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Abstract: This paper proposes a multidirectional piezoelectric vibration energy harvester based on
an improved U-shaped structure with cross-connected beams. Benefitting from the bi-directional
capacity of U-shaped beam and additional bending mode induced by cross-connected configuration,
the proposed structure can well capture the vibrations in 3D space at the frequencies lower than
15 Hz. These features are further validated by finite element analyses and theorical formulas. The
prototype is fabricated and the experiments under different conditions are carried out. The results
show that the proposed harvester can generate favorable voltage and power under multidirectional
vibrations at a low operating frequency. Practical applications of charging capacitors and powering
a wireless sensor node demonstrate the feasibility of this energy harvester in supplying power for
engineering devices.

Keywords: vibration energy; piezoelectric harvester; U-shaped structure; cross-connected beams

1. Introduction

The large-scale use of fossil fuels is causing serious impacts on the global climate
in the past few decades. Lowering carbon emission has become a critical task for the
global to pursue carbon neutrality. Recently, the issue of harvesting clean and renewable
energy from ambient environment has been promoted to provide a possible alternative to
the conventional solid-state batteries in the booming IoT world. Harvesting energy from
ambient vibrations, such as winding, human motion, vehicles, machines and buildings,
etc., have been reorganized as a feasible solution to supply green energy to wireless sensor
nodes [1–6], which can be implemented by using electromagnetic [7,8], electrostatic [9]
and piezoelectric [10,11] transduction mechanisms to convert mechanical energies into
electricity. Among them, piezoelectric vibration energy harvesters (PEVHs) have been
highlighted because of its high-power density, ease of implementation and miniaturiza-
tion [5,12,13]. Typically, a PEVH can be constructed by a proof mass to capture the vibration,
a piezoelectric plate to convert the energy and a substrate to support the mass and plate [14].
Though changing the configuration of mass and substrate can adapt PEVH’s characteristics
with various energy sources, a PVEH for capturing multidirectional, inconstant environ-
mental vibrations is still an investable research for reusing wasted ambient environment
energy [15].

Lowering the resonant frequency and expanding efficient bandwidth are two feasible
approaches for PVEH to optimize its dynamic properties. The low resonant frequency can
be realized by decreasing the structural stiffness or increasing the weight of proof mass,
which is easy but may reduce the long-term reliability of devices [16–18]. A more viable
strategy is frequency up-conversion mechanism, in which the targeted vibration is captured
by a low-frequency structure and transmitted to a high-frequency oscillator to trigger its
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free oscillation [19,20]. Consequently, this scheme can well capture the low-frequency
vibrations and then realize a high-frequency, efficient mechanical-electrical conversion.
In terms of broadband harvesting, multimodal approach and structural nonlinearity are
often utilized [21,22]. The former can produce several resonant peaks in a certain frequency
range with the helps from segmented beam-mass and multi-unit configurations [23,24].
Then, the nonlinearity, induced by internal force or large deformation, can increase the
width of each resonant peak, giving the PVEH a better coverage to the spectrum of volatile
vibration [25,26].

For multidirectional harvesting, a direct method is arranging harvesting units for
every interesting direction, such as the dandelion-like structure with 13 piezoelectric
cantilevers [27], and the multi-beam structure with coupling magnets [28]. These schemes
can effectively capture the input vibrations, but their large, bulky structures will inevitably
lead to a poor volume efficiency. Thus, many efforts are devoted to the development
of single-unit device with the ability of capturing vibration in multiple directions. For
instance, the structures combining pendulum and cantilever or U-shaped beam have been
utilized to compose multidirectional PVEHs [29–31], but their heavy ball, large range for
ball swing and fixed installation direction may hinder their extensive application. A more
compact scheme based on twist piezoelectric beam gives the PVEH a capacity of generating
a substantial amount of power under the excitation from any direction in the plane in
parallel with the beam cross-section [32]. However, its first two resonant frequencies are
far from each other and cannot well match the frequency spectrum of ambient vibrations.
Consequently, there are still great demands on developing multimodal, multidirectional
PVEHs that can efficiently harvest energy from excitations in real-world environment.

This paper proposed a PVEH based on an improved U-shaped structure for effectively
harvesting energy from the multidirectional, inconstant vibrations in daily life. Benefitting
from cross-connected beams in the legs of U-shaped structure, this device can sense the
stimulations in all the planes that parallel and perpendicular with U character. The adhered
piezoelectric plates can convert stress energy in cross-coupled legs and horizontal beam
into electric energy based on the direct piezoelectric effect. By optimizing the structural
dimension, the proposed device can exhibit multi-modal characteristics in the frequency
of 2–15 Hz. First, a simulation model of proposed PVEH is established for finite element
analysis (FEA), and its static and dynamic characteristics are evaluated. A simplified mode
for formulizing the structural resonant frequency is constructed. Then, an experimental
prototype is prepared and tested by a tailored setup to verify the harvesting performances
and prove the design and analysis results. Necessary discussions and practical applications
are conducted. Finally, main findings and conclusions are summarized.

2. Design and Simulation
2.1. Design and Working Principle

Figure 1 illustrates the proposed multidirectional PVEH, which is mainly composed
of the vertical legs with cross-connected beams (viz. upper beams and lower beams), a
horizontal beam between the legs, a proof mass on the center of horizontal beam, and six
piezoelectric plates uniformly adhered onto the horizontal and cross-connected beams.
The vertical legs and horizontal beam form a U-shaped configuration and play the role of
responding to 3D space vibrations. For convenience, a Cartesian coordinate system is also
defined in Figure 1, whose axes are respectively parallel to the orthogonally distributed
normal directions of horizontal beam and two cross-connected beams. The proposed
structure can be regarded as a conventional U-shaped beam plus two cross-connected
upper beams. The conventional U-shaped structure produces two operating modes in
vertical and horizontal directions (namely x- and z-axis directions). The two upper beams
can generate a new bending deformation along y-axis, bringing the device more superior
performances in harvesting 3D space vibrations. It can be expected that regardless of
the direction of loaded excitation, the flexural deformation of corresponding beams can
guarantee the activation of their piezoelectric transducers for energy conversion.
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Figure 1. The proposed U-shaped structure with cross-connected beams.

2.2. Analysis for Proof-of-Concept

For proof-of-concept, a finite element model of the proposed PVEH is built. The whole
U-shaped substrate is made of brass, the proof mass is chosen as steel, and the material of
piezoelectric plates is PZT-5A. The mass weight is 30 g, and the dimensions of other parts
are listed in Table 1. The connected region (about 5 mm) in each vertical leg is not included
in the valid length of cross-connected beams. The material parameters in FEA are given
as (Elastic modulus, Destiny and Poisson’s ratio): 90 GPa, 8540 kg/m3 and 0.38 for brass,
60 GPa, 7750 kg/m3, and 0.36 for PZT-5A.

Table 1. The dimensions of components in U-shaped structure (Unit: mm).

Components Valid Length Width Thickness

PZT-5A 12 8 0.2
Horizontal beam 100 10 0.2

Lower beam 50 10 0.2
Upper beam 40 10 0.2

Static analysis is conducted by loading a 1 g (1 g = 10 m/s2) acceleration to the pro-
posed model. Figure 2a shows the distribution of equivalent stress under x-axis acceleration,
in which the corresponding stress mainly concentrates in the lower beam of vertical leg; the
y-axis acceleration can produce a stress concentration near the fixed end of upper beam, as
shown in Figure 2b. Then, the maximum stress under a z-axis acceleration symmetrically
distributes near both sides of proof mass. Thus, these three stress concentrated regions are
chosen to paste piezoelectric ceramics to maximize the sensed mechanical energy.

Figure 3 illustrates the first six-order modes of proposed U-shaped structure, and the
resonance happens at the frequencies of 2.26 Hz, 10.79 Hz, 13.89 Hz, 23.77 Hz, 36.92 Hz,
49.77 Hz, respectively. The first-order mode is dominated by the flexural deformation of
upper beams, corresponding to the additional working direction of U-shaped beam. The
second-order and third-order modes are the horizontal and vertical modes that similar
with conventional U beam, while the upper beam does not deform. The fourth-order mode
shows a torsional deformation of upper beams, and the fifth- and sixth-order modes are
dominated by the high-order modes of conventional U beam. It can be seen that the first
three modes are all in the form of flexural deformation and constitute the primary working
forms of propose PVEH. Meanwhile, the last three torsional deformations are not very
suitable for energy harvesting and will not be concerned in the following sections.
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Further, harmonic response analysis is conducted to verify the effect from external
excitation on the performance of PVEH. The 1 g sinusoidal acceleration with frequencies
ranging from 0–30 Hz are applied in different directions. As shown in Figure 4a, the
x-axis acceleration triggers a distinct deformation in the direction of x-axis at the frequency
of 10.79 Hz, and the deformations in other two directions are much lower. This further
indicates that the second-order mode of U-shaped structure effectively undertake the task
of collecting vibrations in x-axis direction. Similarly, the distinct deformation triggered by
y-axis acceleration is in the direction of y-axis at the frequency of 2.26 Hz, dominated by the
first-order of structure. Also, the third-order mode of 13.89 Hz exhibits a better efficiency
when harvesting the z-axis acceleration.
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Concerning the FEA results, the first three modes, namely operating modes of pro-
posed PVEH, correspond to the bending deformation of upper beams, first horizontal mode
and vertical mode of conventional U beam, respectively. Thus, the improved U-shaped
structure can be divided into two parts to derive the formulas for its working frequencies.
Generally, the working frequency can be expressed as

ωi =

√
Ki
Mi

(1)

where Ki, Mi are the equivalent stiffness and mass of whole structure.
For the first mode, equivalent stiffness Kiu is determined by the bending of two upper

beams and Miu is dominated by the mass distribution of lower parts, including proof mass,
lower beams, and horizontal beam. Thus,

Miu =
33

140
mL + Mt (2)

Kiu =
6EI
L3 (3)

where L is the length of upper beam, m is the mass per unit length of beams, Mt is mass of
proof mass. EI is the flexural rigidity of upper beam, which can be obtained by analyzing
the feature of piezoelectric cantilever.

The next two modes are similar with the conventional U-shaped beam. So, the
equivalent stiffness and mass for horizontal (indicated by the subscript h) and vertical
(indicated by the subscript v) modes are

Kh =

l1l22

EI1
+

l23

6EI2

l13

6EI1

(
l1l22

EI1
+

l23

6EI2

)
− 1

8

(
l12l2
EI1

)2 (4)

Kv =

l12

2EI1
+ l1l2

EI2(
l1l22

8EI1
+ l23

48EI2

)
×
(

l12

2EI1
+ l1l2

EI2

)
−
(

l1l2
2EI1

+ l22

8EI2

)
×
(

l12l2
8EI1

+ l1l22

8EI2

)
− 3l12l22

64EI1EI2

(5)

Mv = Mt + αv M1 + βv M2 (6)

Mh = Mt + M2 + αh M1 + βh M2 (7)
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where EI1 and EI2 are the flexural rigidity of lower and horizontal beams, respectively. l1
and l2 are their lengths. M1 and M2 are mass of lower and horizontal beams. αi and βi are
the coefficients determined by structural configuration. More information can be found
in [33].

3. Prototype and Experimental Setup

An experimental prototype of proposed PVEH is manufactured, following the proce-
dure shown in Figure 5. The whole U-shaped structure can be divided into four parts: the
horizontal beam and two lower beams in vertical legs, the upper beams, an iron block as
proof mass, and six PZT-5A plates. The PZT-5A plate contains an upper silver electrode, a
bottom brass substrate and a piece of polarized piezoceramics. First, a long brass strip was
folded to form a conventional U-shaped beam, which corresponded to the part of horizontal
beam and two lower beams of PVEH. Two openings were cut by a scissor at each end. Then,
two short brass strips for upper beams were prepared, and opening was also cut at one end
of each strip. Next, the short brass strips were assembled to the existing U-shaped beam by
perpendicularly sticking the openings together, forming a cross connection between the
upper and lower beams. Finally, the proof mass and six PZT-5A plates were adhered onto
the U-shaped structure in the determined region by an insulating glue.
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Figure 5. Manufacturing procedure for the proposed PVEH.

An experimental setup for characterization is shown in Figure 6. The signal generator
(SDG1020, SIGLENT, Shenzhen, China) provides a sinusoidal voltage to the power amplifier
(HEA-200C, Foneng, Nanjing, China), which is used to excite the shaker (HEV-200, Foneng,
Nanjing, China). An oscilloscope (GDS-1072B, GWINSTEK, Suzhou, China) is utilized
to measure the voltage generated by PVEH and monitor the acceleration obtained from
accelerometer (CA-YD-180, BDHSD, Qinhuangdao, China). The current source (SD14T03,
BDHSD, Qinhuangdao, China) is used to power the accelerometer and processing its
output signal.
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To verify the multidirectional harvesting capacity, two acrylic clampers are designed to
adjust the angles between stimulating direction and orientation of prototype. The clamper
in Figure 7a is used to rotate the PVEH around y-axis under the vertical vibrations, adjusting
the angle between stimulating direction and z-axis of PVEH (defined as α). α = 0◦ and
90◦ indicate the stimulating direction is aligned with z-axis and x-axis of PVEH. The
clamper in Figure 7b is used when the vibration is horizontally loaded. The PVEH is
rotated around z-axis to adjust the angle between stimulating direction and y-axis of PVEH
(defined as β). β = 0◦ and 90◦ indicate the stimulating direction is aligned with x-axis and
y-axis, respectively.
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4. Results and Discussions

With the help of experimental setup and rotatable champers, the prototype is succes-
sively stimulated by the vertical and horizontal vibrations with different angles. Due to
the symmetry of U-shaped structure, the PVEH will generate similar response when the
angle is beyond 90◦, so the experiments are conducted in the range of 0◦ to 90◦. In the
experiments, the prototypes are firstly triggered by the loaded vibrations to obtain the
curves of open-circuit voltage versus excitation frequency under different α or β. Under
the vertical vibration, the third-order mode of U-shaped structure will be triggered at the
beginning, and the lower beam will be bent when α increases. The horizontal vibrations
mainly triggered the first- and second-order modes of U-shaped structure when β varies.
Then, the power tests are conducted by recording the voltage over the loaded resistors
when the devices are stimulated at their optimized frequencies. Last, some applications
are demonstrated by charging capacitors and powering a wireless sensor node. All the
experiments are conducted at room temperature about 20 ◦C and a humidity of 40% RH.

4.1. Experimental Results

Figure 8 shows the open-circuit voltage of PVEH with α varying from 0◦ to 90◦ when
the 1 g acceleration is vertically loaded. When α = 0◦, three peaks are generated at the
frequency of 2.6 Hz, 9.1 Hz, and 11.4 Hz, which is similar to the simulation results of modal
and harmonic response analysis. At 2.6 Hz, the small oscillation of PVEH bends the upper
beams, and the lower, and horizontal beams are also deformed by the effect of gravity,
whose output voltages are all around 4 V. At 9.1 Hz, the structure exhibits a horizontal
mode with voltages of 6.56 V for lower beams and 8.00 V for horizontal beam. At 11.4 Hz,
the structure exhibits a vertical mode and the horizontal beam is strongly deformed with
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an output voltage of 56 V. When α = 30◦, the horizontal mode at second peak becomes
more intense, inducing a higher voltage of 26.8 V in the lower beam. Meantime, the output
voltage of horizontal beam decreases to 37.6 V at 11.4 Hz, due to the reduction of effective
acceleration component. Figure 8c illustrated the circumstance of α = 60◦, in which the
voltage of lower beam reaches the value of 44 V, and the voltage of horizontal beam further
decreases to 24.4 V. When α = 90◦, the excitation direction is perpendicular to upper beam
plane, and the output voltage frequency response is shown in Figure 8d. Except of the three
resonant peaks corresponding to the results of mode analysis, there are additional mini
peaks near 4.4 Hz and 5.8 Hz in the curves of upper and horizontal beams when α = 30◦,
60◦, and 90◦. This may be attributed to the initial deformation induced by gravity when
the prototype is mounted onto the clamper.
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To further investigate the effect of α, the output voltage of different beams at the three
resonant peaks, namely 2.6 Hz, 9.1 Hz, and 11.4 Hz, are concluded in Figure 9. When
α = 0◦, the horizontal beam exhibits a maximum voltage of 56 V at the third resonant peak,
corresponding to the mode result in FEA. As α increases, the excitation direction deviates
further from the direction of third-order mode, causing a continuous decrease to the voltage
at the third-order resonant frequency. For the voltages at first- and second-order modes,
the voltage of lower beam increases at the beginning (α = 0◦~60◦), and then maintains at
a relative stable value at larger angles (α > 60◦). This phenomenon may be attributed to
the interdependence between the deformations of horizontal beam and upper and lower
beams, whose vibration modes are the dominators at the first two resonant frequencies. For
the upper beam, the largest voltage appears at the second frequency, whose bending mode
is gradually triggered when α increases beyond 0◦. The bending mode of upper beam
cannot be activated by the vertical vibrations, and the small output voltages are mainly
induced by the interdependence between different beams.
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Figure 9. Output voltage of different beams versus α at the first three resonant frequencies: (a) upper
beam, (b) horizontal beam, and (c) lower beam.

Figures 10 and 11 indicate the voltage results under the horizontal vibrations. The
bending mode of upper beam is activated at the frequency of 2.5 Hz when β increases
beyond 0◦, so the voltage produced by upper beam become larger and larger, reaching its
largest value of 35 V when β = 90◦. Meanwhile, the horizontal vibrations mainly triggered
the higher modes that same with a conventional U-shaped beam. Therefore, the voltages
of lower and horizontal beams are large when β = 0◦, and gradually decreases with the
increase of β.
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The optimal impedance and maximum output power of proposed prototype are also
tested. Firstly, the power is evaluated at the situation of highest output voltage of each beam.
The two piezoelectric patches on upper beams are connected in parallel and stimulated by
a 0.5 g, 2.5 Hz horizontal acceleration with β = 90◦. Figure 12a shows its output voltage
and power under varying load resistance. The optimal load resistance is 730 kΩ and with a
maximum power of 314.83 µW. The lower beams are evaluated under the condition of 0.5 g,
9.1 Hz vertical vibration, parallelly connected patches and α = 90◦. As shown in Figure 12b,
the obtained optimal load resistance and maximum power are 690 kΩ and 317.45 µW. The
horizontal beam is tested under the condition of 0.5 g, 11.4 Hz vertical vibration, parallelly
connected patches and α = 0◦. Figure 12c illustrates that the optimal load and output power
are 440 kΩ and 305.82 µW. Then, the capacity of harvesting multidirectional vibration
are also verified by loading a 0.5 g vertical excitation with α = 60◦ at the second-order
resonance frequency. The results for upper, lower and horizontal beams are (690 kΩ,
7.02 µW), (690 kΩ, 230.09 µW), (690 kΩ, 112.23 µW), respectively. These experimental
results indicate that the newly proposed U-shaped structure has good performances in
harvesting multidirectional vibrations.
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4.2. Discussions

The resonant frequency is a very important parameter for PVEHs. Herein, a simple
comparison is conducted between the frequencies obtained from analysis and experiments.
The results are shown in Table 2. It can be seen that the frequencies from FEA is a little
higher than the measured ones. This circumstance can be attributed to the mechanical and
electrical damping in the experimental prototype. Similarly, the frequencies from formulas
are much higher than the experimental results (about 40% higher), due to the absence of
proper damping ratio. It is a difficult work to model the mechanical and electrical damping
with classical theories, and the obtained formulas may become too complex to guide the
structural design. Therefore, the work focuses on the undamped condition to link the
structural parameters and resonant frequencies. This simplification will inevitably enlarge
the frequency values. Meantime, the connecting wires, adhesives for fixing PZT plates and
proof mass will increase the equivalent mass of whole prototype, which can decrease the
resonant frequencies and further expand the deviation.

Table 2. Comparison of resonant frequencies from simulation and experiment (Unit: Hz).

Orders Measured Simulated Deviation

1st 2.6 2.26 0.34
2nd 9.1 10.79 1.69
3rd 11.4 13.89 2.35

Table 3 summarizes and compares some previously reported PVEHs with our pro-
posed device in terms of normalized power density. It can be seen that the performance of
the proposed PVEH has favorable comprehensive performance in frequency, multi-model,
power and normalized volumetric power density (NVPD). Meanwhile, compared with
the proposed PVEH, most 3D PVEHs had difficulty in achieving multiple resonant peaks
in a certain frequency for every direction. Additionally, the proposed PVEH shows good
performance in terms of NVPD compared with the existing multidirectional PVEHs, and
the value can reach 0.1115 µW/(mm3g2Hz), which is close to many 1D PVEHs. Therefore,
the proposed PVEH using improved U-shaped structural as a multidimension, multi-
modal energy harvesting architecture shows potential for practical applications in the
daily environment.

Table 3. Comparison of the proposed and some existing PVEHs.

Works Excitations
(1D/2D/3D) Acc. (g) Fre. (Hz) Power

(µW)
Volu.

(mm3)
NVPD

(µW/(mm3g2Hz))

[34] 1D 0.041 27.5 93 6300 0.3139
[35] 1D 1 160 2490 880 0.0177
[23] 1D 0.1 12 442 8400 0.4383
[36] 2D 3 18 963.9 3120 0.00191
[32] 3D 0.5 23.7 9.2 4256 0.00036
[30] 3D 0.008 4.56 - 982 -
[28] 3D 0.5 8 110.3 3480 0.0158
[31] 3D 1 2.9 306 4507 0.0234

This work 3D 0.5 2.5 314 4586 0.1115

Another critical issue in developing PVEH is the device reliability. Firstly, the structural
dimension should be carefully determined to simultaneously guarantee the harvesting
performances and keep the working stress within the allowable range. With the help
of FEA software, the stress in brass substrate and piezoelectric plates are all evaluated.
Except the stress concentration in some boundaries, the simulated stress is at the level of
50–100 MPa, lower than the extension strength of materials. Hundreds of thousands of
acceleration cycles have been loaded to the PVEH prototype during characterization, and
no significant attenuation happens in the output voltage. Secondly, the wires for power
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transmission are all simply suspended in air without additional protection, which might
be a hidden trouble in device reliability. A sudden drag may break the conducting path
and make the device out of work. Therefore, additional length of wire is reserved in the
prototype to provide enough room for motion and drags. This situation is common for
many reported experimental prototypes, and may be improved by using distribution frame
and standard connectors.

4.3. Applications

First, the proposed PVEH is triggered by shaker, and the vibration parameters are
set according to the vibration in instrument panel of a vehicle [37]. Figure 13 indicates
the open-circuit voltage of horizontal beam. Under the sustained vibration, the proposed
PVEH can generate a steady voltage about 10 V and charge a 47 µF capacitor to 5 V in one
minute with the help of rectifier (LTC3588-1).
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shock stimulation to PVEH. The captured voltage is shown in Figure 14a, in which a de-
caying wave signal by attenuating free vibration with a resonant frequency of 10.8 Hz is 

Figure 13. Applying proposed PVEH in harvesting sustained vibration. (a) Output voltage of
proposed PVEH; (b) The voltage over charged capacitor.

Then, the biomechanical energy in human walking is harvested by mounting the
PVEH at waist. Stamping the feet gently in a frequency about 1 Hz will load a sustained
shock stimulation to PVEH. The captured voltage is shown in Figure 14a, in which a
decaying wave signal by attenuating free vibration with a resonant frequency of 10.8 Hz
is obtained due to electromechanical coupling and mechanical damping. As shown in
Figure 14b, a 22 µF capacitor can be charged to 2.8 V after 80 steps by slow stamping
(0–30 s) or fast stamping (30–60 s).
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Last, a wireless sensor node (NRF 52832) based on Bluetooth is connected to the output
port of a harvesting circuit (Figure 15), which manages and stores the output voltage of
proposed PVEH. The device is sustainably stimulated by the former mimetic vibration, and
the proposed system enables to drive the sensor node and transmit the temperature signal
to a cellphone. Considering the real-time output ability of proposed PVEH, the powered
wireless sensor node can work well in the situations without continuous task execution,
such as monitoring the environmental temperature/humidity. Meanwhile, with the help
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of energy storage devices (e.g., the abovementioned capacitors), the node can still get the
required power when there are no vibrations.
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5. Conclusions

This paper proposed a U-shaped structure with cross-connected beams for harvesting
energy from multidirectional vibrations in daily environment. The multidirectional and
multimodal ability of proposed PVEH originates from the combination of bi-directional
feature of conventional U-shaped beam and the additional bending direction of cross-
connected beams. A finite element simulation reveals the potential advantages of improved
structure in low resonant frequency and good responses to vibrations in different directions.
An experimental prototype is tested by a shaker system with the help of tailored clampers.
The results show that the proposed PVEH can continuously produce favorable electric
power when the vibrations are vertically or horizontally loaded with different orientation
angles. Moreover, three resonant frequencies are produced in the range of 2–15 Hz, giving
the PVEH prototype a good adaptation to the frequency spectrum of daily vibrations.
Capacitors can be charged by the energies converted from mechanical vibrations and
human motions. The stored energy can be used to power a Bluetooth-based wireless sensor
node device. These results reveal that the proposed harvester features multidirectional
and multimodal properties for the daily vibrations. Moreover, the insufficient theorical
modelling needs further investigation in future work, especially on the electromechanical
coupling analysis.
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