 × 10−9 6.14 × 10−6

U total corresponded to the displacement of only one of the jaws, and the inter-jaw
displacement was obtained by multiplying this value by two. The results in the three
directions are provided to observe if there were some inappropriate displacements that
could generate instability in the manipulation. The displacement in the Z-axis was residual,
which is appropriate.

To improve the response of Model 1 (Figure 11), and with the intention of amplifying or
improving the displacement and force parameters, it was decided to use the electrothermal
V-shaped beam microactuator as an amplifying element. The chevron was attached to the
anchor joining the two rotating microactuators of Model 1, now considering it as a sliding
element. Model 2 obtained in this way is shown in Figure 12.
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The results of the simulations for Model 2 are given in Figure 12, corresponding to
temperature distribution and total deformation. The jaw’s temperature maintained the
same value as in the case of Model 1, namely, 89.563 ◦C, which can allow for a wide range
of clamping objects. The values obtained in the simulation of clamping force distribution
and displacement are summarized in Table 8.

Table 8. Parameters values for microgripper Model 2 at 2 V.

Device Fx (N) Fy (N) Fz (N) Total Force
(N) Ux (m) Uy (m) Uz (m) U total (m)

Microgripper
Model 2 1.52 × 10−8 3.42 × 10−5 5 × 10−10 3.42 × 10−5 9.77 × 10−6 6.27 × 10−6 6.64 × 10−9 1.06 × 10−5

The simulation was performed with Ansys Workbench software. The Thermal Electric
tool was used to apply the potential difference and the ambient temperature condition,
with the coupling of a Static Structural to visualize the effect generated by the potential
and the displacements. Another Static Structural was coupled to Thermal Electric to obtain
the actuation force due to the thermal effect.

Tables 7 and 8 show that the total inter-jaw displacement values obtained for Models 1
and 2 were 12.28 µm and 21.2 µm, respectively, and the reaction forces were 8.96 µN and
34.2 µN, respectively. The performance parameters of both microgrippers make feasible
their use for different nanoapplications; Model 2 can be used when higher force and
displacement are required.

The simplicity of the structure of Model 1 is remarkable, as it consists of only 14 beams,
making it light, simple, and low profile. Model 2, on the other hand, brings together the
same elements of Model 1, plus those involved in the chevron actuator, making it more
efficient, but with a larger area.

The calculated value of the amplification factor for microgripper Model 2 was obtained
by length substitution from Equation (15) and was equal to 4.196. The evaluation of this
expression using the input and output displacement values obtained from simulation
provided an amplification factor of 3.5. The relative error was equal to 16.58%, which is
considered as acceptable.

Technical details about FEA for both microgripper models are given in Table 9.
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Table 9. Technical details about FEA in Ansys Workbench for Models 1 and 2 of microgrippers.

Device
Solver
Target

Element
Type/Mesh/Number

of DOF

Face Sizing
with

Element Size

Inflation Convergence

Total Mass (kg)
Transition
Ratio

Max
Layers

Growth
Rate

No. of
Total

Nodes

No. of
Total

Elements

Model 1 Mechanical
APDL

SOLID 187/
refinement-controlled
program

Default 0.272 5 1.2
30712 13006 3.29 × 10−9

Model 2 58225 26308 6.25 × 10−9

3.6. Comparison with Other Microgrippers

In this subsection, in Table 10, some results from other state-of-the-art of microgrippers
are shown to compare the parameters of microgrippers Models 1 and 2 and to observe their
competitivity with them.

Table 10. Comparison with other microgrippers.

Ref. Device Material Feed Displacement
(µm)

Force
(µN) Total Geometrical Sizes

[6] Microgripper with 12
Z-beams Poly-Si 80 V 85 6575 at 6 V 3220 µm × 3770 µm × NA

[21] Microgripper NA 80 V ≈32 ≈100 at 130 V NA

[29] Microgripper with two
V-shaped actuators Poly-Si 1 V 19.2 ≈0 up to 17,000 ≈1200 µm × 960 µm × 10 µm

This work
Model 1 Silicon 2 V 12.28 8.96 1611 µm × 1700 µm × 10 µm

Model 2 Silicon 2 V 21.2 34.2 2070 × 1873 × 10 µm

It was observed that microgripper Models 1 and 2, fed at low voltage levels, com-
pared to the performance results of other microgrippers shown in Table 10, had adequate
responses in displacement, while in force they had low levels, which allowed their func-
tionality to be directed to fragile or more sensitive microparticles in their manipulation.
The microgripper proposed in [29] was made with polysilicon, and thus the fabrication
cost was also different.

Table 11 shows some microparticles or samples with dimensions in the aperture range
of the microgrippers Model 1 and Model 2 proposed in this work.

Table 11. Samples for manipulation.

Microparticles Sizes Description Ref

Clear Polyethylene Microspheres 0.96 g/cc—1 µm to 1700 µm (1.7 mm) Pure polyethylene polymer microspheres
in dry powder form. [32]

Soda Lime Solid Glass Microspheres 2.5 g/cc—Bulk with Coating
Options—3 µm to 75 µm

Silane coating for improved dispersion in
aqueous systems and
fluorochemical coating.

[33]

Poly (Methyl Methacrylate) PMMA
Acrylic Microspheres and Spheres 1.2 g/cc—1 µm to 3.5 mm

Highly spherical uncross-linked clear
pure poly (methyl methacrylate) acrylic
microspheres and spheres.

[34]

In addition, in our work, the feasibility of use of the arrangement of rotary actuators
was validated. For the micromanipulation of samples and microparticles, it is desirable to
have highly accurate and stable micromanipulation systems, which involve microgrippers,
high-resolution micropositioners [35], and their respective control systems. It should be
noted that micropositioners can even be multi-axis.
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4. Feasibility of Fabrication

Due to the costs of the silicon on insulator (SOI) process, prior to fabrication on
this type of wafer and technology, tests were performed on the feasibility of fabrication
using only silicon wafers. It should be noted that fabrication at depths of 70 µm, in
laboratories working with shallower depths, is a challenge, so the recipes had to be adjusted
for deep reactive ion etching (DRIE) until the required wall verticality was successfully
achieved. This team of work was supported by the Centro de Ingeniería y Desarrollo
Industrial, CIDESI, Querétaro, for the preliminary manufacturing processes. Fabrication
with SOI, once the depth of the structures was validated, is in progress. Figure 13 shows
the preliminary results of the silicon wafer fabrication tests, where the well-defined beams
and walls can be observed.
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5. Conclusions

In this article, two models of microgrippers were developed, the arms of which were
optimized by parameterization. In microgripper Model 1, an arrangement of two-rotary
microactuators, joined by a central anchor, was developed. The theoretical analysis of the
rotary actuator was supported by an equivalent U-shaped-like microactuator. The small
error values validate the approximation used, especially for the case of two beams. When
the number of beams increases, the error also increases.

The position of the microgripper arms of Model 1 was optimized by parameterization,
which allowed the position of the point of maximum displacement in the horizontal beams
to be determined to achieve the maximum displacement of the microgripper arms.

Subsequently, Model 1 was modified, amplifying its performance with the addition
of a V-shaped beam microactuator (generating the microgripper Model 2). In this case,
all anchors of the arrangement of rotary microactuators function as physical anchors. A
theoretical approach and numerical characterization of the modified microgripper were
also performed and validated.

The total inter-jaw displacement values obtained for Models 1 and 2 were 12.28 µm
and 21.2 µm, respectively, and the reaction force was 8.96 µN and 34.2 µN, respectively. The
performance parameters of both microgrippers could make feasible their use for different
nanoapplications. Model 2 can be used when higher force and displacement are required.
A comparison of theoretical and numerical results was performed. The results provide
acceptable error values.

The simplicity of the structure of Model 1 is remarkable, as it consists of only 14 beams,
making it light, simple, and low profile. Model 2, on the other hand, brings together the
same elements of Model 1, plus those involved in the chevron actuator, making it more
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efficient, but with a larger area. Important applications for the use of these microgrippers
include manipulation of microspheres [21], microassembly [23], and microwires [29]. The
temperatures in the jaws of the microgrippers allow for the interaction and manipulation
of these types of gripping objects.
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