Machine Vision-Based Method for Measuring and Controlling the Angle of Conductive Slip Ring Brushes
Abstract
:1. Introduction
2. Principles and Methods
2.1. Brush Wire Angle Forming and Measuring Device Construction
2.2. Camera Calibration
2.2.1. Camera Aberration Model
2.2.2. Calibration Methods
2.3. Pixel Equivalent
2.4. Image Pre-Processing
2.4.1. Image Filtering
2.4.2. Image Edge Detection
2.4.3. Corner Point Detection
3. Results and Discussion
3.1. Principle of Bristle Angle Measurement
3.2. Principle of Bristle Angle Measurement
3.3. Brush Wire Springback Control
3.3.1. Brush Wire Rebound Angle Value Detection
3.3.2. Brush Wire Rebound Angle Value Detection
3.4. Brushing Angle Verification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Zhang, X.; Zhu, C.; Song, K.; Zhou, T. Research on Electromagnetic Compatibility of Non-Contact Slip Ring. In Proceedings of the 2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 11–13 December 2020; pp. 318–321. [Google Scholar]
- Grandin, M.; Wiklund, U. A Wear Tolerant Slip-Ring Assembly. In Proceedings of the ICEC 2014; The 27th International Conference on Electrical Contacts, Dresden, Germany, 22–26 June 2014; pp. 1–6. [Google Scholar]
- Houenouvo, A.T.H.; Hofmann, W. Finite Element Analysis of the Contact Problem between Graphite-Brushes and—Slip Rings in Double-Fed Asynchronous Generators. In Proceedings of the International Multi-Conference on Systems, Signals Devices, Chemnitz, Germany, 20–23 March 2012; pp. 1–6. [Google Scholar]
- Hong, E.; Krishnamurthy, A.; Gregory, D.A.; Anderson, S. Optical Slip Ring for Sensor Interface Applications. In Sensors for Propulsion Measurement Applications; SPIE: Bellingham, WA, USA, 2006; Volume 6222, p. 62220E. [Google Scholar] [CrossRef]
- Wcislik, M.; Suchenia, K.; Cyganik, A. Vectorized Mathematical Model of a Slip-Ring Induction Motor. Energies 2020, 13, 4015. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Cheng, B.; Zhao, Y. Storage Life Modeling and Analysis for Contacting Slip Ring Based on Physics of Failure. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1969–1980. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Y.; Liu, H.; Zhao, L.; Xie, Z. Transmission reliability assessment of star-loaded long-life conductive slip rings. Opt. Precis. Eng. 2019, 27, 2028–2035. (In Chinese) [Google Scholar]
- Jia, Q.; Yao, P. Analysis of vacuum high and low temperature friction torque characteristics of conductive slip rings for space applications. Lubr. Seal. 2020, 45, 123–127, 140. (In Chinese) [Google Scholar]
- Jain, R.; Kasturi, R.; Schunck, B.G. Machine Vision; McGraw-Hill series in computer science; McGraw-Hill: New York, NY, USA, 1995; ISBN 978-0-07-032018-5. [Google Scholar]
- Sánchez-Jiménez, D.; Buchón-Moragues, F.; Escutia-Muñoz, B.; Botella-Estrada, R. Development of Computer Vision Applications to Automate the Measurement of the Dimensions of Skin Wounds. Proceedings 2019, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Blasco, J.; Munera, S.; Aleixos, N.; Cubero, S.; Molto, E. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest. In Measurement, Modeling and Automation in Advanced Food Processing; Hitzmann, B., Ed.; Advances in Biochemical Engineering/Biotechnology; Springer International Publishing: Cham, Switzerland, 2017; pp. 71–91. ISBN 978-3-319-60111-3. [Google Scholar]
- Voisin-Denoual, M. Monocular Visual Odometry for Underwater Navigation: An Examination of the Performance of Two Methods. Master’s Thesis, KTH Royal Institute Of Technology, Stockholm, Sweden, 2018. [Google Scholar]
- Gadelmawla, E.S. Computer Vision Algorithms for Measurement and Inspection of External Screw Threads. Measurement 2017, 100, 36–49. [Google Scholar] [CrossRef]
- Du, W.Y.; Dickerson, S.L. Passive Component Inspection Using Machine Vision. In Proceedings of the 1998 International Conference on Multichip Modules and High Density Packaging (Cat. No.98EX154), Denver, CO, USA, 17 April 1998; pp. 74–79. [Google Scholar]
- Kewei, E.; Li, D.; Yang, L.; Guo, G.; Li, M.; Wang, X.; Zhang, T.; Xiong, Z. A New Optical Flat Surface Measurement Method Based on Machine Vision and Deflectometry. In Optical Measurement Technology and Instrumentation; SPIE: Bellingham, WA, USA, 2016; Volume 10155, p. 101551X. [Google Scholar] [CrossRef]
- Hacini, M.; Akram, H.; Hachouf, F.; Akdag, H. A 2D-Fractional Derivative Mask for Image Feature Edge Detection. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing, Fez, Morocco, 22–24 May 2017. [Google Scholar]
- Othman, Z.; Abdullah, A. An Adaptive Threshold Based on Multiple Resolution Levels for Canny Edge Detection. In Proceedings of the Recent Trends in Information and Communication Technology; Saeed, F., Gazem, N., Patnaik, S., Saed Balaid, A.S., Mohammed, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 316–323. [Google Scholar]
- Dong, C.Z.; Ye, X.W.; Jin, T. Identification of Structural Dynamic Characteristics Based on Machine Vision Technology. Measurement 2018, 126, 405–416. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Wu, X.-J.; Palade, V.; Fang, W. An Effective Method of Weld Defect Detection and Classification Based on Machine Vision. IEEE Trans. Ind. Inform. 2019, 15, 6322–6333. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Huang, Y.; Tang, C.; Fatikow, S. A Novel Algorithm for Defect Extraction and Classification of Mobile Phone Screen Based on Machine Vision. Comput. Ind. Eng. 2020, 146, 106530. [Google Scholar] [CrossRef]
- Xie, X.; Zhu, C.; Xie, M. Visual Tracking Control of SCARA Robot System Based on Deep Learning and Kalman Prediction Method. Int. J. Hydromechatron. 2021, 4, 384–396. [Google Scholar] [CrossRef]
- Wang, J.; Fu, P.; Gao, R.X. Machine Vision Intelligence for Product Defect Inspection Based on Deep Learning and Hough Transform. J. Manuf. Syst. 2019, 51, 52–60. [Google Scholar] [CrossRef]
- Dong, F.; Zheng, Z.; Yuan, S.; Li, H.; Shi, Y. Development of machine vision-based micro-slot position detection system for conductive slip ring surfaces. Manuf. Technol. Mach. Tools 2018, 126–130. [Google Scholar]
- Sun, J.; Cheng, X.; Fan, Q. Camera Calibration Based on Two-Cylinder Target. Opt. Express 2019, 27, 29319–29331. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Chae, M.; Cho, J.H. Image Pre-Processing Method of Machine Learning for Edge Detection with Image Signal Processor Enhancement. Micromachines 2021, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, B.; Zhang, Y.; Cao, J.; Wang, Y. Experimental Study on Image Filtering Algorithm. In Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020; pp. 7–11. [Google Scholar]
- Mittal, M.; Verma, A.; Kaur, I.; Kaur, B.; Sharma, M.; Goyal, L.M.; Roy, S.; Kim, T.-H. An Efficient Edge Detection Approach to Provide Better Edge Connectivity for Image Analysis. IEEE Access 2019, 7, 33240–33255. [Google Scholar] [CrossRef]
- Paravolidakis, V.; Ragia, L.; Moirogiorgou, K.; Zervakis, M.E. Automatic Coastline Extraction Using Edge Detection and Optimization Procedures. Geosciences 2018, 8, 407. [Google Scholar] [CrossRef] [Green Version]
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Average |
---|---|---|---|---|---|---|---|---|---|
Block size | 9.016 | 9.032 | 8.979 | 9.087 | 9.004 | 8.983 | 9.027 | 9.094 | 9.027 |
Error | 0.016 | 0.032 | 0.021 | 0.087 | 0.004 | 0.017 | 0.027 | 0.094 | 0.027 |
Number | Theoretical Value/° | Vertex X Coordinate/Pixel | Vertex Y Coordinate/Pixel | Detection Value/° | Error/° |
---|---|---|---|---|---|
1 | 10 | 127 | 119 | 10 | 0 |
2 | 20 | 1204 | 813 | 20.04 | 0.04 |
3 | 30 | 155 | 95 | 29.95 | 0.05 |
4 | 40 | 1230 | 796 | 40.02 | 0.02 |
5 | 50 | 1181 | 775 | 50.03 | 0.03 |
6 | 60 | 614 | 106 | 59.97 | 0.03 |
Angle Forming Value/° | 1 | 2 | 3 | 4 | 5 | Mean Value of Rebound/° |
---|---|---|---|---|---|---|
5 | 3.664 | 3.525 | 3.492 | 3.667 | 3.701 | 3.609 |
10 | 6.811 | 6.771 | 6.903 | 6.845 | 6.779 | 6.821 |
15 | 8.667 | 8.562 | 8.978 | 8.523 | 8.659 | 8.677 |
20 | 9.511 | 9.403 | 9.578 | 9.593 | 9.499 | 9.516 |
25 | 9.771 | 9.821 | 9.716 | 9.668 | 9.709 | 9.737 |
30 | 10.882 | 10.929 | 10.887 | 11.172 | 10.936 | 10.961 |
Angle Forming Value/° | Average Value of Brush Wire Rebound | Calculated Value of the Compensation Model | 95% CI |
---|---|---|---|
5 | 3.609 | 3.552 | [3.527, 3.691] |
10 | 6.821 | 6.782 | [6.774, 6.868] |
15 | 8.677 | 8.638 | [8.520, 8.8339] |
20 | 9.516 | 9.465 | [9.449, 9.583] |
25 | 9.737 | 9.821 | [9.597, 9.877] |
30 | 10.961 | 11.154 | [10.936, 10.986] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, J.; Wang, X.; Tian, G.; Fan, J. Machine Vision-Based Method for Measuring and Controlling the Angle of Conductive Slip Ring Brushes. Micromachines 2022, 13, 447. https://doi.org/10.3390/mi13030447
Li J, Li J, Wang X, Tian G, Fan J. Machine Vision-Based Method for Measuring and Controlling the Angle of Conductive Slip Ring Brushes. Micromachines. 2022; 13(3):447. https://doi.org/10.3390/mi13030447
Chicago/Turabian StyleLi, Junye, Jun Li, Xinpeng Wang, Gongqiang Tian, and Jingfeng Fan. 2022. "Machine Vision-Based Method for Measuring and Controlling the Angle of Conductive Slip Ring Brushes" Micromachines 13, no. 3: 447. https://doi.org/10.3390/mi13030447
APA StyleLi, J., Li, J., Wang, X., Tian, G., & Fan, J. (2022). Machine Vision-Based Method for Measuring and Controlling the Angle of Conductive Slip Ring Brushes. Micromachines, 13(3), 447. https://doi.org/10.3390/mi13030447