Application of MnO2 Nanorod–Ionic Liquid Modified Carbon Paste Electrode for the Voltammetric Determination of Sulfanilamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Hydrothermal Synthesis of MnO2 NRs
2.3. Process of Electrode Fabrication
3. Results and Discussion
3.1. Determination of Characteristics
3.2. Electrochemical Response of SAA on the MnO2NR-IL/CPE Surface
3.3. Effect of Scan Rate
3.4. Chronoamperometric Determinations
3.5. Detection Limit and Standard Plot
3.6. Interference Studies
3.7. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Moura Junior, F.G.; Veloso, W.B.; de Oliveira Junior, J.A.; Kraatz, H.B.; da Silva, I.S.; Dantas, L.M.F. Voltammetric determination of sulfanilamide using a cobalt phthalocyanine chitosan composite. Monatsh. Chem. 2021, 152, 895–902. [Google Scholar] [CrossRef]
- Wei, X.; Xu, X.; Qi, W.; Wu, Y.; Wang, L. Molecularly imprinted polymer/graphene oxide modified glassy carbon electrode for selective detection of sulfanilamide. Prog. Nat. Sci. 2017, 27, 374–379. [Google Scholar] [CrossRef]
- de Faria, L.V.; Lisboa, T.P.; Matias, T.A.; de Sousa, R.A.; Matos, M.A.C.; Munoz, R.A.A.; Matos, R.C. Use of reduced graphene oxide for sensitive determination of sulfanilamide in synthetic biological fluids and environmental samples by batch injection analysis. J. Electroanal. Chem. 2021, 892, 115298. [Google Scholar] [CrossRef]
- Rajendiran, N.; Thulasidhasan, J. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 144, 183–191. [Google Scholar] [CrossRef]
- Lisboa, T.P.; de Faria, L.V.; Alves, G.F.; Matos, M.A.C.; Matos, R.C. Development of paper devices with conductive inks for sulfanilamide electrochemical determination in milk, synthetic urine, and environmental and pharmaceutical samples. J. Solid State Electrochem. 2021, 25, 2301–2308. [Google Scholar] [CrossRef]
- Ferraz, B.R.; Guimarães, T.; Profeti, D.; Profeti, L.P. Electrooxidation of sulfanilamide and its voltammetric determination in pharmaceutical formulation, human urine and serum on glassy carbon electrode. J. Pharm. Anal. 2018, 8, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Dubreil-Chéneau, E.; Pirotais, Y.; Verdon, E.; Hurtaud-Pessel, D. Confirmation of 13 sulfonamides in honey by liquid chromatography–tandem mass spectrometry for monitoring plans: Validation according to European Union Decision. J. Chromatogr. A 2014, 1339, 128–136. [Google Scholar] [CrossRef]
- Xu, S.; Wu, L. Determination of sulfacetamide sodium and sulfanilamide in shao tang ling ointment by high performance liquid chromatography. Se Pu Chin. J. Chromatogr. 1999, 17, 206–207. [Google Scholar]
- Herrera-Herrera, A.V.; Hernández-Borges, J.; Afonso, M.M.; Palenzuela, J.A.; Rodríguez-Delgado, M.Á. Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples. Talanta 2013, 116, 695–703. [Google Scholar] [CrossRef]
- Klokova, E.V.; Dmitrienko, S.G. Spectrophotometric determination of sulfanilamides by a condensation reaction with p-dimethylaminocinnamaldehyde. Mosc. Univ. Chem. Bull. 2008, 63, 284–287. [Google Scholar] [CrossRef]
- Wang, X.; Bryan, N.S.; MacArthur, P.H.; Rodriguez, J.; Gladwin, M.T.; Feelisch, M. Measurement of nitric oxide levels in the red cell: Validation of tri-iodide-based chemiluminescence with acid-sulfanilamide pretreatment. J. Biol. Chem. 2006, 281, 26994–27002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, B.; Lista, A.; Simonet, B.M.; Ríos, A.; Valcárcel, M. Screening and analytical confirmation of sulfonamide residues in milk by capillary electrophoresis mass spectrometry. Electrophoresis 2005, 26, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem. 2015, 185, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Zargar, B.; Parham, H.; Hatamie, A. Electrochemical investigation and stripping voltammetric determination of captopril at CuO nanoparticles/multi-wall carbon nanotube nanocomposite electrode in tablet and urine samples. Anal. Methods 2015, 7, 1026–1035. [Google Scholar] [CrossRef]
- Hatamie, A.; Echresh, A.; Zargar, B.; Nur, O.; Willander, M. Fabrication and characterization of highly-ordered Zinc Oxide nanorods on gold/glass electrode, and its application as a voltammetric sensor. Electrochim. Acta 2015, 174, 1261–1267. [Google Scholar] [CrossRef]
- Moshirian-Farahi, S.S.; Zamani, H.A.; Abedi, M. Nano-molar level determination of isoprenaline in pharmaceutical and clinical samples: A nanostructure electroanalytical strategy. Eurasian Chem. Commun. 2020, 2, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Tajik, S.; Askari, M.B.; Ahmadi, S.A.; Nejad, F.G.; Dourandish, Z.; Razavi, R.; Di Bartolomeo, A. Electrochemical Sensor Based on ZnFe2O4/RGO Nanocomposite for Ultrasensitive Detection of Hydrazine in Real Samples. Nanomaterials 2022, 12, 491. [Google Scholar] [CrossRef]
- Pwavodi, P.C.; Ozyurt, V.H.; Asir, S.; Ozsoz, M. Electrochemical sensor for determination of various phenolic compounds in wine samples using Fe3O4 nanoparticles modified carbon paste electrode. Micromachines 2021, 12, 312. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Boukherroub, R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 2022, 291, 132928. [Google Scholar] [CrossRef]
- Parham, H.; Rahbar, N. Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J. Hazard. Mater. 2010, 177, 1077–1084. [Google Scholar] [CrossRef]
- Garkani-Nejad, F.; Beitollahi, H.; Alizadeh, R. Sensitive determination of hydroxylamine on ZnO nanorods/graphene oxide nanosheets modified graphite screen printed electrode. Anal. Bioanal. Electrochem. 2017, 9, 134–144. [Google Scholar]
- Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq. 2019, 278, 672–676. [Google Scholar] [CrossRef]
- Pushpanjali, P.A.; Manjunatha, J.G.; Hareesha, N.; D’Souza, E.S.; Charithra, M.M.; Prinith, N.S. Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly(L-Leucine) layered carbon nanotube paste electrode. Surf. Interfaces 2021, 24, 101154. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; Azab, S.M. Determination of morphine at gold nanoparticles/Nafion® carbon paste modified sensor electrode. Analyst 2011, 136, 4682–4691. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.B.; Torkashvand, M. Electrooxidation behavior of warfarin in Fe3O4 nanoparticles modified carbon paste electrode and its determination in real samples. Mater. Sci. Eng. C 2015, 48, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Shahsavari, M.; Sheikhshoaie, I.; Garkani Nejad, F.; Beitollahi, H. Voltammetric detection of sumatriptan in the presence of naproxen using Fe3O4@ZIF-8 nanoparticles modified screen printed graphite electrode. Sci. Rep. 2021, 11, 24068. [Google Scholar] [CrossRef]
- Farhadi, B.; Ebrahimi, M.; Morsali, A. Microextraction and Determination Trace Amount of Propranolol in Aqueous and Pharmaceutical Samples with Oxidized Multiwalled Carbon Nanotubes. Chem. Methodol. 2021, 5, 227–233. [Google Scholar]
- Sanghavi, B.J.; Mobin, S.M.; Mathur, P.; Lahiri, G.K.; Srivastava, A.K. Biomimetic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens. Bioelectron. 2013, 39, 124–132. [Google Scholar] [CrossRef]
- Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 2020, 566, 463–472. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Askari, M.B.; Di Bartolomeo, A. Screen-Printed Electrode Surface Modification with NiCo2O4/RGO Nanocomposite for Hydroxylamine Detection. Nanomaterials 2021, 11, 3208. [Google Scholar] [CrossRef]
- Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. 2018, 811, 84–88. [Google Scholar] [CrossRef]
- Dadamos, T.R.; Teixeira, M.F. Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode. Electrochim. Acta 2009, 54, 4552–4558. [Google Scholar] [CrossRef]
- Saleh, T.A.; AlAqad, K.M.; Rahim, A. Electrochemical sensor for the determination of ketoconazole based on gold nanoparticles modified carbon paste electrode. J. Mol. Liq. 2018, 256, 39–48. [Google Scholar] [CrossRef]
- Arvand, M.; Dehsaraei, M. A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles–modified carbon paste electrode. Mater. Sci. Eng. C 2013, 33, 3474–3480. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem. 2019, 43, 2362–2367. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep. 2020, 10, 11699. [Google Scholar]
- Montazarolmahdi, M.; Masrournia, M.; Nezhadali, A. A New Electrochemical Approach for the Determination of Phenylhydrazine in Water and Wastewater Samples using Amplified Carbon Paste Electrode. J. Anal. Methods Chem. 2020, 4, 732–742. [Google Scholar]
- Tajik, S.; Beitollahi, H.; Hosseinzadeh, R.; Aghaei Afshar, A.; Varma, R.S.; Jang, H.W.; Shokouhimehr, M. Electrochemical Detection of Hydrazine by Carbon Paste Electrode Modified with Ferrocene Derivatives, Ionic Liquid, and CoS2-Carbon Nanotube Nanocomposite. ACS Omega 2021, 6, 4641–4648. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Hirsch, G.; Karna, S.P.; Srivastava, A.K. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal. Chim. Acta 2012, 735, 37–45. [Google Scholar] [CrossRef]
- Mahanthappa, M.; Yellappa, S.; Kottam, N.; Vusa, C.S.R. Sensitive determination of caffeine by copper sulphide nanoparticles modified carbon paste electrode. Sens. Actuators A Phys. 2016, 248, 104–113. [Google Scholar] [CrossRef]
- Mohammadi, S.Z.; Beitollahi, H.; Kaykhaii, M.; Mohammadizadeh, N.; Tajik, S.; Hosseinzadeh, R. Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl-[1,2,3] triazol-1-yl)-1-(naphthalen-2-yl) ethanone. Measurement 2020, 155, 1077522. [Google Scholar] [CrossRef]
- Fekry, A.M. A new simple electrochemical Moxifloxacin Hydrochloride sensor built on carbon paste modified with silver nanoparticles. Biosens. Bioelectron. 2017, 87, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron. 2016, 86, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Beitollahi, H. CuO nanoflowers modified glassy carbon electrode for the electrochemical determination of methionine. Eurasian Chem. Commun. 2021, 3, 19–25. [Google Scholar]
- Ullah, N.; Ansir, R.; Muhammad, W.; Jabeen, S. Mechanistic Approaches and Current Trends in the Green Synthesis of Cobalt Oxide Nanoparticles and their Applications. Asian J. Green Chem. 2020, 4, 340–354. [Google Scholar]
- Stanković, D.M.; Jović, M.; Ognjanović, M.; Lesch, A.; Fabián, M.; Girault, H.H.; Antić, B. Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres. Microchim. Acta 2019, 186, 532. [Google Scholar] [CrossRef]
- Goh, F.T.; Liu, Z.; Ge, X.; Zong, Y.; Du, G.; Hor, T.A. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery. Electrochim. Acta 2013, 114, 598–604. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, C.; Tian, X.; Zheng, B.; Li, Y.; Yuan, H.; Choi, M.M. Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode. Electrochim. Acta. 2013, 89, 832–839. [Google Scholar] [CrossRef]
- Ghafour Taher, S.; Abdulkareem Omar, K.; Mohammed Faqi-Ahmed, B. Green and selective oxidation of alcohols using MnO2 nanoparticles under solvent-free condition using microwave irradiation. Asian J. Green Chem. 2019, 4, 231–238. [Google Scholar]
- Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated Graphene oxide nanocomposite screen-printed electrodes. Electrochim. Acta. 2017, 227, 255–266. [Google Scholar] [CrossRef]
- Prathap, M.A.; Satpati, B.; Srivastava, R. Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sens. Actuators B Chem. 2013, 186, 67–77. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Darabi, R.; Shabani-Nooshabadi, M.; Baghayeri, M.; Karimi, F.; Rouhi, J.; Karaman, C. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem. Toxicol. 2022, 162, 112907. [Google Scholar] [PubMed]
- Bagheri, H.; Afkhami, A.; Shirzadmehr, A.; Khoshsafar, H. A new nano-composite modified carbon paste electrode as a high performance potentiometric sensor for nanomolar Tl (I) determination. J. Mol. Liq. 2014, 197, 52–57. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Qian, D.; Li, Y.; Zhang, W. Single-crystal α-MnO2 nanorods: Synthesis and electrochemical properties. Nanotechnology 2007, 18, 115616. [Google Scholar] [CrossRef]
- He, B.S.; Yan, X.H. Modifications of Au nanoparticle-functionalized graphene for sensitive detection of sulfanilamide. Sensors 2018, 18, 846. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Kuang, X.; Shen, X.; Zhu, J.; Zhang, B.; Li, H. Improvement of voltammetric detection of sulfanilamide with a nanodiamond− modified glassy carbon electrode. Int. J. Electrochem. Sci. 2019, 14, 7858–7870. [Google Scholar] [CrossRef]
- He, B.; Chen, W. Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethylfomamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide. Int. J. Electrochem. Sci. 2015, 10, 4335–4345. [Google Scholar]
- He, B.; Yan, S. Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/functionalized graphene. Int. J. Electrochem. Sci. 2017, 12, 3001–3011. [Google Scholar] [CrossRef]
- Tadi, K.K.; Motghare, R.V.; Ganesh, V. Electrochemical detection of sulfanilamide using pencil graphite electrode based on molecular imprinting technology. Electroanalysis 2014, 26, 2328–2336. [Google Scholar] [CrossRef]
Electrochemical Sensor | Method | Linear Dynamic Range | Limit of Detection | Ref. |
---|---|---|---|---|
Au nanoparticle-functionalized graphene/glassy carbon electrode | DPV | 0.1–1000 μM | 0.011 μM | [55] |
Nanodiamond/glassy carbon electrode | Square wave voltammetry | 1.2–581.4 μM | 0.94 μM | [56] |
Carboxylmultiwalled carbon nanotubes/glassy carbon electrode | Cyclic voltammetrty | 1–100 μM | 0.5 μM | [57] |
Fe3O4/functionalized Graphene/glassy carbon electrode | Amperometry | 0.5–110 μM | 0.05 μM | [58] |
Pyrrole/molecularly imprinted polymer pencil graphite electrode | DPV | 0.05–1.1 and 1.1–48 μM | 0.02 μM | [59] |
MnO2NR-IL/CPE | DPV | 0.07–100.0 μM | 0.01 μM | This Work |
Sample | Spiked | Found | Recovery (%) | R.S.D. (%) |
---|---|---|---|---|
Human urine | 0 | - | - | - |
4.5 | 4.6 | 102.2 | 3.3 | |
6.5 | 6.3 | 97.0 | 2.8 | |
8.5 | 8.4 | 98.8 | 1.8 | |
10.5 | 10.6 | 100.9 | 2.3 | |
0 | - | - | - | |
Blood serum | 5.0 | 4.9 | 98.0 | 2.2 |
7.0 | 7.3 | 104.3 | 3.5 | |
9.0 | 8.9 | 98.9 | 1.9 | |
11.0 | 11.2 | 101.8 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beitollahi, H.; Tajik, S.; Di Bartolomeo, A. Application of MnO2 Nanorod–Ionic Liquid Modified Carbon Paste Electrode for the Voltammetric Determination of Sulfanilamide. Micromachines 2022, 13, 598. https://doi.org/10.3390/mi13040598
Beitollahi H, Tajik S, Di Bartolomeo A. Application of MnO2 Nanorod–Ionic Liquid Modified Carbon Paste Electrode for the Voltammetric Determination of Sulfanilamide. Micromachines. 2022; 13(4):598. https://doi.org/10.3390/mi13040598
Chicago/Turabian StyleBeitollahi, Hadi, Somayeh Tajik, and Antonio Di Bartolomeo. 2022. "Application of MnO2 Nanorod–Ionic Liquid Modified Carbon Paste Electrode for the Voltammetric Determination of Sulfanilamide" Micromachines 13, no. 4: 598. https://doi.org/10.3390/mi13040598
APA StyleBeitollahi, H., Tajik, S., & Di Bartolomeo, A. (2022). Application of MnO2 Nanorod–Ionic Liquid Modified Carbon Paste Electrode for the Voltammetric Determination of Sulfanilamide. Micromachines, 13(4), 598. https://doi.org/10.3390/mi13040598