Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding
Abstract
:1. Introduction
2. Dispersion Simulation
3. Device Fabrication and Experimental Setup
4. Dispersion Measurements
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, A.C.; Manolatou, C.; Schmidt, B.S.; Lipson, M.; Foster, M.A.; Sharping, J.E.; Gaeta, A.L. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 2006, 14, 4357–4362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.T.; Agarwal, A.M.; Kimerling, L.C. Nonlinear photonic waveguides for on-chip optical pulse compression. Laser Photonics Rev. 2015, 9, 294–308. [Google Scholar] [CrossRef]
- Eldada, L. Optical communication components. Rev. Sci. Instrum. 2004, 75, 575–593. [Google Scholar] [CrossRef]
- Guo, Y.; Jafari, Z.; Xu, L.; Bao, C.; Liao, P.; Li, G.; Agarwal, A.M.; Kimerling, L.C.; Michel, J.; Willner, A.E. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photonics Res. 2019, 7, 1279–1286. [Google Scholar] [CrossRef]
- Tai, K.; Hasegawa, A.; Tomita, A. Observation of modulational instability in optical fibers. Phys. Rev. Lett. 1986, 56, 135. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.T.H.; Ikeda, K.; Sun, P.C.; Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 2010, 96, 061101. [Google Scholar] [CrossRef] [Green Version]
- Boggio, J.C.; Bodenmüller, D.; Fremberg, T.; Haynes, R.; Roth, M.; Eisermann, R.; Lisker, M.; Zimmermann, L.; Böhm, M. Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization. JOSA B 2014, 31, 2846–2857. [Google Scholar] [CrossRef] [Green Version]
- Riemensberger, J.; Hartinger, K.; Herr, T.; Brasch, V.; Holzwarth, R.; Kippenberg, T.J. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 2012, 20, 27661–27669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, J.; Huo, Y.; Chen, M.; Yang, S.; Chen, H. Spatial-mode-coupling-based dispersion engineering for integrated optical waveguide. Opt. Express 2018, 26, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, K.; Wang, C.; Jaramillo-Villegas, J.A.; Xue, X.; Bao, C.; Xuan, Y.; Leaird, D.E.; Weiner, A.M.; Qi, M. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, M.; Yu, M.; Zhu, R.; Hu, H.; Loncar, M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 2019, 10, 978. [Google Scholar] [CrossRef]
- Moille, G.; Westly, D.; Orji, N.G.; Srinivasan, K. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 2021, 119, 121103. [Google Scholar] [CrossRef]
- Sahin, E.; Ooi, K.; Png, C.; Tan, D. Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip. Appl. Phys. Lett. 2017, 110, 161113. [Google Scholar] [CrossRef]
- Mata, A.; Fleischman, A.J.; Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 2006, 16, 276–284. [Google Scholar] [CrossRef]
- Abgrall, P.; Conedera, V.; Camon, H.; Gue, A.M.; Nguyen, N.T. SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis 2007, 28, 4539–4551. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Ke, M.; Wang, Y.; Lancaster, M.J. WR-3 Band Waveguides and Filters Fabricated Using SU8 Photoresist Micromachining Technology. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 629–637. [Google Scholar] [CrossRef]
- Pinto, V.C.; Sousa, P.J.; Cardoso, V.F.; Minas, G. Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities. Micromachines 2014, 5, 738–755. [Google Scholar] [CrossRef] [Green Version]
- Ariannejad, M.M.; Amiri, I.S.; Ahmad, H.; Yupapin, P. A large free spectral range of 74.92 GHz in comb peaks generated by SU-8 polymer micro-ring resonators: Simulation and experiment. Laser Phys. 2018, 28, 115002. [Google Scholar] [CrossRef]
- Dai, D.; Yang, B.; Yang, L.; Sheng, Z.; He, S. Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides. IEEE Photonics Technol. Lett. 2009, 21, 254–256. [Google Scholar]
- RSoft FemSIM; RSoft Products; Synopsys, Inc.: Mountain View, CA, USA, 2007.
- Xue, X.; Wang, P.H.; Xuan, Y.; Qi, M.; Weiner, A.M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev. 2017, 11, 1600276. [Google Scholar] [CrossRef] [Green Version]
- Schwelb, O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview. J. Lightwave Technol. 2004, 22, 1380. [Google Scholar] [CrossRef]
- Twayana, K.; Ye, Z.; Helgason, O.B.; Vijayan, K.; Karlsson, M.; Torres-Company, V. Frequency-comb-calibrated swept-wavelength interferometry. Opt. Express 2021, 29, 24363–24372. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Q.-F.; Chang, L.; Shen, B.; Wang, H.; Leal, M.A.; Wu, L.; Gao, M.; Feshali, A.; Paniccia, M. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 2021, 15, 346–353. [Google Scholar] [CrossRef]
- Fujii, S.; Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics 2020, 9, 1087–1104. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hong, Y.; Hong, J.; Lu, G.-W. Dispersion Optimization of Silicon Nitride Waveguides for Efficient Four-Wave Mixing. Photonics 2021, 8, 161. [Google Scholar] [CrossRef]
- Homoelle, D.; Wielandy, S.; Gaeta, A.L.; Borrelli, N.; Smith, C. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 1999, 24, 1311–1313. [Google Scholar] [CrossRef]
- Nordström, M.; Zauner, D.A.; Boisen, A.; Hübner, J. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications. J. Lightwave Technol. 2007, 25, 1284–1289. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.E.; Lee, Y.J.; Shin, E.; Kwon, S.-H. Mach-Zehnder interferometer refractive index sensor based on a plasmonic channel waveguide. Sensors 2017, 17, 2584. [Google Scholar] [CrossRef] [Green Version]
- Nitiss, E.; Zabelich, B.; Yakar, O.; Liu, J.; Wang, R.N.; Kippenberg, T.J.; Brès, C.-S. Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides. Photonics Res. 2020, 8, 1475–1483. [Google Scholar] [CrossRef]
- Driscoll, J.B.; Ophir, N.; Grote, R.R.; Dadap, J.I.; Panoiu, N.C.; Bergman, K.; Osgood, R.M. Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: Experimental and theoretical demonstration. Opt. Express 2012, 20, 9227–9242. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-P.; Lee, T.-H.; Chen, Y.-Y.; Wang, P.-H. Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding. Micromachines 2022, 13, 454. https://doi.org/10.3390/mi13030454
Wang S-P, Lee T-H, Chen Y-Y, Wang P-H. Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding. Micromachines. 2022; 13(3):454. https://doi.org/10.3390/mi13030454
Chicago/Turabian StyleWang, Shang-Pu, Tien-Hsiang Lee, You-Yuan Chen, and Pei-Hsun Wang. 2022. "Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding" Micromachines 13, no. 3: 454. https://doi.org/10.3390/mi13030454
APA StyleWang, S. -P., Lee, T. -H., Chen, Y. -Y., & Wang, P. -H. (2022). Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding. Micromachines, 13(3), 454. https://doi.org/10.3390/mi13030454