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Abstract: Micro-electromechanical system (MEMS) skin friction sensors are considered to be promis-
ing sensors in hypersonic wind tunnel experiments owing to their miniature size, high sensitivity, and
stability. Aiming at the problem of short test duration (a few milliseconds) and heavy load in a shock
wind tunnel, the fast readout circuit and the sensor head structures of a MEMS skin friction sensor
are presented and optimized in this work. The sensor was fabricated using various micro-mechanical
processes and micro-assembly technology based on visual alignment. Meanwhile, the sensor head
structure was integrated with the fast readout circuit and tested by using a centrifugal force equivalent
method. The calibration results show that this sensor provides good linearity, sensitivity, and stability.
The measurement ranges are 0–2000 Pa with good performance. The resolution is better than 10 Pa
at 3000 Hz detection frequency of the readout circuit for the sensor in ranges from 0 to 1000 Pa. In
addition, the repeatability and linearity of static calibration for sensors are better than 1%.

Keywords: skin friction sensors; shock tunnel experiment; MEMS; fast readout circuit

1. Introduction

The skin friction resistance of an aircraft surface is an important part of its total
resistance, which greatly limits the performance of hypersonic vehicles. Therefore, the
skin friction measurement of an aircraft model is an important basic item in aerodynamic
research. MEMS skin friction sensors are considered promising sensors in hypersonic wind
tunnel experiments owing to their miniature size, high sensitivity, and stability. In recent
years, several researchers have developed MEMS sensors to measure skin friction, including
the capacitance-type and comb differential capacitance-type [1–5], piezoresistive-type [6–8],
and piezoelectric-type [9]. For example, Mills et al. [5] reported a fully differential capacitive
wall shear stress sensor for low-speed wind tunnels with the high sensitivity of 196 mV/Pa
and a minimum detection limit of 12 mPa at 1000 Hz in a range from 0–10 Pa; Von, P. et al. [8]
reported a wall shear stress sensor using four piezoresistors in the cantilever, and the
resolution was 0.01 Pa in the range of 2 Pa; Kim, T. et al. [9] reported a piezoelectric floating
element shear stress sensor for the wind tunnel flow measurement with the high sensitivity
of 56.5 pc/Pa and with the frequency range of the sensor up to 800 Hz. The common
characteristics of those sensors are their usually high sensitivity, high resolution (10−2 Pa),
and small measurement range (several Pa). Therefore, these sensors are mainly used in
low wind tunnels to measure skin friction because their sensing elements, such as the
comb capacitance, were exposed in the flow field. To adapt to the harsh measurement
environments and large normal loads in hypersonic fields, a novel MEMS skin sensor was
developed in our previous work [10,11]. The sensor adopts the floating element so that
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it is even with the measured wall, and the signal output micro-structure is isolated from
the hypersonic field, which was fabricated using various micro-mechanical processes and
micro-assembly technology. Experimental results show that this sensor has some good
characteristics, such as good linearity, small size, high sensitivity, and repeatability of
static calibration. Furthermore, the measurement ranges were 0–100 Pa, and the minimum
detectable skin friction was 0.1 Pa. However, the natural frequency of the sensor was
410 Hz, and the detection frequency of a weak capacitance readout circuit for a skin friction
sensor is only 10 Hz.

According to the hypersonic flow field characteristics of high temperature, high total
pressure, and short test time in the shock wind tunnel, the test ambient temperature is
usually increased to hundreds of degrees centigrade, and the measurement ranges increase
to hundreds, or even thousands, of Pa. Meanwhile, the sampling frequency of the readout
circuit for the sensor also increases to thousands of Hz with higher loads, and only several
milliseconds in duration of the working time. Therefore, greater measurement ranges and
higher response frequencies of sensors for skin friction in shock wind tunnels need to
be developed.

In this work, the static force analysis and modal analysis of the sensor head structure
were carried out by finite element analysis (FEA) to optimize the head structure of the
MEMS skin friction sensor with a high response frequency and large measurement ranges.
In addition, to improve the detection frequency of the weak capacitance of the sensor, the
fast readout circuit with 3000 Hz detection frequency was designed and integrated with
the sensor head structure.

2. Structural Simulation and Optimization of the Sensor Head Structure

The structure of the MEMS skin friction sensor is shown in Figure 1. The sensor was
composed of a silicon differential capacitor embedded with a floating element, a signal
readout circuit, and a metal shell package. The working principle of this sensor is explained
as the skin friction caused the torsional deflection of clamped-clamped elastic beams by the
floating element, and the torsional deflection was transferred into a capacitance variation
by one pair of differential capacitors.

Micromachines 2022, 13, x FOR PEER REVIEW 2 of 11 
 

 

elements, such as the comb capacitance, were exposed in the flow field. To adapt to the 
harsh measurement environments and large normal loads in hypersonic fields, a novel 
MEMS skin sensor was developed in our previous work [10,11]. The sensor adopts the 
floating element so that it is even with the measured wall, and the signal output micro-
structure is isolated from the hypersonic field, which was fabricated using various micro-
mechanical processes and micro-assembly technology. Experimental results show that 
this sensor has some good characteristics, such as good linearity, small size, high sensitiv-
ity, and repeatability of static calibration. Furthermore, the measurement ranges were 0–
100 Pa, and the minimum detectable skin friction was 0.1 Pa. However, the natural fre-
quency of the sensor was 410 Hz, and the detection frequency of a weak capacitance 
readout circuit for a skin friction sensor is only 10 Hz. 

According to the hypersonic flow field characteristics of high temperature, high total 
pressure, and short test time in the shock wind tunnel, the test ambient temperature is 
usually increased to hundreds of degrees centigrade, and the measurement ranges in-
crease to hundreds, or even thousands, of Pa. Meanwhile, the sampling frequency of the 
readout circuit for the sensor also increases to thousands of Hz with higher loads, and 
only several milliseconds in duration of the working time. Therefore, greater measure-
ment ranges and higher response frequencies of sensors for skin friction in shock wind 
tunnels need to be developed. 

In this work, the static force analysis and modal analysis of the sensor head structure 
were carried out by finite element analysis (FEA) to optimize the head structure of the 
MEMS skin friction sensor with a high response frequency and large measurement ranges. 
In addition, to improve the detection frequency of the weak capacitance of the sensor, the 
fast readout circuit with 3000 Hz detection frequency was designed and integrated with 
the sensor head structure.  

2. Structural Simulation and Optimization of the Sensor Head Structure 
The structure of the MEMS skin friction sensor is shown in Figure 1. The sensor was 

composed of a silicon differential capacitor embedded with a floating element, a signal 
readout circuit, and a metal shell package. The working principle of this sensor is ex-
plained as the skin friction caused the torsional deflection of clamped-clamped elastic 
beams by the floating element, and the torsional deflection was transferred into a capaci-
tance variation by one pair of differential capacitors. 

  
(a) (b) 

Figure 1. (a) Schematic of the sensor; (b) the sensing structure parameters of the sensor head. 

For a typical shock tunnel with a short test time (a few milliseconds), the lowest fre-
quency to obtain high measurement accuracy within the effective test time is 1000 Hz. 
Because the mechanical vibration of the measurement system is excited and cannot be 
attenuated rapidly enough by damping characteristics during the short test time, to obtain 

Figure 1. (a) Schematic of the sensor; (b) the sensing structure parameters of the sensor head.

For a typical shock tunnel with a short test time (a few milliseconds), the lowest
frequency to obtain high measurement accuracy within the effective test time is 1000 Hz.
Because the mechanical vibration of the measurement system is excited and cannot be
attenuated rapidly enough by damping characteristics during the short test time, to obtain
higher measurement accuracy, the natural frequency of the MEMS skin friction sensor
should, therefore, be raised to 3000 Hz.
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For an undamped single freedom system, the natural frequency calculation formula is
defined as shown in the following equation:

fn =
1

2π

√
k
m

(1)

where fn is the natural frequency, and k and m are the stiffness and mass of the structure,
respectively. From Equation (1), it can be seen that increasing the stiffness of the beam
and reducing the mass of the floating element was an effective way to improve the natural
frequency of a MEMS skin friction sensor. Then, the sensitivity of the sensor deteriorated
rapidly because the torsional deflection of the elastic beams decreased with an increase in
the stiffness (with increasing w and h) under the same loads. The sensitivity of the sensor
can be defined according to conformal transformation theory [11]:

S ≈ τw A
∆C

=
h2

0

ε0(2w1 + w2)w2w3
× β

1 + ν
× Ew3h

l1h2
(2)

where τw is the measured skin friction, ∆C is the variation of differential capacitance, A is
the area of the floating element, β, ν, ε0 and E are the elastic deformation parameters of
the torsion beam, respectively, w, l1 and h are the length width and thickness of the silicon
beam, and h0 and h2 are the gaps of the capacitor and the height of the floating element as
a force arm. To fabricate the high-performance skin friction sensor for a shock wind tunnel
experiment, the sensitivity and the natural frequency were considered together.

To obtain the main structural parameters of the silicon beam and the floating element,
three-dimensional FEA models of the sensor head structures were built with the help of
FEA software, using our previous parameters. The optimized three-dimensional FEA
model of the sensor head structure is shown in Figure 2a.
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Figure 2. (a) Three-dimensional FEA model of the sensor head structure; (b) the normal deformation
of the vibrating plate under 2000 Pa equivalent loads.

Combining the designed indexes and our previous research results, we determined
that increasing the width of the silicon beam was key to improving the stiffness of the
sensor head structure. To ensure the working state of the torsion beam, the width was
not allowed to exceed its thickness (the thickness of the wafer was about 500 µm). The
natural frequency of the sensor head with different widths of the silicon beam is shown in
Figure 3a. It can be seen that the natural frequency of the sensor head was from 410 Hz to
1000 Hz as the width of the silicon beam was increased from 180 µm to 420 µm. However,
the natural frequency increase tended to slow down when the width of the silicon beam
was increased to 420 µm. Meanwhile, the sensitivity of the sensor was down 90 percent
by Equation (2). The maximum width of the beam can be determined as 420 µm without
considering the sensitivity of the sensor in this work.
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To further enhance the natural frequency, the height of the floating element as a force
arm and the mass of the floating element were reduced. The frequency increased from
1000 Hz to 1250 Hz as the height of the force arm was decreased from 7900 µm to 6500 µm,
as shown in Figure 3b. It can also be seen that reducing the force arm had little effect on
improving the natural frequency of the sensor head. The reason is that the reduction of the
length of the floating element has little effect on the overall quality of m.

Therefore, reducing the thickness of the floating element can quickly reduce its over-
all mass to improve the natural frequency of the sensor, as shown in Figure 3c. How-
ever, the rapid reduction of the overall mass led to the rapid reduction of the equivalent
torque and the sensitivity. Combining the influence rule of the skin friction measurements
model [12,13] and the precision machining process, the thickness parameters of the floating
element were determined as 450 µm in this work.

The influence of the length of the beam on the natural frequency of the sensor was also
simulated, as shown in Figure 3d. The simulation results show that the natural frequency
of the sensor head increased linearly with the decreasing length of the beam.

Finally, to increase the natural frequency of the sensor to over 3000 Hz, the main
structure parameters were achieved, as shown in Table 1.

Table 1. The main structural parameters of the sensor.

Width of Silicon
Beam
(µm)

Length of Silicon
Beam
(µm)

The Thickness of
the Silicon Beam

(µm)

Diameter of the
Floating Element

(µm)

Thickness of
Floating Element

(µm)

Height of
Floating Element

(µm)
Gap of Capacitor

(µm)

400 1200 500 5000 450 7000 10

Meanwhile, the skin friction τw was equivalent to the shear stress load on the surface
of the floating element in the finite element simulation. The displacement of the differential
capacitor plate under 2000 Pa loads is shown in Figure 2b. It can be seen that the maximum
normal deformation of the edge of the vibrating plate away from the torsion beam was
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+1.06 µm and −1.05 µm, respectively. To ensure the good linearity of the sensor in the total
measurement range, the gap of the differential capacitor was larger than 6 µm. In this work,
the gap of the differential capacitor was designed as 10 µm, and the initial capacitance was
about 9 pF by calculation. At the same time, the design sensitivity was about 2.5 Pa/fF in
the range of 0–2000 Pa by Equation (2).

3. The Fast Readout Circuit Design

Considering the previous simulation and calculation results, the variation of the
capacitance under the skin friction load was very small, within 0.01~1.00 pF. Thus, the
circuit needs not only high measurement precision but also a high detection frequency for
a shock tunnel with the short time of a few milliseconds. To improve the measurement
precision, the signal wire between the sensor head and readout circuit were as short
as possible, thus, the readout circuit was integrated with the MEMS chip, as shown in
Figure 4a. The relationship between the detection frequency and the measurement accuracy
of the sensor was contradictory. It was key to select a weak capacitance detection chip
with a high detection frequency and measurement accuracy. The readout circuit included
weak capacitance testing, and the processing circuit part and the software real-time display
part were designed in this work. A Pcap01 chip is an application-specific integrated
circuit for a MEMS capacitance sensor with a low-power capacitance-to-digital converter
with a wide input range (fF to nF) and versatile configuration options, and it can be
configured for the highest sampling rates of up to 500 kHz, the lowest current consumption
of down to 2 uA, or the lowest noise of 15 aF (RMS). In this work, the capacitance signal
testing and processing circuit were mainly composed of a Pcap01 chip and single chip
(STM32F411CEU6) due to the limitation of the volume, as shown in Figure 4b, which
was fabricated by a precision ceramic micro-strip circuit process. The real-time detection
and display functional interfaces of the MEMS skin friction sensor were designed using
LabVIEW software, as shown in Figure 4c.

Although the measurement accuracy deteriorated with the increase in sampling fre-
quency, the readout circuit for the MEMS skin sensor still had sufficiently high detection
accuracy at 3000 Hz to meet the testing requirements in a shock wind tunnel. The resolution
was about 10 Pa by static calibration test using a centrifugal force equivalent method.

The components of the MEMS skin friction sensors, including the MEMS chip, floating
element, signal readout circuit, and package shell, were fabricated using MEMS and
precision machining process technology. MEMS chips were fabricated using the MEMS
process, which consists of a silicon structure and glass electrode substrate. The photo of
a single chip is shown in Figure 5a. The signal readout circuit was fabricated by precise
microstrip circuit technology to ensure the precision of the components and processing.
The photo of the ceramic circuit board is shown in Figure 5b. The material of the floating
elements and package shells was aluminum alloy to be consistent with the test model
material. The precision turning and milling technologies with 10 µm geometrical precision
were used to fabricate the floating element and package shells. A photo of the separate
components is shown in Figure 5c.

The accuracy of the skin friction measurements is very closely related to the assembly
error of the sensor and the flow characteristics of the measured wall [11]. To reduce
assembly error, a micro-assembly method for MEMS skin friction sensor assembly based
on visual alignment was developed in our previous work [10]. The key parts mainly
included the floating element and MEMS chip assembly, the MEMS chip and readout
circuit assembly, and the sensor head and package assembly, which are shown in Figure 5d.
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The assembly results show that the assembly error can be well controlled by using
visual alignment and a micro-operating assembly system. The coaxiality of the MEMS skin
friction sensor was very good, and the error was only 2 µm by calculating pixels, as shown
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in Figure 5e. A photo of the sensor with good electrical characteristics and small assembly
error is shown in Figure 5f.

4. Static Calibration of the Sensor

The performances of the MEMS skin friction sensor were determined after assembly.
With an experiment of static loading force, the static performance parameters of the sensor
were obtained. Due to the small skin friction and volume of the MEMS sensor, the centrifu-
gal force equivalent method and a single-spindle rotary loading platform were adopted
to statically calibrate the sensor [11]. The static calibration system for the sensor is shown
in Figure 6.
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The MEMS sensors were fixed onto a turntable in a vacuum environment, as shown in
Figure 6b. The skin friction sensed by the floating element was in some cases equivalent
to the rotating speed of the turntable when the structure parameters of the sensor were
determined. Then, the relationship between the equivalent friction and capacitance were
obtained. The variation of capacitance under the equivalent friction loads was displayed
and stored in real time, as shown in Figure 6c.

The maximum equivalent load was set to 1000 Pa, which was limited by the rotating
speed of the turntable. The output response of the MEMS skin friction sensor under
different equivalent loads is shown in Figure 7. The detection limit of the sensors was
determined by the head structure of the sensor and the noise of the readout circuit. The
inset shows the responses of the sensor under small equivalent loads. It can be seen that
the response curve displays a clear stepwise increase when the load was increased from
0 to 10 Pa. The resolution of the sensor was better than 10 Pa at the same time.
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Figure 7. (a) The output response of the MEMS skin friction sensor under different equivalent loads;
(b) the output response of the sensor under small loads.

To obtain the repeatability characteristics of the sensor, seven groups of response
values under the same loading conditions were collected and stored at one time. To obtain
the response curve of the sensor under different loads, the response values were averaged
during a steady load. The repeatability curve of sensor #1 under different loads is shown in
Figure 8a. It can be seen that the sensor has good linearity and stability. The linearity and
repeatability are both better than 1% in the range from 0 to 1000 Pa, the sensitivity is about
3.8 Pa/fF, and the detection limit is about 10 Pa. In addition, the inset of Figure 8a shows
the responses of the sensor in a range up to 100 Pa.
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Although all components of the sensors were manufactured in the same batch, the
machining errors and assembly errors still affected the consistency of the sensors. The
response characteristics of the three sensors are shown in Figure 8b. Those sensors also had
good linearity and stability in the range of 0 to 1000 Pa. The sensitivities were 3.8 Pa/fF,
4.3 Pa/fF, and 3.6 Pa/fF, respectively, and the resolution was better than 10 Pa, which met
the needs of the shock wind tunnel experiment.
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5. Conclusions

This paper developed a MEMS skin friction sensor with high detection frequency and
a large measurement range in a shock wind tunnel experiment. With the help of finite
element analysis software, the sensor head structure of an MEMS sensor was optimized
to enhance the natural frequency to 3000 Hz. A key factor was to quickly increase the
natural frequency of the sensor head with coarse-tuning by increasing the width of the
beam and reducing the mass of the floating element. Then, the length of the torsional
beam and the floating element as the force arm was used to achieve fine-tuning. However,
the sensitivity deteriorated rapidly with the increasing natural frequency. In addition, to
meet the testing requirement in the shock wind tunnel with a short test duration (a few
milliseconds), it was key to design a weak capacitance detection circuit with high detection
frequency and measurement accuracy. The readout circuit of the sensor was designed and
integrated with the sensor head. The components of the sensor, including the MEMS chip,
floating element, signal readout circuit, and package shell, were fabricated by using various
micro-mechanical processes.

The sensors were assembled using micro-assembly technology based on visual align-
ment with small assembly errors. The coaxiality of the MEMS skin friction sensor was very
good, and the error was only 2 µm. This is the main reason for the good manufacturing
consistency of the sensor.

Then, the static performance parameters of the sensor were obtained using the centrifu-
gal force equivalent method and the single-spindle rotary loading platform. The calibration
results show that the sensors have good linearity and stability in a range from 0 to 1000 Pa.
The repeatability and linearity of static calibration for sensors are better than 1%, and the
resolution is better than 10 Pa at the 3000 Hz detection frequency of the sensor. Due to the
maximum deformation values of the vibrating plate under 2000 Pa being only 10 percent of
the differential capacitor gap, the sensor will have good linearity in a large range (greater
than 2000 Pa). Moreover, the gap of the differential capacitor is also one of the important
parameters affecting the sensitivity of the sensor. The reduction of the capacitance gap is a
key factor to quickly enhance the sensitivity of the sensor. For example, the sensitivity will
double with the decrease of the gap of the capacitor from 10 µm to 7 µm in future work.
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