Enhancement of the Transmission Performance of Piezoelectric Micromachined Ultrasound Transducers by Vibration Mode Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Basic Structure and Working Principle of PMUT
2.2. Membrane Vibration Equation
2.3. Resonant Frequency
2.4. Sensitivity
2.5. Transmit Voltage Response Level
3. Finite Element Analysis
3.1. Proposed Structure
3.2. Modal Analysis
3.3. Static Analysis
4. Structure Optimization
4.1. Optimization of Film Radius or Side Length
4.2. Optimization of Film Thickness
5. Results and Discussion
5.1. Sensitivity and Linearity
5.2. Analysis of External Sound Pressure
5.3. Fabrication and Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duck, F.; Leighton, T. Frequency bands for ultrasound, suitable for the consideration of its health effects. J. Acoust. Soc. Am. 2018, 144, 2490. [Google Scholar] [CrossRef] [PubMed]
- Cracknell, M.F.; Cracknell, A.P. Applications of ultrasonics. Contemp. Phys. 2006, 17, 13–44. [Google Scholar] [CrossRef]
- Jung, J.; Lee, W.; Kang, W.; Shin, E.; Ryu, J.; Choi, H. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromechan. Microeng. 2017, 27, 113001. [Google Scholar] [CrossRef]
- Chiu, Y.; Wang, C.; Gong, D.; Li, N.; Ma, S.; Jin, Y. A Novel Ultrasonic TOF Ranging System Using AlN Based PMUTs. Micromachines 2021, 12, 284. [Google Scholar] [CrossRef]
- Wang, X.-B.; He, L.-M.; Ma, Y.-C.; Liu, W.-J.; Xu, W.-J.; Ren, J.-Y.; Riaud, A.; Zhou, J. Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array. Sensors 2021, 21, 1823. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Y.; Zheng, Q.; Cao, K.; Lu, Y.; Xie, H. Review of Recent Development of MEMS Speakers. Micromachines 2021, 12, 1257. [Google Scholar] [CrossRef]
- Wang, T.; Kobayashi, T.; Lee, C. Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air. Micro Nano Lett. 2016, 11, 558–562. [Google Scholar] [CrossRef]
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, A.; Cicek, P.-V.; Deslandes, D.; Nabki, F. Frequency Tuning Technique of Piezoelectric Ultrasonic Transducers for Ranging Applications. J. Microelectromech. Syst. 2018, 27, 570–579. [Google Scholar] [CrossRef]
- Gerardo, C.D.; Cretu, E.; Rohling, R. Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging. Microsyst. Nanoeng. 2018, 4, 19. [Google Scholar] [CrossRef]
- Jia, L.; He, C.; Xue, C.; Zhang, W. The device characteristics and fabrication method of 72-element CMUT array for long-range underwater imaging applications. Microsyst. Technol. 2018, 25, 1195–1202. [Google Scholar] [CrossRef]
- Caronti, A.; Caliano, G.; Carotenuto, R.; Savoia, A.; Pappalardo, M.; Cianci, E.; Foglietti, V. Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging. Microelectron. J. 2006, 37, 770–777. [Google Scholar] [CrossRef]
- Oralkan, O.; Ergun, A.S.; Johnson, J.A.; Karaman, M.; Demirci, U.; Kaviani, K.; Lee, T.H.; Khuri-Yakub, B.T. Capacitive micromachined ultrasonic transducers: Next-generation arrays for acoustic imaging? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1596–1610. [Google Scholar] [CrossRef] [PubMed]
- Dausch, D.E.; Gilchrist, K.H.; Carlson, J.B.; Hall, S.D.; Castellucci, J.B.; von Ramm, O.T. In vivo real-time 3-D intracardiac echo using PMUT arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1754–1764. [Google Scholar] [CrossRef]
- Le, X.; Shi, Q.; Vachon, P.; Ng, E.J.; Lee, C. Piezoelectric MEMS—Evolution from sensing technology to diversified applications in the 5G/Internet of Things (IoT) era. J. Micromechan. Microeng. 2021, 32, 014005. [Google Scholar] [CrossRef]
- Wang, T.; Lee, C. Zero-Bending Piezoelectric Micromachined Ultrasonic Transducer (pMUT) With Enhanced Transmitting Performance. J. Microelectromech. Syst. 2015, 24, 2083–2091. [Google Scholar] [CrossRef]
- Zamora, I.; Ledesma, E.; Uranga, A.; Barniol, N. Monolithic Single PMUT-on-CMOS Ultrasound System With +17 dB SNR for Imaging Applications. IEEE Access 2020, 8, 142785–142794. [Google Scholar] [CrossRef]
- Zamora, I.; Ledesma, E.; Uranga, A.; Barniol, N. Miniaturized 0.13-mum CMOS Front-End Analog for AlN PMUT Arrays. Sensors 2020, 20, 1205. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Kobayashi, T.; Lee, C. Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth. Appl. Phys. Lett. 2015, 106, 013501. [Google Scholar] [CrossRef]
- Tang, H.-Y.; Lu, Y.; Jiang, X.; Ng, E.J.; Tsai, J.M.; Horsley, D.A.; Boser, B.E. 3-D ultrasonic fingerprint sensor-on-a-chip. IEEE J. Solid-State Circuits 2016, 51, 2522–2533. [Google Scholar] [CrossRef]
- Przybyla, R.J.; Shelton, S.E.; Guedes, A.; Izyumin, I.I.; Kline, M.H.; Horsley, D.A.; Boser, B.E. In-Air Rangefinding with an AlN Piezoelectric Micromachined Ultrasound Transducer. IEEE Sens. J. 2011, 11, 2690–2697. [Google Scholar] [CrossRef]
- Lu, Y.; Heidari, A.; Horsley, D.A. A High Fill-Factor Annular Array of High Frequency Piezoelectric Micromachined Ultrasonic Transducers. J. Microelectromech. Syst. 2015, 24, 904–913. [Google Scholar] [CrossRef]
- Lu, Y.; Heidari, A.; Shelton, S.; Guedes, A.; Horsley, D.A. High frequency piezoelectric micromachined ultrasonic transducer array for intravascular ultrasound imaging. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 745–748. [Google Scholar]
- Jiang, X.; Tang, H.Y.; Lu, Y.; Ng, E.J.; Tsai, J.M.; Boser, B.E.; Horsley, D.A. Ultrasonic Fingerprint Sensor with Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, Y.; Tang, H.-Y.; Tsai, J.M.; Ng, E.J.; Daneman, M.J.; Boser, B.E.; Horsley, D.A. Monolithic ultrasound fingerprint sensor. Microsyst. Nanoeng. 2017, 3, 17059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Shi, Q.; Yazici, M.S.; Kobayashi, T.; Liu, Y.; Lee, C. Investigation of Broadband Characteristics of Multi-Frequency Piezoelectric Micromachined Ultrasonic Transducer (MF-pMUT). IEEE Sens. J. 2019, 19, 860–867. [Google Scholar] [CrossRef]
- Liu, W.J.; He, L.M.; Wang, X.B.; Zhou, J.; Xu, W.J.; Smagin, N.; Toubal, M.; Yu, H.; Gu, Y.D.; Xu, J.H.; et al. 3D FEM Analysis of High-Frequency AlN-Based PMUT Arrays on Cavity SOI. Sensors 2019, 19, 4450. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, P.S.; Singh, A.; Xu, C.; Lal, A. GHz Ultrasonic Chip-Scale Device Induces Ion Channel Stimulation in Human Neural Cells. Sci. Rep. 2020, 10, 3075. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, A.; Deslandes, D.; Cicek, P.V.; Nabki, F. A System in Package Based on a Piezoelectric Micromachined Ultrasonic Transducer Matrix for Ranging Applications. Sensors 2021, 21, 2590. [Google Scholar] [CrossRef]
- Sina Akhbari, F.S.; Yang, C.; Mahmoud, M.; Aqab, N.; Lin, L. Bimorph pMUT with dual electrodes. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Estoril, Portugal, 18–22 January 2015. [Google Scholar]
- Luo, G.L.; Fung, S.; Wang, Q.; Kusano, Y.; Horsley, D.A. High fill factor piezoelectric micromachined ultrasonic transducers on transparent substrates. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017. [Google Scholar]
- Chen, X.; Qu, M.; Zhu, K.; Xie, J. Dual-Frequency Piezoelectric Micromachined Ultrasonic Transducers via Beam-Membrane Coupled Structure. IEEE Electron Device Lett. 2021, 42, 919–922. [Google Scholar] [CrossRef]
- Ozaki, K.; Matin, A.; Numata, Y.; Akai, D.; Sawada, K.; Ishida, M. Fabrication and characterization of a smart epitaxial piezoelectric micromachined ultrasonic transducer. Mater. Sci. Eng. B 2014, 190, 41–46. [Google Scholar] [CrossRef]
- Ali, W.R.; Prasad, M. Piezoelectric Based MEMS Acoustic Sensor for Wide Frequency Applications. IEEE Sens. J. 2021, 21, 27352–27360. [Google Scholar] [CrossRef]
- Fei, C.; Liu, X.; Zhu, B.; Li, D.; Yang, X.; Yang, Y.; Zhou, Q. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- Reddy, J.N. Theory and Analysis of Elastic Plates and Shells; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Smyth, K.; Bathurst, S.; Sammoura, F.; Kim, S.G. Analytic Solution for N-Electrode Actuated Piezoelectric Disk with Application to Piezoelectric Micromachined Ultrasonic Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1756–1767. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, Q.; Horsley, D.A. Piezoelectric micromachined ultrasonic transducers with increased coupling coefficient via series transduction. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Sammoura, F.; Smyth, K.; Kim, S.-G.; Lin, L. An accurate equivalent circuit for the clamped circular multiple-electrode PMUT with residual stress. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013; pp. 275–278. [Google Scholar]
- Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill New York: New York, NY, USA, 1959; Volume 2. [Google Scholar]
- Xu, J.H.; Zhang, X.L.; Fernando, S.N.; Chai, K.T.; Gu, Y.D. AlN-on-SOI platform-based micro-machined hydrophone. Appl. Phys. Lett. 2016, 109, 032902. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, L.; Yang, T.; Liao, Z.; Xue, X.; Wu, B.; Zhang, W.; Zang, J.; Cui, D.; Zhang, Z.; et al. A Mathematical Model of a Piezoelectric Micro- Machined Hydrophone with Simulation and Experimental Validation. IEEE Sens. J. 2021, 21, 13364–13372. [Google Scholar] [CrossRef]
- Muralt, P.; Ledermann, N.; Baborowski, J.; Barzegar, A.; Gentil, S.; Belgacem, B.; Petitgrand, S.; Bosseboeuf, A.; Setter, N. Piezoelectric micromachined ultrasonic transducers based on PZT thin films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2276–2288. [Google Scholar] [CrossRef]
Parameters | Description |
---|---|
Diaphragm shape | Round |
Diaphragm radius | 50 μm |
Piezoelectric layer thickness | 1.2 μm |
Electrode thickness | 0.2 μm |
SiO2 thickness | 1 μm |
Si thickness | 6 μm |
Property | Symbol | AlN | Si | Mo | SiO2 |
---|---|---|---|---|---|
Density (kg/m3) | 3300 | 2329 | 10200 | 2200 | |
Poisson ratio | 0.3 | 0.28 | 0.31 | 0.17 | |
Young’s modulus (GPa) | 330 | 170 | 312 | 70 |
First Order | Second Order | Third Order | Fourth Order | |
---|---|---|---|---|
Theory | 11.087 MHz | 22.840 MHz | 37.471 MHz | 42.725 MHz |
Simulation | 12.290 MHz | 24.361 MHz | 37.639 MHz | 42.815 MHz |
Error | 1.203 MHz | 1.521 MHz | 0.168 MHz | 0.090 MHz |
Diaphragm | Resonant Frequency (MHz) | Output Voltage (mV) | Center Displacement (nm) | Sensitivity (dB) | Maximum Emission Sound-Pressure Level (dB) | Maximum External Pressure (Pa) |
---|---|---|---|---|---|---|
Circular | 8.8 | 0.088 | 0.0000149 | −221.2 | 10.45 | 0.01 |
Square | 8.1 | 0.037 | 0.0000183 | −202.4 | 9.90 | 0.0035 |
Hexagon | 10.9 | 0.042 | 0.0000093 | −197.6 | 68.47 | 2080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Fan, Z.; Duan, X.; Cui, D.; Zang, J.; Zhang, Z.; Xue, C. Enhancement of the Transmission Performance of Piezoelectric Micromachined Ultrasound Transducers by Vibration Mode Optimization. Micromachines 2022, 13, 596. https://doi.org/10.3390/mi13040596
Li P, Fan Z, Duan X, Cui D, Zang J, Zhang Z, Xue C. Enhancement of the Transmission Performance of Piezoelectric Micromachined Ultrasound Transducers by Vibration Mode Optimization. Micromachines. 2022; 13(4):596. https://doi.org/10.3390/mi13040596
Chicago/Turabian StyleLi, Penglu, Zheng Fan, Xiaoya Duan, Danfeng Cui, Junbin Zang, Zengxing Zhang, and Chenyang Xue. 2022. "Enhancement of the Transmission Performance of Piezoelectric Micromachined Ultrasound Transducers by Vibration Mode Optimization" Micromachines 13, no. 4: 596. https://doi.org/10.3390/mi13040596
APA StyleLi, P., Fan, Z., Duan, X., Cui, D., Zang, J., Zhang, Z., & Xue, C. (2022). Enhancement of the Transmission Performance of Piezoelectric Micromachined Ultrasound Transducers by Vibration Mode Optimization. Micromachines, 13(4), 596. https://doi.org/10.3390/mi13040596