
����������
�������

Citation: Chang, Z.; Wu, H.; Sun, Y.;

Li, C. RGB-D Visual SLAM Based on

Yolov4-Tiny in Indoor Dynamic

Environment. Micromachines 2022, 13,

230. https://doi.org/10.3390/

mi13020230

Academic Editors: Changhui Jiang,

Shuai Chen, Yuwei Chen

and Jianxin Jia

Received: 27 December 2021

Accepted: 28 January 2022

Published: 30 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor
Dynamic Environment
Zhanyuan Chang 1,*, Honglin Wu 1, Yunlong Sun 2 and Chuanjiang Li 1

1 College of Information, Mechanical and Electrical Engineering, Shanghai Normal University,
Shanghai 200234, China; 1000496110@smail.shnu.edu.cn (H.W.); licj@shnu.edu.cn (C.L.)

2 China North Vehicle Research Institute, Beijing 100072, China; sunyunlong0124@sina.cn
* Correspondence: changzhanyuan@shnu.edu.cn

Abstract: For a SLAM system operating in a dynamic indoor environment, its position estimation
accuracy and visual odometer stability could be reduced because the system can be easily affected
by moving obstacles. In this paper, a visual SLAM algorithm based on the Yolov4-Tiny network
is proposed. Meanwhile, a dynamic feature point elimination strategy based on the traditional
ORBSLAM is proposed. Besides this, to obtain semantic information, object detection is carried out
when the feature points of the image are extracted. In addition, the epipolar geometry algorithm and
the LK optical flow method are employed to detect dynamic objects. The dynamic feature points are
removed in the tracking thread, and only the static feature points are used to estimate the position of
the camera. The proposed method is evaluated on the TUM dataset. The experimental results show
that, compared with ORB-SLAM2, our algorithm improves the camera position estimation accuracy
by 93.35% in a highly dynamic environment. Additionally, the average time needed by our algorithm
to process an image frame in the tracking thread is 21.49 ms, achieving real-time performance.

Keywords: visual SLAM; LK optical flow; object detection; epipolar geometric constraints; Yolov4-Tiny

1. Introduction

Traditional visual simultaneous localization and mapping (SLAM) systems can achieve
good results in static and rigid scenes with no obvious changes. However, in dynamic
scenes, neither the feature-based SLAM algorithm nor the SLAM algorithm based on the
direct method can distinguish the feature types of moving object areas. The matching point
pairs of dynamic feature points in these scenes will produce data error associations, which
will directly reduce the pose estimation accuracy of the visual odometer and lose the pose
tracking of the camera. This greatly limits the application of many excellent visual SLAM
algorithms. To solve the above problems, the research on visual SLAM in dynamic scenes
has attracted much attention, and it has become a research hotspot [1].

At present, there are mainly two methods to detect dynamic obstacles in a scene;
one includes traditional geometry-based methods, such as the background subtraction
method, the inter-frame difference method, the optical flow method, etc. The geometry
method seeks to operate the pixels in the image, which has high accuracy for moving object
detection, but it also leads to the problems of high computational consumption and low
real-time performance. With the development of computer vision and deep learning, many
researchers have begun to apply the semantic information extracted from images to the
visual SLAM system, such as by establishing semantic maps, and removing the objects that
can move in the environment. Detecting and removing dynamic objects in the process of
SLAM through the deep learning method can greatly improve the performance of SLAM
systems. There are still two main problems in these methods; one is that powerful semantic
segmentation networks such as Mask-RCNN are highly computationally expensive and
not applicable to real-time and small-scale robotic applications. The other is that the deep

Micromachines 2022, 13, 230. https://doi.org/10.3390/mi13020230 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13020230
https://doi.org/10.3390/mi13020230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi13020230
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13020230?type=check_update&version=1

Micromachines 2022, 13, 230 2 of 15

neural network can only get dynamic objects that are known, and they cannot detect objects
that without prior knowledge [2,3].

Aiming at the problems of the low accuracy and poor real-time performance of the ex-
isting visual SLAM systems in a dynamic environment, this paper combines the lightweight
network Yolov4-Tiny with the ORB-SLAM2 algorithm. Meanwhile, the Epipolar geometry
constraint and the LK optical flow method are also introduced to filter the possible residual
dynamic feature points from the image. Besides this, only static feature points are used for
feature matching to solve the pose of the camera so that the influence of dynamic objects on
the SLAM system can be eliminated. Experimental verification on the open TUM dataset
has shown good results.

2. Related Work
2.1. Dynamic SLAM Based on Geometric Method

Sun et al. [4] used the method of determining the difference between adjacent frames
to detect moving targets, but this method has poor real-time performance. Wang et al. [5]
proposed an indoor moving target detection scheme. Firstly, the matched outer points
in adjacent frames are filtered through epipolar geometry, and then the clustering infor-
mation of the depth map provided by the rgb-d camera is fused to identify independent
moving targets in the scene. However, the accuracy of the algorithm depends on the pose
transformation matrix between adjacent frames. In highly dynamic scenes, the error of
the algorithm is large. Lin et al. [6] proposed a method to detect moving objects in a scene
using depth information and visual ranging. By fusing the detected outer point information
with the depth information of the visual sensor, the position of the moving target in the
scene can be easily obtained. However, due to the uncertainty of depth information and
the calculation error of the transformation matrix between adjacent frames, the accuracy of
target detection and segmentation is low.

The above methods are based on the same principle: the moving object part in the
image is regarded as an outlier, which is excluded in the process of estimating attitude,
meaning this only depends on the static part of the scene. As a result, the accuracy of
current estimation methods depends on the proportion of static feature points in the scene.
If there are too many dense dynamic objects in the scene, the reliability of pose estimation
will be seriously affected, and the accuracy of map construction will be affected.

2.2. SLAM Based on Deep Learning or Semantic Information

In recent years, with the development of deep learning, deep learning technology
is being combined with SLAM algorithms to deal with dynamic obstacles in an indoor
dynamic environment. Chao Yu et al. [7] proposed DS-SLAM based on the ORB-SLAM2
framework, which uses the SegNet network to obtain semantic information in the scene
with independent threads. Then, the inter-frame transformation matrix is estimated through
the RANSAC algorithm, and the pole line geometry is adopted to judge feature point states.
When the number of dynamic feature points on an object is greater than the threshold, the
object is considered dynamic, and all feature points are filtered. This algorithm performs
well on the TUM dataset. However, since the basic matrix used in the polar constraint is
calculated based on all feature points, the estimated basic matrix will suffer from serious
deviations when there are too many abnormal feature points in the image. Similarly,
Berta Bescos et al. [8] proposed a DynaSLAM algorithm based on ORB-SLAM2, which
filters out dynamic feature points in scenarios by combining geometry and deep learning.
The algorithm achieves excellent results on the TUM dataset, but mask-RCNN cannot be
used in real time, which affects the application of this algorithm in a real environment.
DDL-SLAM [9] detects dynamic objects with semantic masks obtained by DUNet and
multi-view geometry, and then reconstructs the background that is obscured by dynamic
objects with the strategy of image inpainting. Given that the computation of the masks
of dynamic objects is a process taking place at the pixel level, this method also cannot
achieve real-time performance. Y. Fan et al. [10] proposed a semantic SLAM system by

Micromachines 2022, 13, 230 3 of 15

using BlitzNet to obtain the masks and bounding boxes of dynamic objects in images. The
images can be quickly divided into environment regions and dynamic regions, and the
depth-stable matching points in the environment are used to construct epipolar constraints
to locate the static matching points in the dynamic regions. However, the method still
has two problems; one is the real-time problem, and the other is that the method cannot
solve unknown objects. Han and Xi [11] proposed a PSPnet-SLAM (Pyramid Scene Parsing
Network–SLAM) to improve ORB-SLAM2, in which the PSPNet and optical flow are used
to detect dynamic characteristics. The features extracted from labeled dynamic objects and
the features with large optical flow values are filtered out, and the rest are used for tracking.
This method achieves high positioning accuracy. Zhang et al. [12] used Yolo running in
an independent thread to acquire semantic information, assuming that features extracted
from moving objects would be unstable and need to be filtered out. Li et al. [13] also used
Yolo to detect dynamic features, and they proposed a novel sliding window compensation
algorithm to reduce the detection errors of Yolo, thus providing a new means of detecting
dynamic objects.

3. System Overview
3.1. Algorithm Framework

In a dynamic environment, the ORB-SLAM2 algorithm is affected by moving objects,
which results in reduced positioning accuracy and poor robustness. To address this issue,
this paper introduces an object detection thread to detect moving objects based on the
original ORB-SLAM2 algorithm. Meanwhile, the lightweight object detection network
Yolov4-Tiny is used to detect objects in the input image while extracting feature points at
the front end. After the semantic information in the image is obtained, the dynamic objects
in the image are determined. According to the object detection results, a module that can
remove the dynamic feature points is added to the tracking thread.

Because some potential dynamic objects in the environment and some blurred moving
objects in the image may not be detected by the object detection network, the quasi-static
feature points derived after the first filtering will be used to match the feature points. Then,
according to the feature point matching results, the essential matrix between two images
can be obtained by the RANSAC algorithm. Next, the epipolar geometric constraints
and LK optical flow method can be adopted in series to detect and remove the potential
dynamic feature points. Finally, only the remaining static feature points are used to estimate
the pose between adjacent frames. The flow chart of the improved algorithm discussed in
this paper is shown in Figure 1.

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 15

DUNet and multi-view geometry, and then reconstructs the background that is obscured
by dynamic objects with the strategy of image inpainting. Given that the computation of
the masks of dynamic objects is a process taking place at the pixel level, this method also
cannot achieve real-time performance. Y. Fan et al. [10] proposed a semantic SLAM sys-
tem by using BlitzNet to obtain the masks and bounding boxes of dynamic objects in im-
ages. The images can be quickly divided into environment regions and dynamic regions,
and the depth-stable matching points in the environment are used to construct epipolar
constraints to locate the static matching points in the dynamic regions. However, the
method still has two problems; one is the real-time problem, and the other is that the
method cannot solve unknown objects. Han and Xi [11] proposed a PSPnet-SLAM (Pyra-
mid Scene Parsing Network–SLAM) to improve ORB-SLAM2, in which the PSPNet and
optical flow are used to detect dynamic characteristics. The features extracted from la-
beled dynamic objects and the features with large optical flow values are filtered out, and
the rest are used for tracking. This method achieves high positioning accuracy. Zhang et
al. [12] used Yolo running in an independent thread to acquire semantic information, as-
suming that features extracted from moving objects would be unstable and need to be
filtered out. Li et al. [13] also used Yolo to detect dynamic features, and they proposed a
novel sliding window compensation algorithm to reduce the detection errors of Yolo, thus
providing a new means of detecting dynamic objects.

3. System Overview
3.1. Algorithm Framework

In a dynamic environment, the ORB-SLAM2 algorithm is affected by moving objects,
which results in reduced positioning accuracy and poor robustness. To address this issue,
this paper introduces an object detection thread to detect moving objects based on the
original ORB-SLAM2 algorithm. Meanwhile, the lightweight object detection network
Yolov4-Tiny is used to detect objects in the input image while extracting feature points at
the front end. After the semantic information in the image is obtained, the dynamic objects
in the image are determined. According to the object detection results, a module that can
remove the dynamic feature points is added to the tracking thread.

Because some potential dynamic objects in the environment and some blurred mov-
ing objects in the image may not be detected by the object detection network, the quasi-
static feature points derived after the first filtering will be used to match the feature points.
Then, according to the feature point matching results, the essential matrix between two
images can be obtained by the RANSAC algorithm. Next, the epipolar geometric con-
straints and LK optical flow method can be adopted in series to detect and remove the
potential dynamic feature points. Finally, only the remaining static feature points are used
to estimate the pose between adjacent frames. The flow chart of the improved algorithm
discussed in this paper is shown in Figure 1.

Figure 1. The flow chart of the improved tracking algorithm in this paper.

Figure 1. The flow chart of the improved tracking algorithm in this paper.

3.2. Yolov4-Tiny

The YOLOv4-tiny structure is a simplified version of YOLOv4, which is a lightweight
model. There are only 6 million parameters, which is equivalent to one-tenth of the original,
which greatly improves the detection speed. The overall network structure has a total

Micromachines 2022, 13, 230 4 of 15

of 38 layers, using three residual units. The activation function uses LeakyReLU, the
classification and regression of the target are modified to use two feature layers, and the
feature pyramid (FPN) network is used when merging the effective feature layers. It also
uses the CSPnet structure, and performs channel segmentation on the feature extraction
network. The feature layer channel output after 3 × 3 convolutions is divided into two
parts, and the second part is used. On the COCO dataset, 40.2% AP50 and 371FPS were
obtained, indicating a significant performance advantage over other versions of lightweight
models. Yolov4-Tiny object detection network is used for object detection experiment, and
the results are shown in Figure 2. The structural diagram of this model is shown in Figure 3
below [14,15].

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 15

3.2. Yolov4-Tiny

The YOLOv4-tiny structure is a simplified version of YOLOv4, which is a lightweight
model. There are only 6 million parameters, which is equivalent to one-tenth of the origi-
nal, which greatly improves the detection speed. The overall network structure has a total
of 38 layers, using three residual units. The activation function uses LeakyReLU, the clas-
sification and regression of the target are modified to use two feature layers, and the fea-
ture pyramid (FPN) network is used when merging the effective feature layers. It also uses
the CSPnet structure, and performs channel segmentation on the feature extraction net-
work. The feature layer channel output after 3 × 3 convolutions is divided into two parts,
and the second part is used. On the COCO dataset, 40.2% AP50 and 371FPS were obtained,
indicating a significant performance advantage over other versions of lightweight models.
Yolov4-Tiny object detection network is used for object detection experiment, and the re-
sults are shown in Figure 2. The structural diagram of this model is shown in Figure 3
below [14,15].

(a) (b)

Figure 2. Object detection results of Yolov4-Tiny. (a) Results 1; (b) Results 2.

Figure 3. Yolov4-Tiny network structure.

3.3. Backbone Network Structure of Yolov4-Tiny
As shown in Figure 3, the backbone network of Yolov4-Tiny, i.e., CSPDarknet53-

Tiny, is composed of the Resblock_body module and the DarknetConv2d_BN_Leaky
module. DarknetConv2d_BN_Leaky mainly contains of a two-dimensional convolution

Figure 2. Object detection results of Yolov4-Tiny. (a) Results 1; (b) Results 2.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 15

3.2. Yolov4-Tiny

The YOLOv4-tiny structure is a simplified version of YOLOv4, which is a lightweight
model. There are only 6 million parameters, which is equivalent to one-tenth of the origi-
nal, which greatly improves the detection speed. The overall network structure has a total
of 38 layers, using three residual units. The activation function uses LeakyReLU, the clas-
sification and regression of the target are modified to use two feature layers, and the fea-
ture pyramid (FPN) network is used when merging the effective feature layers. It also uses
the CSPnet structure, and performs channel segmentation on the feature extraction net-
work. The feature layer channel output after 3 × 3 convolutions is divided into two parts,
and the second part is used. On the COCO dataset, 40.2% AP50 and 371FPS were obtained,
indicating a significant performance advantage over other versions of lightweight models.
Yolov4-Tiny object detection network is used for object detection experiment, and the re-
sults are shown in Figure 2. The structural diagram of this model is shown in Figure 3
below [14,15].

(a) (b)

Figure 2. Object detection results of Yolov4-Tiny. (a) Results 1; (b) Results 2.

Figure 3. Yolov4-Tiny network structure.

3.3. Backbone Network Structure of Yolov4-Tiny
As shown in Figure 3, the backbone network of Yolov4-Tiny, i.e., CSPDarknet53-

Tiny, is composed of the Resblock_body module and the DarknetConv2d_BN_Leaky
module. DarknetConv2d_BN_Leaky mainly contains of a two-dimensional convolution

Figure 3. Yolov4-Tiny network structure.

3.3. Backbone Network Structure of Yolov4-Tiny

As shown in Figure 3, the backbone network of Yolov4-Tiny, i.e., CSPDarknet53-Tiny,
is composed of the Resblock_body module and the DarknetConv2d_BN_Leaky module.
DarknetConv2d_BN_Leaky mainly contains of a two-dimensional convolution module,
and the standardization and activation function Leaky ReLU. The CSPNet structure is
introduced into the Resblock_body module as shown in Figure 4. The trunk part of the

Micromachines 2022, 13, 230 5 of 15

module is still the conventional stacking of residual modules, but a long-span residual edge
is introduced in the branch part. The residual edge is first processed by a small amount
of convolution, and then directly connected to the module. Next, it is concatenated with
the output of the trunk part in the channel dimension. Finally, the output of the module is
processed by the 2 × 2 maximum pooling layer.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 15

module, and the standardization and activation function Leaky ReLU. The CSPNet struc-
ture is introduced into the Resblock_body module as shown in Figure 4. The trunk part of
the module is still the conventional stacking of residual modules, but a long-span residual
edge is introduced in the branch part. The residual edge is first processed by a small
amount of convolution, and then directly connected to the module. Next, it is concate-
nated with the output of the trunk part in the channel dimension. Finally, the output of
the module is processed by the 2 × 2 maximum pooling layer.

The CSPNet structure can reduce the number of network parameters by 10~30%, and
thus ensure that the accuracy of the model is unchanged or slightly improved. In Figure
4, feat1 and feat2 are the outputs of the initial feature layer in the Resblock_body module.
For the first two Resblock_body modules in the backbone feature network, the initial fea-
ture layer, feat1, will be discarded directly, while feat2 will be used as the input feature of
the latter Resblock_body. For the third Resblock_body, it outputs features feat1 and feat2.
Feat1 is used as the first input of the feature enhancement network, and feat2 will be
passed through the DarknetConv2d_ BN_Leaky module and processed as the second in-
put for the feature enhancement network.

Figure 4. The structure of Resblock_body.

3.4. Dynamic Feature Point Elimination Strategy
3.4.1. Dynamic Feature Point Elimination Based on Object Detection

In the dynamic object prediction box generated based on object detection, the dy-
namic feature points are determined by prior knowledge, and the specific elimination pro-
cess is described as follows [9–11]:

Denote all feature points of the image extracted by the visual odometer as kP when

the k-th frame image is input. kP can be expressed as { }1 2 3, , ,...k nP p p p p= . After the
image passes through the object detection network, all dynamic feature points can be de-
termined with prior knowledge as kD . According to the semantic information prediction

box, kD can be expressed as }{ 1 2 3, , ,...k nD d d d d= . The above description indicates

that if ()1,2,3,...i kp D i n∈ = , then the feature point ip is considered as a dynamic

feature point, and it is then removed from kP in the tracking thread. The remaining fea-

ture points are quasi-static feature points, and the set of these points is denoted as kS .

We have k k kS D P∪ = .

3.4.2. Epipolar Geometry Constraints

After the first step of object detection, the set of quasi-static feature points kS can be
obtained, and then the current frame and the reference frame are used for feature match-
ing to obtain the set of matching point pairs Q . The basic matrix F can be calculated
by the RANSAC algorithm using set Q . The specific calculation process is as follows:

As shown in Figure 5, firstly, denote the pair of matching points in the current frame
and the reference frame as 1p and 2p , respectively. 1P and 2P are the corresponding
homogeneous coordinate forms:

Figure 4. The structure of Resblock_body.

The CSPNet structure can reduce the number of network parameters by 10~30%, and
thus ensure that the accuracy of the model is unchanged or slightly improved. In Figure 4,
feat1 and feat2 are the outputs of the initial feature layer in the Resblock_body module. For
the first two Resblock_body modules in the backbone feature network, the initial feature
layer, feat1, will be discarded directly, while feat2 will be used as the input feature of the
latter Resblock_body. For the third Resblock_body, it outputs features feat1 and feat2. Feat1
is used as the first input of the feature enhancement network, and feat2 will be passed
through the DarknetConv2d_ BN_Leaky module and processed as the second input for the
feature enhancement network.

3.4. Dynamic Feature Point Elimination Strategy
3.4.1. Dynamic Feature Point Elimination Based on Object Detection

In the dynamic object prediction box generated based on object detection, the dynamic
feature points are determined by prior knowledge, and the specific elimination process is
described as follows [9–11]:

Denote all feature points of the image extracted by the visual odometer as Pk when
the k-th frame image is input. Pk can be expressed as Pk = { p1, p2, p3, . . . pn} After the
image passes through the object detection network, all dynamic feature points can be
determined with prior knowledge as Dk. According to the semantic information prediction
box, Dk can be expressed as Dk = {d1, d2, d3, . . . dn} . The above description indicates that
if pi ∈ Dk(i = 1, 2, 3, . . . n), then the feature point pi is considered as a dynamic feature
point, and it is then removed from Pk in the tracking thread. The remaining feature points
are quasi-static feature points, and the set of these points is denoted as Sk. We have
Sk ∪ Dk = Pk.

3.4.2. Epipolar Geometry Constraints

After the first step of object detection, the set of quasi-static feature points Sk can be
obtained, and then the current frame and the reference frame are used for feature matching
to obtain the set of matching point pairs Q. The basic matrix F can be calculated by the
RANSAC algorithm using set Q. The specific calculation process is as follows:

As shown in Figure 5, firstly, denote the pair of matching points in the current frame
and the reference frame as p1 and p2, respectively. P1 and P2 are the corresponding
homogeneous coordinate forms:

p1 = [u1, v1], p2 = [u2, v2]
P1 = [u1, v1, 1], P2 = [u2, v2, 1]

(1)

Micromachines 2022, 13, 230 6 of 15

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 15

[] []
[] []

1 1 1 2 2 2

1 1 1 2 2 2

, , ,

, ,1 , , ,1

p u v p u v

P u v P u v

= =

= =
 (1)

u and v respectively represent the coordinate values of the feature points in the
image pixel coordinate system. Then, denote the pole line of each frame as iI . The calcu-

lation formula of iI is shown as follows.

()1,2
1

i

i i i

uX
I Y FP F v i

Z

 = = = =

(2)

where X , Y and Z are line vectors, and F is the essential matrix. Then, the dis-
tance D between the matching point pair and the corresponding polar line can be cal-
culated by the following formula:

2 1

2 2

TP FP
D

X Y
=

+
 (3)

According to Formula (3), the distance d from each quasi-static feature point to the
polar line can be obtained. Then, D is compared with the preset threshold ε . IfD ε> ,
this point is considered to be an external point and should be filtered out in the tracking
stage [16–21].

When the motion direction of the moving object is parallel to the camera, the polar
geometric constraints can also be satisfied. In this case, the antipolar geometric constraints
are not applicable. Here, the LK optical flow method is adopted to further detect the dy-
namic objects in the environment and filter the dynamic feature points for the third time
[22–24].

Figure 5. Epipolar geometry constraints.

3.4.3 LK Optical Flow Constraint
The LK optical flow method is based on three assumptions: (1) the pixel brightness

in the image does not change between successive frames; (2) the time interval between
frames is relatively short; (3) adjacent pixels have similar motions [25–27]. According to
assumption 1, the gray level is constant, and it can be obtained via:

(), , (, ,)I x y t I x dx y dy t dt= + + + (4)

Figure 5. Epipolar geometry constraints.

u and v respectively represent the coordinate values of the feature points in the image
pixel coordinate system. Then, denote the pole line of each frame as Ii. The calculation
formula of Ii is shown as follows.

Ii =

 X
Y
Z

 = FPi = F

 ui
vi
1

(i = 1, 2) (2)

where X, Y and Z are line vectors, and F is the essential matrix. Then, the distance D
between the matching point pair and the corresponding polar line can be calculated by the
following formula:

D =

∣∣P2
T FP1

∣∣√
‖X‖2 + ‖Y‖2

(3)

According to Formula (3), the distance d from each quasi-static feature point to the
polar line can be obtained. Then, D is compared with the preset threshold ε. If D > ε,
this point is considered to be an external point and should be filtered out in the tracking
stage [16–21].

When the motion direction of the moving object is parallel to the camera, the polar
geometric constraints can also be satisfied. In this case, the antipolar geometric constraints
are not applicable. Here, the LK optical flow method is adopted to further detect the
dynamic objects in the environment and filter the dynamic feature points for the third
time [22–24].

3.4.3. LK Optical Flow Constraint

The LK optical flow method is based on three assumptions: (1) the pixel brightness
in the image does not change between successive frames; (2) the time interval between
frames is relatively short; (3) adjacent pixels have similar motions [25–27]. According to
assumption 1, the gray level is constant, and it can be obtained via:

I(x, y, t) = I(x + dx, y + dy, t + dt) (4)

where t and t + dt are the corresponding times of adjacent image frames. I(x, y, t) and
I(x + dx, y + dy, t + dt) are the positions of the pixel points in the image.

According to assumption 2, due to the small time interval between adjacent image
frames, Taylor series expansion on the right side of (4) can be enacted to obtain:

I(x + dx, y + dy, t + dt) ≈ I(x, y, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt (5)

Micromachines 2022, 13, 230 7 of 15

By combining (4) and (5), we have

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt = 0 (6)

Then, dividing both sides of (6) by dt we have

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

= −∂I
∂t

(7)

dx
dt and dy

dt are respectively the velocity of the feature point on the x-axis and on the
y-axis, and they are denoted as u and v. Denote ∂I

∂x as Ix, ∂I
∂y as Iy, and the change in the

gray level of the feature point with time as It, and the following result can be obtained by
writing (7) in matrix form: [

Ix Iy
][u

v

]
= −It (8)

However, additional constraints need to be introduced in the LK optical flow to
calculate the velocity u and v of the feature points. According to assumption 3, i.e., adjacent
pixels have similar motions, a 3 × 3 window centered on the feature point is selected, and
nine pixels within the window have the same motion. The equation in (9) can be performed
for nine pixels simultaneously:

[
Ix Iy

]
k

[
u
v

]
= −Itk(k = 1, 2, 3, ...9) (9)

Denoting

Ix1 Iy1
Ix2 Iy2

...
...

Ix9 Iy9

 as A,
[

u
v

]
as V, and

−It1
−It2

...
−It9

 as b, the least square method is

adopted to solve (9), and the results are as follows:

AT AV = ATb (10)

V =
(

AT A
)−1

ATb (11)

The size of the optical flow is calculated for the quasi-static feature points after object
detection under polar geometry constraints. Then, by solving its mean value and standard
deviation, (12) and (13) can be used to determine whether the feature point is a dynamic
feature point. ∣∣Li − Lavg

∣∣ > 2Lstd (12)∣∣Li − Lavg
∣∣ > Lthr1(Lstd < Lthr2) (13)

where Li is the optical flow size of the i-th feature point; Lavg and Lstd are, respectively, the
mean and standard deviation of the optical flow size of all feature points; Lthr1 and Lthr2
are preset thresholds. If the optical flow size Li of the i-th feature point meets the above
relationship, the special diagnosis point i is determined to be a dynamic feature point. As
we can see in Figure 6, we can find the difference in optical flow size between the dynamic
feature points and static feature points; the green line is the high optical flow, and the green
point is the normal optical flow.

Micromachines 2022, 13, 230 8 of 15

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 15

2i avg stdL L L− > (12)

()1 2i avg thr std thrL L L L L− > < (13)

where iL is the optical flow size of the i-th feature point; avgL and stdL are, respec-

tively, the mean and standard deviation of the optical flow size of all feature points; 1thrL
and 2thrL are preset thresholds. If the optical flow size iL of the i-th feature point meets
the above relationship, the special diagnosis point i is determined to be a dynamic feature
point. As we can see in Figure 6, we can find the difference in optical flow size between
the dynamic feature points and static feature points; the green line is the high optical flow,
and the green point is the normal optical flow.

(a) (b)

Figure 6. The results of using the optical flow method to detect dynamic feature points. (a) Result 1;
(b) Result 2.

Because Yolov4-Tiny is a lightweight network, part of the detection accuracy is sac-
rificed to improve the running speed of the algorithm. To make up for the loss of detection
accuracy, this paper introduces pole-constrained geometry and the optical flow method,
which are introduced to further detect the dynamic objects in the environment and filter
out dynamic feature points thoroughly. Figures 7 and 8 below illustrates the filtering of
dynamic objects from the freiburg3_Walking_xyz highly dynamic scene sequence in the
TUM dataset. One of the men in the picture is walking randomly [28–30]. Figure 7 is the
result of traditional orb-slam2 without dynamic feature point filtering, and Figure 8 is the
result of dynamic feature point filtering.

Figure 6. The results of using the optical flow method to detect dynamic feature points. (a) Result 1;
(b) Result 2.

Because Yolov4-Tiny is a lightweight network, part of the detection accuracy is sacri-
ficed to improve the running speed of the algorithm. To make up for the loss of detection
accuracy, this paper introduces pole-constrained geometry and the optical flow method,
which are introduced to further detect the dynamic objects in the environment and filter
out dynamic feature points thoroughly. Figures 7 and 8 below illustrates the filtering of
dynamic objects from the freiburg3_Walking_xyz highly dynamic scene sequence in the
TUM dataset. One of the men in the picture is walking randomly [28–30]. Figure 7 is the
result of traditional orb-slam2 without dynamic feature point filtering, and Figure 8 is the
result of dynamic feature point filtering.

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 15

Figure 7. Dynamic feature points were not eliminated.

Figure 8. Results of dynamic feature points’ removal.

4. Results
4.1. Experimental Data Sets

In the experiment, the mainstream public dataset TUM RGB-D was used to evaluate
the performance of the SLAM algorithm proposed in this paper. This dataset is a standard
RGB-D dataset provided by the Computer Vision Class group of Technical University of
Munich, Germany, and it has been used by many scholars in the SLAM research field to
evaluate the performance of SLAM algorithms [30–34]. The data in the dataset are mainly
divided into the low dynamic scene dataset fr3_sitting_xx and the high dynamic scene
dataset fr3_walking_xx. The real trajectory of the dataset was captured by a high-precision
motion capture system. The capture system was composed of eight high-speed cameras
and an inertial measurement system, which captured the real position and pose data from
the camera in real time.

The experimental equipment used in this experiment was a Lenovo Savior R7000
laptop; its CPU model is R7-4800H, its main frequency is 2.9 GHz, its graphics card is an
NVDIA Geforce RTX2060, and its system environment is Ubuntu18.04.

4.2. Analysis of the Experimental Results
In this paper, six datasets from the TUM dataset are used for experimental verifica-

tion, including fr3_walking_xyz, fr3_walking_half, fr3_walking_static, fr3_walking_rpy,
fr3_sitting_static and fr3_sitting_half. The datasets of walking_xx belong to a highly dy-
namic environment, and the datasets of sitting_xx belong to a low dynamic environment.
The Evo tool is used to compare the camera pose estimated by the proposed algorithm

Figure 7. Dynamic feature points were not eliminated.

Micromachines 2022, 13, 230 9 of 15

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 15

Figure 7. Dynamic feature points were not eliminated.

Figure 8. Results of dynamic feature points’ removal.

4. Results
4.1. Experimental Data Sets

In the experiment, the mainstream public dataset TUM RGB-D was used to evaluate
the performance of the SLAM algorithm proposed in this paper. This dataset is a standard
RGB-D dataset provided by the Computer Vision Class group of Technical University of
Munich, Germany, and it has been used by many scholars in the SLAM research field to
evaluate the performance of SLAM algorithms [30–34]. The data in the dataset are mainly
divided into the low dynamic scene dataset fr3_sitting_xx and the high dynamic scene
dataset fr3_walking_xx. The real trajectory of the dataset was captured by a high-precision
motion capture system. The capture system was composed of eight high-speed cameras
and an inertial measurement system, which captured the real position and pose data from
the camera in real time.

The experimental equipment used in this experiment was a Lenovo Savior R7000
laptop; its CPU model is R7-4800H, its main frequency is 2.9 GHz, its graphics card is an
NVDIA Geforce RTX2060, and its system environment is Ubuntu18.04.

4.2. Analysis of the Experimental Results
In this paper, six datasets from the TUM dataset are used for experimental verifica-

tion, including fr3_walking_xyz, fr3_walking_half, fr3_walking_static, fr3_walking_rpy,
fr3_sitting_static and fr3_sitting_half. The datasets of walking_xx belong to a highly dy-
namic environment, and the datasets of sitting_xx belong to a low dynamic environment.
The Evo tool is used to compare the camera pose estimated by the proposed algorithm

Figure 8. Results of dynamic feature points’ removal.

4. Results
4.1. Experimental Data Sets

In the experiment, the mainstream public dataset TUM RGB-D was used to evaluate
the performance of the SLAM algorithm proposed in this paper. This dataset is a standard
RGB-D dataset provided by the Computer Vision Class group of Technical University of
Munich, Germany, and it has been used by many scholars in the SLAM research field to
evaluate the performance of SLAM algorithms [30–34]. The data in the dataset are mainly
divided into the low dynamic scene dataset fr3_sitting_xx and the high dynamic scene
dataset fr3_walking_xx. The real trajectory of the dataset was captured by a high-precision
motion capture system. The capture system was composed of eight high-speed cameras
and an inertial measurement system, which captured the real position and pose data from
the camera in real time.

The experimental equipment used in this experiment was a Lenovo Savior R7000
laptop; its CPU model is R7-4800H, its main frequency is 2.9 GHz, its graphics card is an
NVDIA Geforce RTX2060, and its system environment is Ubuntu18.04.

4.2. Analysis of the Experimental Results

In this paper, six datasets from the TUM dataset are used for experimental verifica-
tion, including fr3_walking_xyz, fr3_walking_half, fr3_walking_static, fr3_walking_rpy,
fr3_sitting_static and fr3_sitting_half. The datasets of walking_xx belong to a highly dy-
namic environment, and the datasets of sitting_xx belong to a low dynamic environment.
The Evo tool is used to compare the camera pose estimated by the proposed algorithm with
the real camera pose data provided in the dataset. The evaluation indicator is Absolute
Pose Error (APE). The APE refers to the direct difference between the pose of the camera
estimated by the algorithm and the real pose data. It directly reflects the accuracy of pose
estimation and the consistency of the global trajectory of the camera. Meanwhile, Root
Mean Square Error (RMSE) and Standard Deviation (STD) are used for evaluation. RMSE
reflects the difference between the real value and the observed value. STD is used to
evaluate the deviation between the camera’s estimated trajectory and the real trajectory,
which can reflect the robustness and stability of the system. The mean and median can
reflect the accuracy of pose estimation. For performance comparison, our algorithm is
compared with the use of ORB-SLAM2 for the same dataset, and the experimental results
are as follows.

Micromachines 2022, 13, 230 10 of 15

In the table below, each group of experiments is carried out four times, and the results
are averaged. The relative improvement rate η is calculated by the following formula:

η =
orbslam2− ours

orbslam2
× 100% (14)

Figures 9 and 10, respectively, show the trajectory distribution obtained by the algo-
rithm proposed in this paper and by ORB-SLAM2 applied on walking_xyz and Walking_rpy
from the TUM dataset. Compared with ORB-SLAM2, the trajectory of the camera estimated
by our algorithm is closer to the real trajectory of the camera.

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 15

with the real camera pose data provided in the dataset. The evaluation indicator is Abso-
lute Pose Error (APE). The APE refers to the direct difference between the pose of the
camera estimated by the algorithm and the real pose data. It directly reflects the accuracy
of pose estimation and the consistency of the global trajectory of the camera. Meanwhile,
Root Mean Square Error (RMSE) and Standard Deviation (STD) are used for evaluation.
RMSE reflects the difference between the real value and the observed value. STD is used
to evaluate the deviation between the camera’s estimated trajectory and the real trajectory,
which can reflect the robustness and stability of the system. The mean and median can
reflect the accuracy of pose estimation. For performance comparison, our algorithm is
compared with the use of ORB-SLAM2 for the same dataset, and the experimental results
are as follows.

In the table below, each group of experiments is carried out four times, and the results
are averaged. The relative improvement rate η is calculated by the following formula:

2 100%
2

orbslam ours
orbslam

η −= × (14)

Figures 9 and 10, respectively, show the trajectory distribution obtained by the algo-
rithm proposed in this paper and by ORB-SLAM2 applied on walking_xyz and Walk-
ing_rpy from the TUM dataset. Compared with ORB-SLAM2, the trajectory of the camera
estimated by our algorithm is closer to the real trajectory of the camera.

Figure 9. The comparison of our algorithm’s trajectory with ORB-SLAM2’s when applied on walk-
ing_xyz from the TUM dataset.

Figure 10. The comparison of our algorithm’s trajectory with ORB-SLAM2’s when applied on walk-
ing_rpy from the TUM dataset.

Figures 11 and 12 show the error distribution of the results obtained by our algorithm
and ORB-SLAM2 when applied on walking_xyz. Figures 13 and 14 show the error distri-

Figure 9. The comparison of our algorithm’s trajectory with ORB-SLAM2’s when applied on walk-
ing_xyz from the TUM dataset.

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 15

with the real camera pose data provided in the dataset. The evaluation indicator is Abso-
lute Pose Error (APE). The APE refers to the direct difference between the pose of the
camera estimated by the algorithm and the real pose data. It directly reflects the accuracy
of pose estimation and the consistency of the global trajectory of the camera. Meanwhile,
Root Mean Square Error (RMSE) and Standard Deviation (STD) are used for evaluation.
RMSE reflects the difference between the real value and the observed value. STD is used
to evaluate the deviation between the camera’s estimated trajectory and the real trajectory,
which can reflect the robustness and stability of the system. The mean and median can
reflect the accuracy of pose estimation. For performance comparison, our algorithm is
compared with the use of ORB-SLAM2 for the same dataset, and the experimental results
are as follows.

In the table below, each group of experiments is carried out four times, and the results
are averaged. The relative improvement rate η is calculated by the following formula:

2 100%
2

orbslam ours
orbslam

η −= × (14)

Figures 9 and 10, respectively, show the trajectory distribution obtained by the algo-
rithm proposed in this paper and by ORB-SLAM2 applied on walking_xyz and Walk-
ing_rpy from the TUM dataset. Compared with ORB-SLAM2, the trajectory of the camera
estimated by our algorithm is closer to the real trajectory of the camera.

Figure 9. The comparison of our algorithm’s trajectory with ORB-SLAM2’s when applied on walk-
ing_xyz from the TUM dataset.

Figure 10. The comparison of our algorithm’s trajectory with ORB-SLAM2’s when applied on walk-
ing_rpy from the TUM dataset.

Figures 11 and 12 show the error distribution of the results obtained by our algorithm
and ORB-SLAM2 when applied on walking_xyz. Figures 13 and 14 show the error distri-

Figure 10. The comparison of our algorithm’s trajectory with ORB-SLAM2’s when applied on
walking_rpy from the TUM dataset.

Figures 11 and 12 show the error distribution of the results obtained by our algo-
rithm and ORB-SLAM2 when applied on walking_xyz. Figures 13 and 14 show the error
distribution of the results obtained by our algorithm and ORB-SLAM2 for walking_rpy.

Micromachines 2022, 13, 230 11 of 15

Compared with the ORB-SLAM2 algorithm, our algorithm reduces the error values by an
order of magnitude.

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 15

bution of the results obtained by our algorithm and ORB-SLAM2 for walking_rpy. Com-
pared with the ORB-SLAM2 algorithm, our algorithm reduces the error values by an order
of magnitude.

Figure 11. Error distribution graph of our algorithm for the walking_xyz dataset.

Figure 12. Error distribution graph of ORB-SLAM2 for the walking_xyz dataset.

Figure 13. Error distribution graph of our algorithm for the walking_rpy dataset.

Figure 11. Error distribution graph of our algorithm for the walking_xyz dataset.

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 15

bution of the results obtained by our algorithm and ORB-SLAM2 for walking_rpy. Com-
pared with the ORB-SLAM2 algorithm, our algorithm reduces the error values by an order
of magnitude.

Figure 11. Error distribution graph of our algorithm for the walking_xyz dataset.

Figure 12. Error distribution graph of ORB-SLAM2 for the walking_xyz dataset.

Figure 13. Error distribution graph of our algorithm for the walking_rpy dataset.

Figure 12. Error distribution graph of ORB-SLAM2 for the walking_xyz dataset.

Micromachines 2022, 13, 230 12 of 15

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 15

bution of the results obtained by our algorithm and ORB-SLAM2 for walking_rpy. Com-
pared with the ORB-SLAM2 algorithm, our algorithm reduces the error values by an order
of magnitude.

Figure 11. Error distribution graph of our algorithm for the walking_xyz dataset.

Figure 12. Error distribution graph of ORB-SLAM2 for the walking_xyz dataset.

Figure 13. Error distribution graph of our algorithm for the walking_rpy dataset. Figure 13. Error distribution graph of our algorithm for the walking_rpy dataset.

Micromachines 2022, 13, x FOR PEER REVIEW 12 of 15

Figure 14. Error distribution graph of ORB-SLAM2 for the walking_rpy dataset.

The results in Table 1 show that, compared with the classic ORB-SLAM2 algorithm,
the algorithm proposed in this paper achieves an average RMSE improvement of 93.35%
in a highly dynamic environment. However, in a low dynamic environment, the improve-
ment of the RMSE by our algorithm is not too high compared with that of ORB-SLAM2,
which indicates that the traditional ORB-SLAM2 algorithm can achieve a better effect
without the interference of dynamic objects. Therefore, the algorithm proposed in this pa-
per can overcome the low accuracy of pose estimation caused by the interference of mov-
ing objects in a dynamic environment.

Table 1. Comparison of absolute pose error between ORB-SLAM2 and our algorithm.

Sequences
ORB-SLAM2 Ours Improvements

Mean Median RMSE STD Mean Median RMSE STD Mean Median RMSE STD
Walking_static 0.0966 0.0877 0.1136 0.0598 0.0061 0.0050 0.0074 0.0042 93.68% 94.29% 93.48% 92.97%
Walking_xyz 0.5478 0.6111 0.6015 0.2485 0.0142 0.0130 0.0160 0.0074 97.40% 97.87% 97.33% 97.02%
Walking_rpy 0.6026 0.5556 0.7010 0.3581 0.0453 0.0368 0.0561 0.0331 92.48% 93.37% 91.99% 90.75%
Walking_half 0.4272 0.3964 0.4863 0.2290 0.0413 0.0369 0.0458 0.0197 90.33% 90.69% 90.58% 91.39%
Sitting_half 0.0167 0.0147 0.0190 0.0092 0.0251 0.0263 0.0279 0.0123 33.46% 44.10% 31.89% 25.20%

Sitting_static 0.0074 0.0064 0.0085 0.0041 0.0065 0.0058 0.0074 0.0035 12.16% 9.37% 12.94% 14.63%

To further verify the performance of the proposed algorithm, this paper also com-
pares it with the ORB-SLAM3algorithm and other algorithms based on deep learning [35].
By analyzing the data in Table 2, it can be determined that among the algorithms listed in
this paper, Dyna-SLAM, Ds-SLAM and the algorithm proposed in this paper can achieve
the highest positioning accuracy. Among them, Dyna-SLAM and Ds-SLAM use the Mask-
RCNN and Segnet semantic segmentation networks to detect dynamic objects in the en-
vironment, respectively. Since semantic segmentation is performed pixel by pixel, the de-
tection accuracy will be greater than that of the target detection model used in this paper
(Yolo), but the lightweight object detection network Yolov4-Tiny used in this paper is bet-
ter than the above two algorithms in terms of algorithm execution speed. Table 2 below
lists the time required for the three algorithms to process each frame of picture. So, our
algorithm achieves a good balance between accuracy and real-time performance, and it
can effectively deal with the effects of moving objects on the stability of SLAM systems in
a dynamic environment. The comparison results of absolute trajectory error of different
algorithms are shown in Table 3.

Figure 14. Error distribution graph of ORB-SLAM2 for the walking_rpy dataset.

The results in Table 1 show that, compared with the classic ORB-SLAM2 algorithm, the
algorithm proposed in this paper achieves an average RMSE improvement of 93.35% in a
highly dynamic environment. However, in a low dynamic environment, the improvement
of the RMSE by our algorithm is not too high compared with that of ORB-SLAM2, which
indicates that the traditional ORB-SLAM2 algorithm can achieve a better effect without
the interference of dynamic objects. Therefore, the algorithm proposed in this paper can

Micromachines 2022, 13, 230 13 of 15

overcome the low accuracy of pose estimation caused by the interference of moving objects
in a dynamic environment.

Table 1. Comparison of absolute pose error between ORB-SLAM2 and our algorithm.

Sequences
ORB-SLAM2 Ours Improvements

Mean Median RMSE STD Mean Median RMSE STD Mean Median RMSE STD

Walking_static 0.0966 0.0877 0.1136 0.0598 0.0061 0.0050 0.0074 0.0042 93.68% 94.29% 93.48% 92.97%
Walking_xyz 0.5478 0.6111 0.6015 0.2485 0.0142 0.0130 0.0160 0.0074 97.40% 97.87% 97.33% 97.02%
Walking_rpy 0.6026 0.5556 0.7010 0.3581 0.0453 0.0368 0.0561 0.0331 92.48% 93.37% 91.99% 90.75%
Walking_half 0.4272 0.3964 0.4863 0.2290 0.0413 0.0369 0.0458 0.0197 90.33% 90.69% 90.58% 91.39%
Sitting_half 0.0167 0.0147 0.0190 0.0092 0.0251 0.0263 0.0279 0.0123 33.46% 44.10% 31.89% 25.20%

Sitting_static 0.0074 0.0064 0.0085 0.0041 0.0065 0.0058 0.0074 0.0035 12.16% 9.37% 12.94% 14.63%

To further verify the performance of the proposed algorithm, this paper also compares
it with the ORB-SLAM3algorithm and other algorithms based on deep learning [35]. By
analyzing the data in Table 2, it can be determined that among the algorithms listed in
this paper, Dyna-SLAM, Ds-SLAM and the algorithm proposed in this paper can achieve
the highest positioning accuracy. Among them, Dyna-SLAM and Ds-SLAM use the Mask-
RCNN and Segnet semantic segmentation networks to detect dynamic objects in the
environment, respectively. Since semantic segmentation is performed pixel by pixel, the
detection accuracy will be greater than that of the target detection model used in this
paper (Yolo), but the lightweight object detection network Yolov4-Tiny used in this paper is
better than the above two algorithms in terms of algorithm execution speed. Table 2 below
lists the time required for the three algorithms to process each frame of picture. So, our
algorithm achieves a good balance between accuracy and real-time performance, and it
can effectively deal with the effects of moving objects on the stability of SLAM systems in
a dynamic environment. The comparison results of absolute trajectory error of different
algorithms are shown in Table 3.

Table 2. Tracking time comparison (ms).

Algorithm Time

Dyna-SLAM 900
Ds-SLAM 200

Ours 21.49

Table 3. The absolute trajectory error of different algorithms.

Sequences ORB-
SLAM3

Dyna-
SLAM Ds-SLAM DVO-

SLAM
OFD-

SLAM Ours

Walking_static 0.0203 0.0090 0.0081 – – 0.0074
Walking_xyz 0.2341 0.0150 0.0247 0.5966 0.1899 0.0160
Walking_rpy 0.1552 0.0400 0.4442 0.7304 0.1533 0.0561
Walking_half 0.4372 0.0250 0.0303 0.5287 0.1612 0.0458
Sitting_static 0.0089 0.0065 0.0064 0.0505 0.0134 0.0074
Sitting_half 0.0335 0.0191 0.0148 – 0.0257 0.0279

4.3. Discussion and Outlook

By observing the experimental data in Table 1, the improvement effect of the walk-
ing_half dataset is not as obvious as that of other datasets, and tracking failure occurs in
the experiment on the dataset walking_static. In view of these problems, by analyzing the
data in the dataset, we can see that in the dataset walking_half, many images are blurred
due to the movement of the camera, and the characters in the images cannot be recognized
by the network, which eventually leads to a decrease in the estimation accuracy, and in
the Walking_static dataset, characters occupy most of the images. When the dynamic

Micromachines 2022, 13, 230 14 of 15

objects are removed, the remaining static feature points are reduced, and eventually, the
tracking fails.

In future work, we will attempt to optimize the target detection model to improve the
detection accuracy while keeping the speed constant, so that the model can more accurately
identify dynamic objects in the environment and eliminate the impact of dynamic objects
on the SLAM system. In addition, we will use the extracted semantic information to build
dense maps to help the system in navigation and obstacle avoidance tasks at a later stage.

5. Conclusions

In an indoor dynamic environment, SLAM systems are prone to be affected by moving
objects, which may reduce the pose estimation accuracy and cause tracking failures. In
this paper, a SLAM algorithm based on the classic ORB-SLAM2 framework in an indoor
dynamic environment is proposed. The object detection network Yolov4-Tiny is used to
detect the dynamic semantic objects in the environment. Then, the dynamic feature points
are filtered out before they are tracked, and only the static feature points are used for
pose estimation. Experimental verification on the TUM dataset shows that compared with
the classic ORB-SLAM2 algorithm, our algorithm reduces the absolute trajectory error by
93.35% in an indoor highly dynamic environment with pedestrians walking back and forth.
Additionally, our algorithm only needs 21.49 ms on average to process an image frame in
the tracking thread, which can meet the requirements of real-time processing. Compared
with other algorithms of the same type, the algorithm proposed in this paper has certain
advantages in terms of precision and real-time performance.

Author Contributions: Conceptualization, Z.C.; methodology, Z.C.; software, H.W.; validation, Z.C.
and Y.S.; formal analysis, Z.C. and H.W.; investigation, H.W.; resources, C.L.; data curation, H.W.;
writing—original draft preparation, Z.C. and H.W.; writing—review and editing, Z.C. and Y.S.;
visualization, H.W.; supervision, Z.C.; project administration, Z.C.; funding acquisition, Z.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Shanghai Sailing Program (19YF1437200).

Acknowledgments: The authors sincerely thank the Shanghai Science and Technology Commission
for their funding support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
SLAM Simultaneous Localization and Mapping
LK Lucas–Kanade

References
1. Wen, S.; Li, P.; Zhao, Y.; Zhang, H.; Wang, Z. Semantic visual SLAM in dynamic environment. Auton. Robot. 2021, 45, 493–504.

[CrossRef]
2. Ji, T.; Wang, C.; Xie, L. Towards Real-time Semantic RGB-D SLAM in Dynamic Environments. arXiv 2021, arXiv:2104.01316.
3. Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and structure from motion in dynamic environments: A survey. ACM

Comput. Surv. 2018, 51, 1–36. [CrossRef]
4. Sun, Y.; Liu, M.; Meng, Q.H. Improving RGB-D SLAM in Dynamic Environments: A Motion Removal Approach. Robot. Auton.

Syst. 2017, 89, 110–122. [CrossRef]
5. Wang, R.; Wan, W.; Wang, Y.; Di, K. A New RGB-D SLAM Method with Moving Object Detection for Dynamic Indoor Scenes.

Remote Sens. 2019, 11, 1143. [CrossRef]
6. Lin, S.; Huang, S. Moving object detection from a moving stereo camera via depth information and visual odometry. In

Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018;
pp. 437–440. [CrossRef]

7. Yu, C.; Liu, Z.; Liu, X.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 1168–1174.

http://doi.org/10.1007/s10514-021-09979-4
http://doi.org/10.1145/3177853
http://doi.org/10.1016/j.robot.2016.11.012
http://doi.org/10.3390/rs11101143
http://doi.org/10.1109/ICASI.2018.8394278

Micromachines 2022, 13, 230 15 of 15

8. Bescós, B.; Fácil, J.; Civera, J.; Neira, J. DynSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes. IEEE Robot. Autom. Lett.
2018, 3, 4076–4083. [CrossRef]

9. Ai, Y.; Rui, T.; Lu, M.; Fu, L.; Liu, S.; Wang, S. DDL-SLAM: A Robust RGB-D SLAM in Dynamic Environments Combined with
Deep Learning. IEEE Access 2020, 8, 162335–162342. [CrossRef]

10. Fan, Y.; Zhang, Q.; Liu, S.; Tang, Y.; Jing, X.; Yao, J.; Han, H. Semantic SLAM with More Accurate Point Cloud Map in Dynamic
Environments. IEEE Access 2020, 8, 112237–112252. [CrossRef]

11. Han, S.; Xi, Z. Dynamic Scene Semantics SLAM Based on Semantic Segmentation. IEEE Access 2020, 8, 43563–43570. [CrossRef]
12. Zhang, L.; Wei, L.; Shen, P.; Wei, W.; Zhu, G.; Song, J. Semantic SLAM Based on Object Detection and Improved Octomap. IEEE

Access 2018, 6, 75545–75559. [CrossRef]
13. Li, P.; Zhang, G.; Zhou, J.; Yao, R.; Zhang, X. Study on Slam Algorithm Based on Object Detection in Dynamic Scene. In Proceedings

of the 2019 International Conference on Advanced Mechatronic Systems (ICAMechS), Kusatsu, Japan, 26–28 August 2019;
pp. 363–367.

14. Wang, L.; Zhou, K.; Chu, A.; Wang, G.; Wang, L. An Improved Light-weight Traffic Sign Recognition Algorithm Based on
YOLOv4-Tiny. IEEE Access 2021, 8, 124963–124971. [CrossRef]

15. Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
16. Huang, N.; Chen, J.; Miao, Y. Optimization for RGB-D SLAM Based on Plane Geometrical Constraint. In Proceedings of the 2019

IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, China, 10–18 October 2019.
17. Hu, L.; Xu, W.; Huang, K.; Kneip, L. Deep-SLAM++: Object-level RGBD SLAM based on class-specific deep shape priors. arXiv

2019, arXiv:1907.09691.
18. Jin, G.; Zhong, X.; Fang, S.; Deng, X.; Li, J. Keyframe-Based Dynamic Elimination SLAM System Using YOLO Detection. In

International Conference on Intelligent Robotics and Applications; Springer: Cham, Switzerland, 2019; pp. 697–705.
19. Wang, Z.; Jiansheng, L.I.; Wang, A.; Cheng, X.; University, I.E. A Method of SLAM Based on LK Optical Flow Suitable for Dynamic

Scene. J. Geomat. Sci. Technol. 2018, 35, 187–190.
20. Zhang, T.; Zhang, H.; Li, Y.; Nakamura, Y.; Zhang, L. FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow. In Pro-

ceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020.
21. Tang, C.; Zhao, X.; Chen, J.; Chen, L.; Zhou, Y. Fast stereo visual odometry based on LK optical flow and ORB-SLAM2. Multimed.

Syst. 2020, 1–10. [CrossRef]
22. Wang, E.; Zhou, Y.; Zhang, Q. Improved Visual Odometry Based on SSD Algorithm in Dynamic Environment. In Proceedings of

the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 7475–7480.
23. Kang, R.; Shi, J.; Li, X.; Liu, Y.; Liu, X. DF-SLAM: A Deep-Learning Enhanced Visual SLAM System based on Deep Local Features.

arXiv 2019, arXiv:1901.07223.
24. Xiao, L.; Wang, J.; Qiu, X.; Rong, Z.; Zou, X. Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep

learning in dynamic environment. Robot. Auton. Syst. 2019, 117, 1–16. [CrossRef]
25. Shi, J.; Zha, F.; Guo, W.; Wang, P.; Li, M. Dynamic Visual SLAM Based on Semantic Information and Multi-View Geometry. In

Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dailan, China,
19–20 September 2020; pp. 671–679.

26. Liu, Y.; Miura, J. RDMO-SLAM: Real-Time Visual SLAM for Dynamic Environments Using Semantic Label Prediction With
Optical Flow. IEEE Access 2021, 106981–106997. [CrossRef]

27. Li, G.; Yu, L.; Fei, S. A Binocular MSCKF-Based Visual Inertial Odometry System Using LK Optical Flow. J. Intell. Robot. Syst.
2020, 100, 1179–1194. [CrossRef]

28. Liong, G.B.; See, J.; Wong, L.K. Shallow Optical Flow Three-Stream CNN for Macro- and Micro-Expression Spotting from Long
Videos. arXiv 2021, arXiv:2106.06489.

29. Gang, Z.; Tang, S.; Li, J. Face landmark point tracking using LK pyramid optical flow. In Tenth International Conference on Machine
Vision (ICMV 2017); International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10696, p. 106962B.

30. Li, P.; Hao, X.; Wang, J.; Gu, Y.; Wang, G. UAV Obstacle Detection Algorithm Based on Improved ORB Sparse Optical Flow. In
Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
Chengdu, China, 20–22 December 2020; pp. 562–569.

31. Croon, G.; Wagter, C.D.; Seidl, T. Enhancing optical-flow-based control by learning visual appearance cues for flying robots. Nat.
Mach. Intell. 2021, 3, 33–41. [CrossRef]

32. Zhang, T.; Nakamura, Y. Humanoid Robot RGB-D SLAM in the Dynamic Human Environment. Int. J. Hum. Robot. 2020,
17, 2050009. [CrossRef]

33. Soares, J.; Gattass, M.; Meggiolaro, M.A. Visual SLAM in Human Populated Environments: Exploring the Trade-off between
Accuracy and Speed of YOLO and Mask R-CNN. In Proceedings of the 19th International Conference on Advanced Robotics
(ICAR 2019), Belo Horizonte, Brazil, 2–6 December 2019; pp. 135–140.

34. Li, Q.; Sun, F.; Liu, H. RMVD: Robust Monocular VSLAM for Moving Robot in Dynamic Environment. In International Conference
on Cognitive Systems and Signal Processing; Springer: Singapore, 2019; pp. 454–464.

35. Campos, C.; Elvira, R.; Rodríguez, J.; Montiel, J.; Tardós, J. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-
Inertial and Multi-Map SLAM. In IEEE Transactions on Robotics; IEEE: Piscataway, NJ, USA, 2021; Volume 37, pp. 1874–1890.

http://doi.org/10.1109/LRA.2018.2860039
http://doi.org/10.1109/ACCESS.2020.2991441
http://doi.org/10.1109/ACCESS.2020.3003160
http://doi.org/10.1109/ACCESS.2020.2977684
http://doi.org/10.1109/ACCESS.2018.2873617
http://doi.org/10.1109/ACCESS.2021.3109798
http://doi.org/10.1007/s00530-020-00662-9
http://doi.org/10.1016/j.robot.2019.03.012
http://doi.org/10.1109/ACCESS.2021.3100426
http://doi.org/10.1007/s10846-020-01222-z
http://doi.org/10.1038/s42256-020-00279-7
http://doi.org/10.1142/S0219843620500097

	Introduction
	Related Work
	Dynamic SLAM Based on Geometric Method
	SLAM Based on Deep Learning or Semantic Information

	System Overview
	Algorithm Framework
	Yolov4-Tiny
	Backbone Network Structure of Yolov4-Tiny
	Dynamic Feature Point Elimination Strategy
	Dynamic Feature Point Elimination Based on Object Detection
	Epipolar Geometry Constraints
	LK Optical Flow Constraint

	Results
	Experimental Data Sets
	Analysis of the Experimental Results
	Discussion and Outlook

	Conclusions
	References

