Review-Hysteresis in Carbon Nano-Structure Field Effect Transistor
Abstract
:1. Introduction
2. Mechanism
2.1. Surface Traps
2.1.1. Chemisorbed Water
2.1.2. Physisorbed Water
2.1.3. Silanol Groups
2.2. Interface Traps
2.2.1. Charge Injection (Tunneling at the Interface)
2.2.2. Water Ionization
2.3. Dielectric Traps
2.3.1. Avalanche
2.3.2. Tunneling and Trap Assisted Tunneling
3. Factor
3.1. Device Characteristic
3.1.1. Material Characteristics
3.1.2. Device Characteristics
3.2. Environmental Condition
3.2.1. Temperature
3.2.2. Humidity
3.3. Measurement
3.3.1. Gate Sweeping Rate
3.3.2. Range of Gate Voltage
3.3.3. Source to Drain Voltage
3.3.4. Measurement Method
4. Improvement Way
4.1. Change Composition
4.1.1. Passivation (Encapsulation)
Carbon Nanotube
Graphene
4.1.2. Deposition Layer on SiO2
Carbon Nanotube
Graphene
4.1.3. Both Passivation and Deposition
4.1.4. Change Dielectric
Carbon Nanotube
Graphene
4.2. Process Improvement
4.2.1. Thermal Annealing
4.2.2. Chemical and Physical Improvement
4.2.3. New Process
Carbon Nanotube
Graphene
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Material | ΔVDirac | ΔVDirac/ΔVDirac initial | Reference | |
---|---|---|---|---|
Deposition | APTES | 0.5 | 6% | [91] |
OTS | 0 | 0% | [27] | |
Passivation | Parylene-C (100 nm) | 6 | 60% | [38] |
Parylene-C (500 nm) | 1.3 | 37.14% | [83] | |
PMMA (spin coating) | 5.5 | 16.50% | [78] | |
PMMA (dry-transfer method) | 1 | 3.00% | [78] | |
PVDF-TrFE (≈100 nm) | 0.5 | 25% | [84] | |
CYTOP (90 nm) | 0.2 | 12.50% | [83] | |
Teflon-AF (100 nm) | 0.1 | 6.25% | [83] | |
Al2O3 (40 nm) (suspended under new process) | 9 | ∝ | [89] | |
NaPSS Coating (<10 nm) | ≈5 | ≈500% | [88] | |
Deposition and Passivation | h-BN (Bottom) (30 nm) + Teflon (Top) (40 nm) | 1–3 | 38.1% | [90] |
h-BN (Bottom) (45 nm) + Teflon (Top) (40 nm) | <1 | 19.0% | [90] | |
h-BN (Bottom) (80 nm) + Teflon (Top) (80 nm) | 0.1 | 1.9% | [90] |
Material | ΔVDirac | ΔVDirac/ΔVDirac initial | Reference | |
---|---|---|---|---|
Deposition | HMDS | ≈0 | ≈0 | [32] |
OTS | N/A | N/A | [32] | |
Parylene-C (168 nm) | ≈0 | ≈0 | [39] | |
h-BN + annealing | ≈0 | ≈0 | [102] | |
CYTOP (7 nm) | 3–4 | 17.5% | [104] | |
black phosphorus | 0 | N/A | [80] | |
Passivation | Al2O3 (30 nm) | 18 | ≈30% | [36] |
Al2O3 (30 nm) + Pulse measurement (pulse width = 10 ms) | 4.3 | 25.3% | [21] | |
Al2O3 (30 nm) + Pulse measurement (pulse width = 1 ms) | ≈7.5 | 47.5% | [12] | |
Al2O3 (40 nm) deposition after PMMA transfer | ≈5 | ≈21.9% | [92] | |
Al2O3 (40 nm) deposition before transfer (new process Al2O3 stamp) | ≈0.8 | ≈3.5% | [92] |
New Process | Specific Way | ΔVDirac | VDirac (V) | Gate Range (V) | Reference |
---|---|---|---|---|---|
Dry transfer | PMMA transfer | 1 | ≈24 | −30–30 | [78] |
Full printed | Aerosol jet printing | ≈0 | ≈5 | −10–10 | [122] |
Inverse gravure printing (bottom gate) | 2.4 | 2.3 | −40–40 | [108] | |
Inverse gravure printing (top gate) | 0.23 | −12.5 | −40–40 | [108] | |
Self-aligned shadow mask | Tapered contact pattern | 0 | ≈20 | −10–−25 | [124] |
Contactless pattern | 0 | N/A | −20–20 | [89] | |
Self-aligned metallic gate | 0 | N/A | −2–2 | [23] |
New Process | Specific Way | ΔVDirac | VDirac (V) | Gate Range (V) | Reference |
---|---|---|---|---|---|
Dry transfer | PVA stamp (PVA+PDMS) | 0.057 (±0.026) | −0.11 (±0.17) | −3–3 | [125] |
Al2O3 stamp (Al2O3 +PVA+TRT) | ≈0.8 | ≈0.967 | −40–70 | [92] | |
PEN frame (special stamp structure) in vacuum transfer | ≈0.6 | ≈0.8 | −40–40 | [95] | |
Semi-dry transfer | Kaplon Tape stamp + (NH4)2S2O8 etching copper | ≈20 | 19 | −100–100 | [53] |
Wet transfer | DI-transfer | ≈1.6 | ≈11 | −40–40 | [95] |
IPA-transfer+anneal in UHV at 300 °C | ≈0.8 | ≈6.5 | −40–40 | [95,103] | |
etching copper foil with Fecl3 rinse | ≈0 | 1–2 | −20–20 | [125] | |
Growth improvement | CVD with higher methane pressure | 4.81 | 25.64–20.83 | −100–100 | [49] |
CCVD | 16.8 (±3.36) | −6–11 | −15–15 | [61] |
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.M.; Liu, C.; Ren, W.C.; Cheng, H.M. A review of carbon nanotube-and graphene-based flexible thin-film transistors. Small 2013, 9, 1188–1205. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhen, Z.; Zhu, H. Graphene: Fundamental research and potential applications. FlatChem 2017, 4, 20–32. [Google Scholar] [CrossRef]
- Liu, W.W.; Chai, S.-P.; Mohamed, A.R.; Hashim, U. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. J. Ind. Eng. Chem. 2014, 20, 1171–1185. [Google Scholar] [CrossRef]
- Wang, J.; Mu, X.; Sun, M. The Thermal, Electrical and Thermoelectric Properties of Graphene Nanomaterials. Nanomaterials 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, A.D.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Compos. Part B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Lin, C.-H.; Chen, W.-T.; Huang, C.-H.; Woon, W.-Y.; Lin, C.-T. Temperature Effect of Low-Damage Plasma for Nitrogen-Modification of Graphene. ECS J. Solid State Sci. Technol. 2020, 9, 121007. [Google Scholar] [CrossRef]
- Vijayaraghavan, A.; Kar, S.; Soldano, C.; Talapatra, S.; Nalamasu, O.; Ajayan, P.M. Charge-injection-induced dynamic screening and origin of hysteresis in field-modulated transport in single-wall carbon nanotubes. Appl. Phys. Lett. 2006, 89, 162108. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-H.; Chen, W.-T.; Huang, C.-H.; Woon, W.-Y.; Lin, C.-T. Effects of π-electron in humidity sensing of artificially stacked graphene bilayers modified with carboxyl and hydroxyl groups. Sens. Actuators B Chem. 2019, 301, 127020. [Google Scholar] [CrossRef]
- Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Graphene Field-Effect Transistor and Its Application for Electronic Sensing. Small 2014, 10, 4042–4065. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kang, C.G.; Cho, C.; Kim, Y.; Hwang, H.J.; Lee, B.H. Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method. Carbon 2013, 60, 453–460. [Google Scholar] [CrossRef]
- Romero, H.E.; Shen, N.; Joshi, P.; Gutierrez, H.R.; Tadigadapa, S.A.; Sofo, J.O.; Eklund, P.C. n-Type Behavior of Graphene Supported on Si/SiO2 Substrates. ACS Nano 2008, 2, 2037–2044. [Google Scholar] [CrossRef]
- Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, A.Y.; Dai, H. Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors. Nano Lett. 2003, 3, 193–198. [Google Scholar] [CrossRef]
- Tries, A.; Richter, N.; Chen, Z.; Narita, A.; Müllen, K.; Wang, H.I.; Bonn, M.; Kläui, M. Hysteresis in graphene nanoribbon field-effect devices. Phys. Chem. Chem. Phys. 2020, 22, 5667–5672. [Google Scholar] [CrossRef]
- Late, D.J.; Liu, B.; Matte, H.S.S.R.; Dravid, V.P.; Rao, C.N.R. Hysteresis in Single-Layer MoS2 Field Effect Transistors. ACS Nano 2012, 6, 5635–5641. [Google Scholar] [CrossRef]
- Vu, Q.A.; Fan, S.; Lee, S.H.; Joo, M.-K.; Yu, W.J.; Lee, Y.H. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 031001. [Google Scholar] [CrossRef]
- Shu, J.; Wu, G.; Guo, Y.; Liu, B.; Wei, X.; Chen, Q. The intrinsic origin of hysteresis in MoS2 field effect transistors. Nanoscale 2016, 8, 3049–3056. [Google Scholar] [CrossRef]
- Lan, C.; Kang, X.; Meng, Y.; Wei, R.; Bu, X.; Yip, S.; Ho, J.C. The origin of gate bias stress instability and hysteresis in monolayer WS2 transistors. Nano Res. 2020, 13, 3278–3285. [Google Scholar] [CrossRef]
- Illarionov, Y.Y.; Smithe, K.K.H.; Waltl, M.; Knobloch, T.; Pop, E.; Grasser, T. Improved Hysteresis and Reliability of MoS2 Transistors with High-Quality CVD Growth and Al2O3 Encapsulation. IEEE Electron Device Lett. 2017, 38, 1763–1766. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kang, C.G.; Jung, U.J.; Kim, J.J.; Hwang, H.J.; Chung, H.-J.; Seo, S.; Choi, R.; Lee, B.H. Fast transient charging at the graphene/SiO2 interface causing hysteretic device characteristics. Appl. Phys. Lett. 2011, 98, 183508. [Google Scholar] [CrossRef]
- Ong, H.G.; Cheah, J.W.; Zou, X.; Li, B.; Cao, X.H.; Tantang, H.; Li, L.-J.; Zhang, H.; Han, G.C.; Wang, J. Origin of hysteresis in the transfer characteristic of carbon nanotube field effect transistor. J. Phys. D Appl. Phys. 2011, 44, 285301. [Google Scholar] [CrossRef]
- Shlafman, M.; Tabachnik, T.; Shtempluk, O.; Razin, A.; Kochetkov, V.; Yaish, Y.E. Self aligned hysteresis free carbon nanotube field-effect transistors. Appl. Phys. Lett. 2016, 108, 163104. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-H.; Tsai, M.-S.; Chen, W.-T.; Hong, Y.-Z.; Chien, P.-Y.; Huang, C.-H.; Woon, W.-Y.; Lin, C.-T. A low-damage plasma surface modification method of stacked graphene bilayers for configurable wettability and electrical properties. Nanotechnology 2019, 30, 245709. [Google Scholar] [CrossRef]
- Rispal, L.; Tschischke, T.; Yang, H.; Schwalke, U. Polymethyl Methacrylate Passivation of Carbon Nanotube Field-Effect Transistors: Novel Self-Aligned Process and Effect on Device Transfer Characteristic Hysteresis. Jpn. J. Appl. Phys. 2008, 47, 3287–3291. [Google Scholar] [CrossRef]
- Lee, J.S.; Ryu, S.; Yoo, K.; Choi, I.S.; Yun, W.S.; Kim, J. Origin of Gate Hysteresis in Carbon Nanotube Field-Effect Transistors. J. Phys. Chem. C 2007, 111, 12504–12507. [Google Scholar] [CrossRef]
- McGill, S.A.; Rao, S.G.; Manandhar, P.; Xiong, P.; Hong, S. High-performance, hysteresis-free carbon nanotube field-effect transistors via directed assembly. Appl. Phys. Lett. 2006, 89, 163123. [Google Scholar] [CrossRef]
- Xia, F.; Farmer, D.B.; Lin, Y.-M.; Avouris, P. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett. 2010, 10, 715–718. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y.-J.; Liu, H.; Kim, P.; Flynn, G.W.; Brus, L.E. Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Lett. 2010, 10, 4944–4951. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.J.; Kim, S.; Choi, Y.-J.; Cho, J.H.; Kim, S.H.; Song, Y.J. Inhomogeneous work-function hysteresis in chemical vapor deposition-grown graphene field-effect devices. Carbon 2021, 173, 594–599. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Zhang, J.; Zhang, H. Investigating the Mechanism of Hysteresis Effect in Graphene Electrical Field Device Fabricated on SiO2Substrates using Raman Spectroscopy. Small 2012, 8, 2833–2840. [Google Scholar] [CrossRef]
- Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; Klitzing, K.V.; Smet, J.H. Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Lett. 2010, 10, 1149–1153. [Google Scholar] [CrossRef] [Green Version]
- Nagamura, N.; Fukidome, H.; Nagashio, K.; Horiba, K.; Ide, T.; Funakubo, K.; Tashima, K.; Toriumi, A.; Suemitsu, M.; Horn, K.; et al. Influence of interface dipole layers on the performance of graphene field effect transistors. Carbon 2019, 152, 680–687. [Google Scholar] [CrossRef] [Green Version]
- Kathalingam, A.; Senthilkumar, V.; Rhee, J.-K. Hysteresis I–V nature of mechanically exfoliated graphene FET. J. Mater. Sci. Mater. Electron. 2014, 25, 1303–1308. [Google Scholar] [CrossRef]
- Liao, Z.-M.; Han, B.-H.; Zhou, Y.-B.; Yu, D.-P. Hysteresis reversion in graphene field-effect transistors. J. Chem. Phys. 2010, 133, 44703. [Google Scholar] [CrossRef]
- Kang, C.G.; Lee, Y.G.; Lee, S.K.; Park, E.; Cho, C.; Lim, S.K.; Hwang, H.J.; Lee, B.H. Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors. Carbon 2013, 53, 182–187. [Google Scholar] [CrossRef]
- Pinto, H.; Markevich, A. Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein J. Nanotechnol. 2014, 5, 1842–1848. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, C.M.; Levesque, P.L.; Paillet, M.; Lapointe, F.; St-Antoine, B.C.; Desjardins, P.; Martel, R. The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors. Adv. Mater. 2009, 21, 3087–3091. [Google Scholar] [CrossRef]
- Levesque, P.L.; Sabri, S.S.; Aguirre, C.M.; Guillemette, J.; Siaj, M.; Desjardins, P.; Szkopek, T.; Martel, R. Probing Charge Transfer at Surfaces Using Graphene Transistors. Nano Lett. 2011, 11, 132–137. [Google Scholar] [CrossRef]
- Romero, H.E.; Sumanasekera, G.U.; Mahan, G.D.; Eklund, P.C. Thermoelectric power of single-walled carbon nanotube films. Phys. Rev. B 2002, 65, 205410. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Fang, W.; Zhang, K.; Zhang, W.; Li, L.-J. Photoelectrical Response in Single-Layer Graphene Transistors. Small 2009, 5, 2005–2011. [Google Scholar] [CrossRef]
- Hong, G.; Han, Y.; Schutzius, T.; Wang, Y.; Pan, Y.; Hu, M.; Jie, J.; Sharma, C.S.; Müller, U.; Poulikakos, D. On the Mechanism of Hydrophilicity of Graphene. Nano Lett. 2016, 16, 4447–4453. [Google Scholar] [CrossRef]
- Bartosik, M.; Mach, J.; Piastek, J.; Nezval, D.; Konečný, M.; Švarc, V.; Ensslin, K.; Sikola, T. The mechanism and suppression of physisorbed-water caused hysteresis in graphene FET sensors. ACS Sens. 2020, 5, 2940–2949. [Google Scholar] [CrossRef]
- Gaiduk, A.P.; Pham, T.A.; Govoni, M.; Paesani, F.; Galli, G. Electron affinity of liquid water. Nat. Commun. 2018, 9, 247. [Google Scholar] [CrossRef]
- Veligura, A.; Zomer, P.J.; Vera-Marun, I.J.; Józsa, C.; Gordiichuk, P.I.; van Wees, B.J. Relating hysteresis and electrochemistry in graphene field effect transistors. J. Appl. Phys. 2011, 110, 113708. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Seo, Y.-S.; Park, J.-Y.; Kim, K.B.; Jung, J.; Lee, N.; Seo, Y.; Hong, S. Effect of Annealing in Ar/H2 Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate). IEEE Trans. Nanotechnol. 2015, 14, 70–74. [Google Scholar] [CrossRef]
- Liu, K.; Guo, J.; Fu, W.; Chen, J. Deep vacancy induced low-density fluxional interfacial water. Phys. Rev. Res. 2021, 3, L042014. [Google Scholar] [CrossRef]
- Veenhuis, R.B.H.; van der Wouden, E.J.; van Nieuwkasteele, J.W.; van den Berg, A.; Eijkel, J.C.T. Field-effect based attomole titrations in nanoconfinement. Lab Chip 2009, 9, 3472–3480. [Google Scholar] [CrossRef]
- Bharadwaj, B.K.; Chandrasekar, H.; Nath, D.; Pratap, R.; Raghavan, S. Intrinsic limits of channel transport hysteresis in graphene- SiO2 interface and its dependence on graphene defect density. J. Phys. D Appl. Phys. 2016, 49, 265301. [Google Scholar] [CrossRef]
- Park, R.S.; Shulaker, M.M.; Hills, G.; Liyanage, L.S.; Lee, S.; Tang, A.; Mitra, S.; Wong, H.-S.P. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution. ACS Nano 2016, 10, 4599–4608. [Google Scholar] [CrossRef]
- Franklin, A.D.; Tulevski, G.S.; Han, S.J.; Shahrjerdi, D.; Cao, Q.; Chen, H.-Y.; Wong, H.-S.P.; Haensch, W. Variability in Carbon Nanotube Transistors: Improving Device-to-Device Consistency. ACS Nano 2012, 6, 1109–1115. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, G.-W. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors. Sensors 2017, 17, 229. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Yoon, H.H.; Jin, H.; Mo, K.; Choi, G.; Lee, J.; Park, H.; Park, K. Reduction of water-molecule-induced current-voltage hysteresis in graphene field effect transistor with semi-dry transfer using flexible supporter. J. Appl. Phys. 2019, 125, 184302. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Ren, N. Manipulation of transport hysteresis on graphene field effect transistors with Ga ion irradiation. Appl. Phys. Lett. 2014, 105, 133501–133505. [Google Scholar] [CrossRef]
- Imam, S.A.; Sabri, S.; Szkopek, T. Low-frequency noise and hysteresis in graphene field-effect transistors on oxide. Micro Nano Lett. 2010, 5, 37–41. [Google Scholar] [CrossRef]
- Alexander-Webber, J.A.; Sagade, A.A.; Aria, A.I.; van Veldhoven, Z.A.; Braeuninger-Weimer, P.; Wang, R.; Cabrero-Vilatela, A.; Martin, M.-B.; Sui, J.; Connolly, M.R.; et al. Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide. 2D Mater. 2017, 4, 011008. [Google Scholar] [CrossRef] [Green Version]
- Choi, R.; Song, S.C.; Young, C.D.; Bersuker, G.; Lee, B.H. Charge trapping and detrapping characteristics in hafnium silicate gate dielectric using an inversion pulse measurement technique. Appl. Phys. Lett. 2005, 87, 122901. [Google Scholar] [CrossRef]
- Joshi, P.; Romero, H.E.; Neal, A.; Toutam, V.K.; Tadigadapa, S.A. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. J. Physics Condens. Matter 2010, 22, 334214. [Google Scholar] [CrossRef]
- Wang, H.; Laurenciu, N.C.; Jiang, Y.; Cotofana, S.D. Atomistic-Level Hysteresis-Aware Graphene Structures Electron Transport Model. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Wessely, P.J.; Wessely, F.; Birinci, E.; Riedinger, B.; Schwalke, U. Hysteresis of In Situ CCVD Grown Graphene Transistors. Electrochem. Solid-State Lett. 2012, 15, K31–K34. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Cong, C.; Shang, J.; Yu, T. Hysteresis of Electronic Transport in Graphene Transistors. ACS Nano 2010, 4, 7221–7228. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jia, K.; Su, Y.; Chen, Y.; Zhao, C. Hysteresis analysis of graphene transistor under repeated test and gate voltage stress. J. Semicond. 2014, 35, 94003. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, S.; Li, Q.; Song, X.; Wang, Z.; Zhang, X.; Besenbacher, F.; Dong, M. Interfacial icelike water local doping of graphene. Nanoscale 2019, 11, 19334–19340. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, X.; Chen, P.; Wang, J.; Li, L.-J. Effective doping of single-layer graphene from underlying SiO2 substrates. Phys. Rev. B 2009, 79, 115402. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Giubileo, F.; Santandrea, S.; Romeo, F.; Citro, R.; Schroeder, T.; Lupina, G. Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors. Nanotechnology 2011, 22, 275702. [Google Scholar] [CrossRef] [Green Version]
- Ando, T.; Fowler, A.B.; Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982, 54, 437–672. [Google Scholar] [CrossRef]
- Park, R.S.; Hills, G.; Sohn, J.; Mitra, S.; Shulaker, M.M.; Wong, H.-S.P. Hysteresis-Free Carbon Nanotube Field-Effect Transistors. ACS Nano 2017, 11, 4785–4791. [Google Scholar] [CrossRef]
- Radosavljević, M.; Freitag, M.; Thadani, A.K.V.; Johnson, A.T. Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors. Nano Lett. 2002, 2, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Hongo, H.; Nihey, F.; Yorozu, S. Relationship between carbon nanotube density and hysteresis characteristics of carbon nanotube random network-channel field effect transistors. J. Appl. Phys. 2010, 107, 094501. [Google Scholar] [CrossRef]
- Estrada, D.; Dutta, S.; Liao, A.; Pop, E. Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 2010, 21, 85702. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Xia, M.; Kocabas, C.; Shim, M.; Rogers, J.A.; Rotkin, S.V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516. [Google Scholar] [CrossRef] [Green Version]
- Na, P.S.; Kim, H.; So, H.-M.; Kong, K.-J.; Chang, H.; Ryu, B.H.; Choi, Y.; Lee, J.-O.; Kim, B.-K.; Kim, J.-J.; et al. Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Appl. Phys. Lett. 2005, 87, 093101. [Google Scholar] [CrossRef]
- Hayasaka, T.; Kubota, Y.; Liu, Y.; Lin, L. The influences of temperature, humidity, and O2 on electrical properties of graphene FETs. Sens. Actuators B Chem. 2019, 285, 116–122. [Google Scholar] [CrossRef]
- Robert-Peillard, A.; Rotkin, S.V. Modeling Hysteresis Phenomena in Nanotube Field-Effect Transistors. IEEE Trans. Nanotechnol. 2005, 4, 284–288. [Google Scholar] [CrossRef]
- Barthold, P.; Lüdtke, T.; Schmidt, H.; Haug, R. Low-temperature hysteresis in the field effect of bilayer graphene. New J. Phys. 2011, 13, 043020. [Google Scholar] [CrossRef]
- Basu, R.; Iannacchione, G.S. Dielectric hysteresis, relaxation dynamics, and nonvolatile memory effect in carbon nanotube dispersed liquid crystal. J. Appl. Phys. 2009, 106, 124312. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Xu, Z.; Wu, K.; Yu, X.; Chen, X.; Meng, Y.; Li, H.; Qiu, S.; Jin, H.; et al. Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces. ACS Appl. Mater. Interfaces 2017, 9, 14292–14300. [Google Scholar] [CrossRef]
- Wang, S.; Sellin, P. Pronounced hysteresis and high charge storage stability of single-walled carbon nanotube-based field-effect transistors. Appl. Phys. Lett. 2005, 87, 133117. [Google Scholar] [CrossRef] [Green Version]
- Avsar, A.; Vera-Marun, I.J.; Tan, J.Y.; Watanabe, K.; Taniguchi, T.; Neto, A.H.C.; Özyilmaz, B. Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors. ACS Nano 2015, 9, 4138–4145. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Islam, S.; Paul, T.; Hariharan, N.; Elizabeth, S.; Ghosh, A. A generic method to control hysteresis and memory effect in Van der Waals hybrids. Mater. Res. Express 2020, 7, 014004. [Google Scholar] [CrossRef]
- Jang, S.K.; Jeon, J.; Jeon, S.M.; Song, Y.J.; Lee, S. Effects of dielectric material properties on graphene transistor performance. Solid-State Electron. 2015, 109, 8–11. [Google Scholar] [CrossRef]
- Ha, T.-J.; Kiriya, D.; Chen, K.; Javey, A. Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer Encapsulation. ACS Appl. Mater. Interfaces 2014, 6, 8441–8446. [Google Scholar] [CrossRef]
- Jang, S.; Kim, B.; Geier, M.L.; Prabhumirashi, P.L.; Hersam, M.C.; Dodabalapur, A. Fluoropolymer coatings for improved carbon nanotube transistor device and circuit performance. Appl. Phys. Lett. 2014, 105, 122107. [Google Scholar] [CrossRef]
- Lefebvre, J.; Ding, J.; Li, Z.; Cheng, F.; Du, N.; Malenfant, P.R.L. Hysteresis free carbon nanotube thin film transistors comprising hydrophobic dielectrics. Appl. Phys. Lett. 2015, 107, 243301. [Google Scholar] [CrossRef] [Green Version]
- Dai, H. Carbon nanotubes: Opportunities and chall. Surf. Sci. 2002, 500, 218–241. [Google Scholar] [CrossRef]
- Jia, X.; McCarthy, T.J. Buried Interface Modification Using Supercritical Carbon Dioxide. Langmuir 2002, 18, 683–687. [Google Scholar] [CrossRef]
- Bradley, K.; Cumings, J.; Star, A.; Gabriel, J.P.; Grüner, G. Influence of Mobile Ions on Nanotube Based FET Devices. Nano Lett. 2003, 3, 639–641. [Google Scholar] [CrossRef]
- Muoth, M.; Döring, V.; Hierold, C. Gate hysteresis originating from atomic layer deposition of Al2O3 onto suspended carbon nanotube field-effect transistors. Phys. Status Solidi (b) 2011, 248, 2664–2667. [Google Scholar] [CrossRef]
- Kumar, S.; Dagli, D.; Dehm, S.; Das, C.; Wei, L.; Chen, Y.; Hennrich, F.; Krupke, R. Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2020, 14, 2000193. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, C.; Fasoli, A.; Scardaci, V.; Pisana, S.; Hasan, T.; Robertson, J.; Milne, W.; Ferrari, A. Hysteresis suppression in self-assembled single-wall nanotube field effect transistors. Phys. E Low-Dimens. Syst. Nanostruct. 2008, 40, 2278–2282. [Google Scholar] [CrossRef]
- Cabrero-Vilatela, A.; Alexander-Webber, J.A.; Sagade, A.A.; Aria, A.I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R.S.; Hofmann, S. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. Nanotechnology 2017, 28, 485201. [Google Scholar] [CrossRef]
- Ahn, Y.; Kim, J.; Ganorkar, S.; Kim, Y.-H.; Kim, S.-I. Thermal annealing of graphene to remove polymer residues. Mater. Express 2016, 6, 69–76. [Google Scholar] [CrossRef]
- Sagade, A.A.; Neumaier, D.; Schall, D.; Otto, M.; Pesquera, A.; Centeno, A.; Elorza, A.Z.; Kurza, H. Highly air stable passivation of graphene based field effect devices. Nanoscale 2015, 7, 3558–3564. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.K.; Kang, C.G.; Cho, C.; Lee, Y.G.; Jung, U.; Lee, B.H. Graphene transfer in vacuum yielding a high quality graphene. Carbon 2015, 93, 286–294. [Google Scholar] [CrossRef]
- Shi, X.; Dong, G.; Fang, M.; Wang, F.; Lin, H.; Yen, W.-C.; Chan, K.S.; Chueh, Y.-L.; Ho, J.C. Selective n-type doping in graphene via the aluminium nanoparticle decoration approach. J. Mater. Chem. C 2014, 2, 5417–5421. [Google Scholar] [CrossRef]
- Liu, B.; Chiu, I.-S.; Lai, C.-S. Improvements on thermal stability of graphene and top gate graphene transistors by Ar annealing. Vacuum 2017, 137, 8–13. [Google Scholar] [CrossRef]
- Deng, X.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M. Adsorption of Water on Cu2O and Al2O3 Thin Films. J. Phys. Chem. C 2008, 112, 9668–9672. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Xie, D.; Zhao, H.; Li, G.; Xu, J.; Ren, T.; Zhu, H. Tunable transport characteristics of p-type graphene field-effect transistors by poly(ethylene imine) overlayer. Carbon 2014, 77, 424–430. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Burson, K.M.; Cullen, W.G.; Adam, S.; Dean, C.R.; Watanabe, K.; Taniguchi, T.; Kim, P.; Fuhrer, M.S. Direct Imaging of Charged Impurity Density in Common Graphene Substrates. Nano Lett. 2013, 13, 3576–3580. [Google Scholar] [CrossRef]
- Xu, H.; Wu, J.; Chen, Y.; Zhang, H.; Zhang, J. Substrate Engineering by Hexagonal Boron Nitride/SiO2 for Hysteresis-Free Graphene FETs and Large-Scale Graphene p-n Junctions. Chem.-Asian J. 2013, 8, 2446–2452. [Google Scholar] [CrossRef]
- Chan, J.; Venugopal, A.; Pirkle, A.; McDonnell, S.; Hinojos, D.; Magnuson, C.W.; Ruoff, R.S.; Colombo, L.; Wallace, R.M.; Vogel, E.M. Reducing Extrinsic PerformanceLimiting Factors in Graphene Grown by Chemical Vapor Deposition. ACS Nano 2012, 6, 3224–3229. [Google Scholar] [CrossRef]
- Shin, W.C.; Seo, S.; Cho, B.J. Highly air-stable electrical performance of graphene field effect transistors by interface engineering with amorphous fluoropolymer. Appl. Phys. Lett. 2011, 98, 153505. [Google Scholar] [CrossRef]
- Unarunotai, S.; Murata, Y.; Chialvo, C.E.; Kim, H.-S.; MacLaren, S.; Mason, N.; Petrov, I.; Rogers, J.A. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl. Phys. Lett. 2009, 95, 202101. [Google Scholar] [CrossRef] [Green Version]
- Nagashio, K.; Yamashita, T.; Fujita, J.; Nishimura, T.; Kita, K.; Toriumi, A. Impacts of graphene/SiO2 interaction on FET mobility and Raman spectra in mechanically exfoliated graphene films. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 23.4.1–23.4.4. [Google Scholar] [CrossRef]
- Mayorov, A.S.; Gorbachev, R.V.; Morozov, S.V.; Britnell, L.; Jalil, R.; Ponomarenko, L.A.; Blake, P.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 2011, 11, 2396–2399. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Andrews, J.B.; Franklin, A.D. Completely Printed, Flexible, Stable, and Hysteresis-Free Carbon Nanotube Thin-Film Transistors via Aerosol Jet Printing. Adv. Electron. Mater. 2017, 3, 1700057. [Google Scholar] [CrossRef]
- Choi, W.B.; Chae, S.; Bae, E.; Lee, J.-W.; Cheong, B.-H.; Kim, J.-R.; Kim, J.-J. Carbon-nanotube-based nonvolatile memory with oxide–nitride–oxide film and nanoscale channel. Appl. Phys. Lett. 2003, 82, 275–277. [Google Scholar] [CrossRef]
- Lee, C.H.; Kang, K.T.; Park, K.S.; Kim, M.S.; Kim, H.S.; Fischer, J.E.; Johnson, A.T.; Kim, H.G. The Nano-Memory Devices of a Single Wall and Peapod Structural Carbon Nanotube Field Effect Transistor. Jpn. J. Appl. Phys. 2003, 42, 5392–5394. [Google Scholar] [CrossRef]
- Rinkiö, M.; Zavodchikova, M.Y.; Törmä, P.; Johansson, A. Effect of humidity on the hysteresis of single walled carbon nanotube field-effect transistors. Phys. Status Solidi (b) 2008, 245, 2315–2318. [Google Scholar] [CrossRef]
- Hong, X.; Posadas, A.; Zou, K.; Ahn, C.H.; Zhu, J. High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides. Phys. Rev. Lett. 2009, 102, 136808. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Xia, J.; Ferry, D.K.; Tao, N. Dielectric Screening Enhanced Performance in Graphene FET. Nano Lett. 2009, 9, 2571–2574. [Google Scholar] [CrossRef]
- Nan, H.Y.; Ni, Z.H.; Wang, J.; Zafar, Z.; Shi, Z.X.; Wang, Y.Y. The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 2013, 44, 1018–1021. [Google Scholar] [CrossRef]
- Cao, J.; Bartsch, S.T.; Ionescu, A.M. Wafer-Level Hysteresis-Free Resonant Carbon Nanotube Transistors. ACS Nano 2015, 9, 2836–2842. [Google Scholar] [CrossRef]
- Kim, K.; Regan, W.; Geng, B.; Alemán, B.; Kessler, B.M.; Wang, F.; Crommie, M.F.; Zettl, A. High-temperature stability of suspended single-layer graphene. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2010, 4, 302–304. [Google Scholar] [CrossRef]
- Jang, C.W.; Kim, J.H.; Kim, J.M.; Shin, D.H.; Kim, S.; Choi, S.-H. Rapid-thermal-annealing surface treatment for restoring the intrinsic properties of graphene field-effect transistors. Nanotechnology 2013, 24, 405301. [Google Scholar] [CrossRef]
- Cui, J.B.; Sordan, R.; Burghard, M.; Kern, K. Carbon nanotube memory devices of high charge storage stability. Appl. Phys. Lett. 2002, 81, 3260–3262. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Lee, S.; Lee, Y.G.; Kang, C.G.; Lee, B.H. Optimized integration processes to achieve highly stable CVD graphene FETs. In Proceedings of the 2014 Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 8–9 June 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, Y.G.; Jung, U.; Lee, S.; Lee, S.K.; Lee, B.H. A facile process to achieve hysteresis-free and fully stabilized graphene field-effect transistors. Nanoscale 2015, 7, 4013–4019. [Google Scholar] [CrossRef]
- Shimauchi, H.; Ohno, Y.; Kishimoto, S.; Mizutani, T. Suppression of Hysteresis in Carbon Nanotube Field-Effect Transistors: Effect of Contamination Induced by Device Fabrication Process. Jpn. J. Appl. Phys. 2006, 45, 5501–5503. [Google Scholar] [CrossRef]
- Lau, P.H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z.; Takahashi, T.; Cho, G.; Javey, A. Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates. Nano Lett. 2013, 13, 3864–3869. [Google Scholar] [CrossRef]
- Tsukagoshi, K.; Sekiguchi, M.; Aoyagi, Y.; Kanbara, T.; Takenobu, T.; Iwasa, Y. Suppression of Current Hysteresis in Carbon Nanotube Thin-Film Transistors. Jpn. J. Appl. Phys. 2007, 46, L571–L573. [Google Scholar] [CrossRef]
- Muoth, M.; Helbling, T.; Durrer, L.; Lee, S.W.; Roman, C.; Hierold, C. Hysteresis-free operation of suspended carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 589–592. [Google Scholar] [CrossRef]
- Amiri, M.H.; Heidler, J.; Hasnain, A.; Anwar, S.; Lu, H.; Müllen, K.; Asadi, K. Doping free transfer of graphene using aqueous ammonia flow. RSC Adv. 2020, 10, 1127–1131. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Oh, J.G.; Jung, D.Y.; Choi, H.; Yu, C.H.; Shin, J.; Choi, C.-G.; Cho, B.J.; Choi, S.-Y. Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom. Small 2015, 11, 175–181. [Google Scholar] [CrossRef]
Category | Mechanism | Carbon Nanotube | Graphene |
---|---|---|---|
Surface traps | Chemisorbed water | √ * Chemical reaction in moist condition as O2 + 4H+ + 4e−↔2H2O | √ Main Chemical reaction: O2 + 2H2O + 4e−↔4OH− |
Physisorbed water | √ | √ | |
Silanol groups | √ Mainly occur at the surface | √ Occurs at both surface and interface | |
Interface traps | Charge injection | √ Tunneling with protons | √ Tunneling with adsorbates |
Ionization | ○ * | √ Attachment and detachment of ionized water at the interface | |
Dielectric traps | Avalanche | √ Occurs at relative low gate voltage | √ Occurs at relative high gate voltage |
Tunneling and Trap assisted tunneling | √ | ○ |
Graphene/Substrate | Annealing Temperature | Annealing Gas Ambient | ID/IG | Dirac Point Shift |
---|---|---|---|---|
CVD graphene/SiO2 | 600 °C | Ar | 0.32 | 0.15 V (top gate) |
Exfoliated graphene/SiO2 | 400 °C | Ar | N/A | 74 V (back gate) |
CVD graphene suspended on TEM grid | ~2300 °C | Vacuum | N/A | N/A |
Exfoliated graphene/SiO2 | 300 °C | Vacuum | N/A | >80 V (back gate) |
Exfoliated graphene/SiO2 | 400 °C | Vacuum | Negligible | >60 V (back gate) |
Exfoliated graphene/SiO2 | 500 °C | Vacuum | Negligible | N/A |
CVD graphene/SiO2 | 500 °C | Vacuum | ~0.35 | N/A |
CVD graphene/SiO2 | 400 °C | N2 | ~0.3 | >150 V (back gate) |
CVD graphene/SiO2 | 560 °C | Air | ~0.59 ± 0.10 | N/A |
Exfoliated graphene/SiO2 | 560 °C | Air | ~0.61 ± 0.01 | N/A |
CVD graphene/SiO2 | 650 °C | Ar:H2 (9:1) at 133 mbar | ~0.4 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.-X.; Lin, C.-T.; Tsai, M.-H.; Lin, K.-C. Review-Hysteresis in Carbon Nano-Structure Field Effect Transistor. Micromachines 2022, 13, 509. https://doi.org/10.3390/mi13040509
Lu Y-X, Lin C-T, Tsai M-H, Lin K-C. Review-Hysteresis in Carbon Nano-Structure Field Effect Transistor. Micromachines. 2022; 13(4):509. https://doi.org/10.3390/mi13040509
Chicago/Turabian StyleLu, Yu-Xuan, Chih-Ting Lin, Ming-Hsui Tsai, and Kuan-Chou Lin. 2022. "Review-Hysteresis in Carbon Nano-Structure Field Effect Transistor" Micromachines 13, no. 4: 509. https://doi.org/10.3390/mi13040509
APA StyleLu, Y. -X., Lin, C. -T., Tsai, M. -H., & Lin, K. -C. (2022). Review-Hysteresis in Carbon Nano-Structure Field Effect Transistor. Micromachines, 13(4), 509. https://doi.org/10.3390/mi13040509