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Abstract: The temperature dependence of photoluminescence (PL) emission is a valuable tool for
investigating carrier localization, recombination, and carrier–phonon interactions. Herein, electron–
phonon couplings in lead sulfide (PbS) quantum dots (QDs) and lead sulfide/manganese tellurite
(PbS/MnTe) QDs is reported. The effect of temperature on the PL emission of PbS and PbS/MnTe was
explored within a temperature range of 10 to 300 K. When temperature increased, PL emission was
blue-shifted due to the confinement effect. The gradual broadening of the full width at half maximum
(FWHM) with increasing temperature indicates electron–phonon interactions. An analysis based
on the Boson model revealed that the values of the exciton acoustic phonon coupling coefficient, σ,
and temperature-dependent linewidth, γ, for PbS/MnTe were larger than those for PbS, indicating
stronger exciton longitudinal-optical–phonon coupling in the compound structure.

Keywords: electron–phonon coupling; confinement; photoluminescence; quantum dots

1. Introduction

In recent decades, semiconductor quantum dots (QDs) have attracted considerable
attention from researchers because of their enormous size-dependent electronic and optical
properties [1]. Due to their unique properties such as photostability [2] and bright and
narrow photoluminescence (PL) [3,4], QDs are attractive candidates for many future appli-
cations such as bioimaging [5], photovoltaics [6], biosensors [7], and photodetectors [8].

Lead sulfide (PbS) QDs have been studied by many researchers due to their narrow
bandgap of 0.41 eV and large exciton Bohr radius of ~18 nm, which provide strong quantum
confinement effects in large nanocrystals compared with CdS, which has a small Bohr exciton
radius of ~6 nm [9,10]. In addition, near-infrared (NIR) PbS QDs have emerged as a promising
tool for in vivo deep-tissue imaging applications [11], NIR optoelectronics [12,13], and solar
cells [14]. However, QDs possess a high surface-to-volume ratio, making them prone to surface
defect/trap formation, which acts as a non-radiative recombination center within QDs, thereby
reducing the confinement effect and material stability [15]. This problem can be solved by
stabilizing QDs by chemical modification and optimizing the fluorescence of the QD core [16].

By providing effective surface passivation, the shell layer may function as a barrier to
protect QD cores from oxidation [17]. Furthermore, by utilizing a larger bandgap material
for the shell, the charge carrier may be confined in the core region and protected from
surface interactions and the surrounding environment [18,19]. Thus, core/shell QDs will
enhance stability against photodegradation and reduce the number of surface dangling
bonds [20,21]. Manganese telluride (MnTe) with a bandgap of MnTe 1.3 eV is ideal for this
purpose [22]. PbS/MnTe belongs to type-I QDs where the electrons and holes are confined
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in the core region, thus increasing the confinement energy of QDs, which is useful for
applications such as solar cells [23,24]. To date, there have been no reports on the behavior
of PbS mixed with MnTe.

This study focuses on the influence of the PbS mixed with MnTe on the optical prop-
erties of QDs. The characteristics of PbS and PbS/MnTe QDs PL emission were assessed
in the temperature range of 10 K to 300 K. This study also discusses the morphological
characteristics of PbS and PbS/MnTe QDs fabricated via colloidal synthesis.

2. Materials and Methods
2.1. Materials

1-thioglycerol (TGL, 95%) and dithioglycerol (DTG, 95%) were purchased from Sigma
Aldrich (Irvine, UK). Lead (II) acetate trihydrate (Pb(CH3COO)2.3H2O, 99.99%), sodium sulfide
nonahydrate (Na2S·9H2O, 99.99%), manganese (II) acetate hydrate (Mn(CH3CO2)2·4H2O, 98%),
and hydrazine hydrate (N2H4, 80%) were obtained from R&M Chemicals (London, UK).
Triethylamine (99.5%) was purchased from Chemiz (Shah Alam, Malaysia) and sodium tellurite
(Na2TeO3, 95%) was purchased from Aladdin (Shanghai, China). Deionized water was used
throughout the experiments, and all chemicals were used without further purification.

2.2. Synthesis of Quantum Dots

PbS QDs were synthesized in an aqueous solution following the procedure as reported
in a previous work [25]. Briefly, Pb(CH3COO)2.3H2O (0.190 g), TGL (26 µL), and DTG
(10 µL) were dissolved in deionized water, and the mixture was stirred for 15 min under
the flow of nitrogen (N2) gas. Then, the pH of the solution was adjusted to ~10 by the
dropwise addition of triethylamine. Subsequently, the S2− precursor was prepared by
dissolving Na2S·9H2O in deionized water. Next, Pb2+ and S2− precursors were mixed
and stirred for at least 30 min to form a PbS QDs solution. The molar ratio of Pb2+ to
S2− was 1:0.3. Meanwhile, the precursor of MnTe was prepared by dissolving 0.060 g of
Mn(CH3CO2)2·4H2O, 0.032 g Na2TeO3, and 0.05 g N2H4 in deionized water. The molar
ratio of Mn2+ to Te2− was fixed at 1:1. Subsequently, the MnTe precursor was added to the
PbS solution and stirred for 30 min under the flow of N2.

2.3. Sample Characterisation

The PL measurements were carried out using a customized setup equipped with a
532 nm diode-pumped solid-state laser (CNI Laser, Changchun, China), double monochro-
mator (Horiba, Kyoto, Japan), a lock-in amplifier (Stanford Research Systems, Sunnyvale,
CA, USA), a chopper (Stanford Research System, Sunnyvale, CA, USA), an InGaAs detector
(Horiba, Kyoto, Japan), and temperature controller (LakeShore, Westerville, OH, USA).
The temperature-dependent PL was measured between 10 and 300 K in a closed-cycle He
cryostat system. For PL measurements, the samples were drop-cast onto a glass substrate.
High-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray
spectroscopy (EDX) were employed for structural characterization. The diluted PbS QDs
and PbS/MnTe QDs were drop-cast onto a Cu grid and then covered with an ultrathin-
coated film. HRTEM was used to determine the size distribution, shape, and particle size
of the QDs in the sample, and EDX was used to determine the elemental composition of
the samples.

3. Results and Discussion
3.1. High-Resolution Transmission Electron Microscopy (HRTEM)

Figure 1 shows HRTEM images of the colloidal PbS and PbS/MnTe QDs. Both samples
exhibited monodispersed crystalline and spherical particles. As shown in Figure 1a, the
average diameter of the PbS QDs is 4.1 ± 0.8 nm. The size enlargement in PbS/MnTe is
observed in Figure 1b, with an average diameter of PbS/MnTe being 4.4 ± 0.6 nm. A size
increment of ~0.4 nm was expected due to the addition of MnTe.
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Figure 1. HRTEM images of (a) PbS QDs and (b) PbS/MnTe compound QDs in an aqueous solution.

3.2. Energy Dispersive X-ray (EDX)

The EDX spectra of the PbS and PbS/MnTe samples are presented in Figure 2. The Cu
peaks observed in Figure 2a,b correspond to the copper grid used in the HRTEM, whereas
the overlapping peaks at 2.3 keV confirm the presence of Pb and S. The atomic percentage
ratio between Pb and S is 1:4 is compared to 1:0.3, as mentioned in sample preparation.
The higher amount of S, which is four times higher than Pb, might be due to the capping
ligands on the surface of PbS QDs (TGL and DTG) that have functional groups of sulfur
atoms [26]. Figure 2b supports the existence of Mn and Te, which were observed at 5.9 keV
and 3.7 keV, respectively, in addition to Pb and S.

Figure 2. EDX spectrum of (a) PbS QDs and (b) PbS/MnTe QDs.

3.3. Photoluminescence (PL)

Figure 3 shows the PL spectra of PbS and PbS/MnTe measured at temperatures
between 10 and 300 K. Generally, the PL intensity of both samples increases with a decrease
in temperature. This is probably due to the electron–phonon coupling [27]. Moreover, the
spectral peak blue-shifted with the increase in temperature for both samples, as presented
in Figure 4. The blue shift of the PL energy peaks with temperature can be explained by
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the thermal expansion of the crystal lattice and electron–phonon coupling [28]. The charge
carriers at the core of the QDs interact with lattice vibrations through phonons. Because the
charge carriers are randomly frozen into QDs states at low temperatures, the PL spectrum
represents the distribution of QDs energies. The interaction between the charge carriers
and phonons causes a uniform widening of the optical linewidth as the temperature rises.
Furthermore, the increase in phonon scattering causes a decrease in PL intensity. The blue
shift in the PL peak energy is due to thermal expansion, where strain on the QDs increases
as temperature increases.

Figure 3. PL spectra of PbS QDs and PbS/MnTe QDs at temperatures between 10 K and 300 K.

Figure 4. The variation of PL peak energy as a function of the temperature of PbS and PbS/MnTe.

As observed in Figure 4, the peak energy of the PbS QDs was shifted from 1.018 eV
to 1.059 eV. However, in PbS/MnTe, the peak energy shifted from 1.031 to 1.061 eV. This
indicates that the presence of MnTe allows the emission spectrum to be tuned to a higher
energy. Furthermore, the energy shift in PbS/MnTe is smaller than that in PbS, with an
energy shift of ~30 meV probably due to thermal expansion [29]. The thermal expansion
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coefficient can be explained by fitting data in Figure 4 using Equation (1) as presented by
Varshni [30]:

Eg(T) = Eg(0) + α
T2

β + T
(1)

where Eg(0) is the bandgap at T = 0 K, α is the temperature coefficient of the bandgap
energy, and β is a constant of the order of magnitude of the semiconductor material’s
Debye temperature. Equation (1) was modified by changing the negative sign in the
second term to the positive sign since the bandgap energy of PbS QDs increases with
the increasing temperature, which is in contrast to other materials [25]. Several factors
can contribute to the increase in the energy bandgap of the QDs with temperature. The
thermal expansions of the crystal lattice and electron–phonon coupling are included [31,32].
Consequently, the strain between the thermal expansion mismatches also causes a change
in the energy bandgap of QDs with temperature [33]. The strain on QDs increases as the
temperature rises.

The value of the temperature coefficient, α = dE/dT, can be extracted from the peak
energy versus temperature graph in Figure 4. Based on the graph, the value α for PbS
QDs is 0.15 meV/K, which is smaller than bulk PbS [34] but comparable to other PbS
QDs that were reported [32]. However, the value of α for the PbS/MnTe compound QDs
decreased slightly (α = 0.11 meV/K). Generally, the value of dE/dT is mainly attributed
to the thermal expansion coefficient and electron–phonon interactions [35,36]. In specific
terms, the value of the thermal expansion coefficient of bulk MnTe (−3.42 meV/K) was
smaller than that of PbS in bulk (0.52 meV/K). Consequently, the lower dE/dT value of
the PbS/MnTe compound QDs was caused by the negative value of the thermal expansion
coefficient of bulk MnTe. Additionally, the presence of MnTe limits the lattice dilation
of the PbS core. In addition, the electron–phonon interactions might also be a reason for
the reduction in dE/dT [34]. The electron–phonon coupling strength in semiconductor
nanostructures can be explained by the Huang–Rhys factor as in previous work [37,38].
Figure 4 shows the graph fitted using Equation (2) [39]:

Eg(T) = Eg(0) +
2SELO

exp
ELO
kBT

− 1
(2)

where Eg(0) is the value of the bandgap at 0 K, S is the Huang–Rhys factor, ELO is the
average phonon energy, and kB is the Boltzmann constant. The value of S for PbS and
PbS/MnTe obtained from the fitting results is 0.4 and 0.7, respectively, while the value of
ELO is 5 meV and 12 meV, respectively. The values obtained are in good agreement with
previous work [40]. This increase in value indicates an increase in phonon coupling in the
presence of MnTe.

Figure 5 shows the temperature dependence of FWHM for PbS and PbS/MnTe. Broad-
ening of the FWHM of both samples was observed when the temperature increased from 10
to 300 K due to electron–phonon interactions. The temperature dependence of the FWHM
can be represented by the Boson model in Equation (3):

Γ(T) = Γinh + σT + γNLO(T) (3)

where Γinh is the inhomogeneous broadening term, σ is the exciton acoustic phonon
coupling coefficient, γ is the temperature-dependent linewidth parameter characteriz-
ing the total linewidth due to the exciton longitudinal-optical (LO) phonon interaction,
and NLO(T) = exp(ELO/kBT) is the Bose–Einstein distribution of the LO phonon. All data
were fitted by setting }ωOP = 26 meV equal to the energy of LO phonons in PbS [41]. The
parameters of Γinh, σ, and γ from Equation (2) for PbS and PbS/MnTe are listed in Table 1.
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Figure 5. Temperature dependence of the FWHM for PbS and PbS/MnTe.

Table 1. Parameters obtained from Equation (2) that have been fitted as in Figure 5.

Samples Γinh (meV) σ
(
µeV K−1) γ (meV)

PbS 168.94 ± 0.64 113.93 ± 1.54 89.33 ± 1.06
PbS/MnTe 174.86 ± 0.58 117.53 ± 1.63 91.16 ± 1.17

The value of Γinh is not related to temperature because of inhomogeneous broadening,
which might be due to the fluctuations in the size, shape, and elemental composition of
QDs [42,43]. Interestingly, the values of σ and γ for PbS/MnTe were larger than those for
PbS, indicating stronger exciton LO–phonon coupling [44] in these systems. Moreover,
the higher values of σ and γ for PbS/MnTe compared with PbS are defined by noticeably
stronger quantum confinement, as previously observed [45]. Furthermore, for PL, the
decrease in PL peak intensity with temperature can be observed in Figure 6. The decreasing
intensity is related to the excitation of carriers from the QDs into non-radiative recom-
bination centers or Auger recombination. To understand the role of recombination, the
intensities of the PL spectra of PbS and PbS/MnTe were fitted using the Arrhenius equation
as in Equation (4):

I(T) =
I0

1 + Ae

−Ea
KbT

(4)

where I0 is the PL intensity at 0 K, A is the fitting coefficient, Ea is the activation energy of the
thermal quenching, and Kb is the Boltzmann constant. The value of Ea, which was obtained from
the fitting graph in Figure 6 for PbS and PbS/MnTe compound QDs, are 11.12 ± 0.61 meV and
5.51 ± 0.29 meV, respectively. The value of the thermal activation energy is influenced by the
exciton binding energy [46], potential barrier [47], surface state/trap [34], and electron–phonon
interaction [48]. The values of Ea, which were obtained from the fitting graph in Figure 6 for PbS
and PbS/MnTe compound QDs, are 11.12 ± 0.61 meV and 5.51 ± 0.29 meV, respectively. The
thermal activation energy is influenced by the exciton binding energy [37], potential barrier [38],
surface state/trap [31], and electron–phonon interactions [39]. The presence of the potential
barrier MnTe had modified the band energy where the carriers are trapped at the center of
the core region. This strongly affects the Coulombic interaction and, thus, affects the charge
carrier transport.
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Figure 6. Temperature dependence of PL intensity for PbS and PbS/MnTe.

The PL intensity showed a slight decrease with increasing temperature for both PbS
and PbS/MnTe QDs. The decrease in intensity with temperature is the cause of the
significant non-radiative carrier relaxation channels in the semiconductors [49,50]. At high
temperatures, phonon coupling is strong, and the nonradiative rate becomes high and, as a
result, the PL spectra become more sensitive to the temperature.

4. Conclusions

In summary, we investigated PL temperature dependence of PbS and PbS/MnTe QDs
at temperatures ranging from 10 to 300 K. According to these findings, increasing the
temperature had affected PL peak energy, FWHM, and intensity of both the samples. The
PL peak energies of both samples were blue-shifted with increasing temperatures because
of the increasing distance between atoms in QDs as temperature increased. Furthermore,
the value of dE/dT for the PbS/MnTe was smaller than that of the PbS core QDs due to
the crystal dilation and electron–phonon interaction. Based on FWHM analysis, it can be
concluded that PbS/MnTe QDs have stronger LO–phonon interactions than bare PbS QDs
due to the greater values of σ and γ, and this reveals that compound QDs have strong
quantum confinement effects.
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