Simulation Study on the Structure Design of p-GaN/AlGaN/GaN HEMT-Based Ultraviolet Phototransistors
Abstract
:1. Introduction
2. Device Structure and Simulation Models
3. Results and Discussion
3.1. Hole Concentration of the p-GaN Layer
3.2. Thickness of the p-GaN Layer
3.3. Thickness of the GaN Channel Layer
3.4. Al Content and Thickness of the AlGaN Barrier Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alaie, Z.; Nejad, S.M.; Yousefi, M.H. Recent advances in ultraviolet photodetectors. Mater. Sci. Semicond. Process. 2015, 29, 16–55. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.F.; Luo, X.J.; Song, W.D.; Guo, J.Q.; Sun, Y.M.; Zhang, B.L.; Wang, L.Y.; Zhang, X.N.; He, L.F.; et al. Optimization of All Figure-of-Merits in Well-Aligned GaN Microwire Array Based Schottky UV Photodetectors by Si Doping. ACS Photon. 2019, 6, 1972–1980. [Google Scholar] [CrossRef]
- Mou, W.J.; Zhao, L.N.; Chen, L.L.; Yan, D.W.; Ma, H.R.; Yang, G.F.; Gu, X.F. GaN-based Schottky barrier ultraviolet photodetectors with graded doping on patterned sapphire substrates. Solid-State Electron. 2017, 133, 78–82. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Donaldson, W.R. Ultrafast UV AlGaN Metal-Semiconductor-Metal Photodetector With a Response Time Below 25 ps. IEEE J. Quantum Electron. 2020, 56, 4000607. [Google Scholar] [CrossRef]
- Golgir, H.R.; Li, D.W.; Keramatnejad, K.; Zou, Q.M.; Xiao, J.; Wang, F.; Jiang, L.; Silvain, J.F.; Lu, Y.F. Fast Growth of GaN Epilayers via Laser-Assisted Metal-Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications. ACS Appl. Mater. Interfaces 2017, 9, 21539–21547. [Google Scholar] [CrossRef]
- Zou, X.B.; Zhang, X.; Zhang, Y.; Lyu, Q.F.; Tang, C.W.; Lau, K.M. GaN Single Nanowire p-i-n Diode for High-Temperature Operations. ACS Appl. Electron. Mater. 2020, 2, 719–724. [Google Scholar] [CrossRef]
- Xu, W.Z.; Shi, Y.T.; Ren, F.F.; Zhou, D.; Su, L.L.; Liu, Q.; Cheng, L.; Ye, J.D.; Chen, D.J.; Zhang, R.; et al. Magnesium ion-implantation-based gallium nitride p-i-n photodiode for visible-blind ultraviolet detection. Photonics Res. 2019, 7, B48–B54. [Google Scholar] [CrossRef]
- Roccaforte, F.; Greco, G.; Fiorenza, P.; Iucolano, F. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors. Materials 2019, 12, 1599. [Google Scholar] [CrossRef] [Green Version]
- Martens, M.; Schlegel, J.; Vogt, P.; Brunner, F.; Lossy, R.; Würfl, J.; Weyers, M.; Kneissl, M. High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching. Appl. Phys. Lett. 2011, 98, 211114. [Google Scholar] [CrossRef]
- Satterthwaite, P.F.; Yalamarthy, A.S.; Scandrette, N.A.; Newaz, A.K.M.; Senesky, D.G. High Responsivity, Low Dark Current Ultraviolet Photodetectors Based on Two-Dimensional Electron Gas Interdigitated Transducers. ACS Photon. 2018, 5, 4277–4282. [Google Scholar] [CrossRef]
- Jang, W.H.; Kim, H.S.; Kang, M.J.; Cho, C.H.; Cha, H.Y. Recessed AlGaN/GaN UV Phototransistor. J. Semicond. Tech. Sci. 2019, 19, 184–189. [Google Scholar] [CrossRef]
- Li, L.; Hosomi, D.; Miyachi, Y.; Hamada, T.; Miyoshi, M.; Egawa, T. High-performance ultraviolet photodetectors based on lattice-matched InAlN/AlGaN heterostructure field-effect transistors gated by transparent ITO films. Appl. Phys. Lett. 2017, 111, 102106. [Google Scholar] [CrossRef]
- Baek, S.H.; Lee, G.W.; Cho, C.Y.; Lee, S.N. Gate-controlled amplifiable ultraviolet AlGaN/GaN high-electron-mobility phototransistor. Sci. Rep. 2021, 11, 7172. [Google Scholar] [CrossRef]
- Zhang, H.C.; Liang, F.Z.; Song, K.; Xing, C.; Wang, D.H.; Yu, H.B.; Huang, C.; Sun, Y.; Yang, L.; Zhao, X.L.; et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 10(7) A/W. Appl. Phys. Lett. 2021, 118, 242105. [Google Scholar] [CrossRef]
- Iwaya, M.; Miura, S.; Fujii, T.; Kamiyama, S.; Amano, H.; Akasaki, I. High-performance UV detector based on AlGaN/GaN junction heterostructure-field-effect transistor with a p-GaN gate. Phys. Status Solidi C Curr. Top. Solid State Phys. 2009, 6 (Suppl. S2), S972–S975. [Google Scholar] [CrossRef]
- Lyu, Q.; Jiang, H.; Lau, K.M. High gain and high ultraviolet/visible rejection ratio photodetectors using p-GaN/AlGaN/GaN heterostructures grown on Si. Appl. Phys. Lett. 2020, 45, L319–L321. [Google Scholar] [CrossRef]
- Wang, H.P.; You, H.F.; Xu, Y.; Sun, X.Y.; Wang, Y.W.; Pan, D.F.; Ye, J.D.; Liu, B.; Chen, D.J.; Lu, H.; et al. High-Responsivity and Fast-Response Ultraviolet Phototransistors Based on Enhanced p-GaN/AlGaN/GaN HEMTs. ACS Photon. 2022, 9, 2040–2045. [Google Scholar] [CrossRef]
- Wang, H.P.; You, H.F.; Pan, D.F.; Chen, D.J.; Lu, H.; Zhang, R.; Zheng, Y.D. Polarization Enhanced GaN Avalanche Photodiodes With p-type In0.05Ga0.95N Layer. IEEE Photonics J. 2020, 12, 6800606. [Google Scholar] [CrossRef]
- Ji, M.H.; Kim, J.; Detchprohm, T.; Dupuis, R.D.; Sood, A.K.; Dhar, N.K.; Lewis, J. Uniform and Reliable GaN p-i-n Ultraviolet Avalanche Photodiode Arrays. IEEE Photon. Technol. Lett. 2016, 28, 2015–2018. [Google Scholar] [CrossRef]
- Liu, S.T.; Yang, J.; Zhao, D.G.; Jiang, D.S.; Liang, F.; Chen, P.; Zhu, J.J.; Liu, Z.S.; Liu, W.; Xing, Y.; et al. Mg concentration profile and its control in the low temperature grown Mg-doped GaN epilayer. Superlattice Microst 2018, 113, 690–695. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Roccaforte, F. Review of technology for normally-off HEMTs with p-GaN gate. Mater. Sci. Semicond. Process. 2018, 78, 96–106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; You, H.; Yang, J.; Yang, M.; Wang, L.; Zhao, H.; Xie, Z.; Chen, D. Simulation Study on the Structure Design of p-GaN/AlGaN/GaN HEMT-Based Ultraviolet Phototransistors. Micromachines 2022, 13, 2210. https://doi.org/10.3390/mi13122210
Wang H, You H, Yang J, Yang M, Wang L, Zhao H, Xie Z, Chen D. Simulation Study on the Structure Design of p-GaN/AlGaN/GaN HEMT-Based Ultraviolet Phototransistors. Micromachines. 2022; 13(12):2210. https://doi.org/10.3390/mi13122210
Chicago/Turabian StyleWang, Haiping, Haifan You, Jiangui Yang, Minqiang Yang, Lu Wang, Hong Zhao, Zili Xie, and Dunjun Chen. 2022. "Simulation Study on the Structure Design of p-GaN/AlGaN/GaN HEMT-Based Ultraviolet Phototransistors" Micromachines 13, no. 12: 2210. https://doi.org/10.3390/mi13122210
APA StyleWang, H., You, H., Yang, J., Yang, M., Wang, L., Zhao, H., Xie, Z., & Chen, D. (2022). Simulation Study on the Structure Design of p-GaN/AlGaN/GaN HEMT-Based Ultraviolet Phototransistors. Micromachines, 13(12), 2210. https://doi.org/10.3390/mi13122210