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Abstract: Micro-hotplates (MHPs) have become widely used basic structures in many micro sensors
and actuators. Based on the analysis of the general heat transfer model, we propose a new MHP
design based on a transversal composite dielectric layer, consisting of different heat transfer materials.
Two general proven materials with different thermal conductivity, Si3N4 and SiO2, are chosen to
form the composite dielectric layer. An annular heater is designed with a plurality of concentric
rings connected with each other. The relationship between MHP performance and its geometrical
parameters, including temperature distribution and uniformity, thermal deformation, and power
dissipation, has been fully investigated using COMSOL simulation. The results demonstrate that the
new planar MHP of 2 µm thick with a Si3N4-SiO2 composite dielectric layer and annular heater can
reach 300 ◦C at a power of 35.2 mW with a mechanical deformation of 0.132 µm, at a large heating
area of about 0.5 mm2. The introduction of the composite dielectric layer effectively reduces the
lateral heat conduction loss and alleviates the mechanical deformation of the planar MHP compared
with a single SiO2 dielectric layer or Si3N4 dielectric layer.

Keywords: micro-hotplate; thermal simulation; temperature distribution; mechanical deformation

1. Introduction

Micro-hotplates (MHPs) fabricated by micromachining processes have proven to have
the advantages of miniaturization, low power consumption, fast thermal response, and
easy integration with other devices [1], which have become a widely used basic structure
in micro gas sensors, micro gas flowmeters, infrared light emitters and sensors, and micro
thermometers [2–4]. In these devices, MHPs are performed to provide mechanical supports
with a suitable operating temperature for functional materials or structures [5]. Research
on MHPs dates back to the 1990s and deals with the simulation, manufacturing processes,
heater shape and materials of heaters, structures and materials of plates, and heat transfer
theory. The aim is to pursue miniaturization, low power consumption, uniform temperature
distribution, good mechanical stability, and easy manufacturing of MHPs [6–9].

Fabrication technology is the most critical to batch production, which has contributed
to the tremendous development of surface micromachining and bulk micromachining
technologies [10–15]. Surface micromachining has the advantages of low fabrication cost
and easy integration with CMOS (Complementary Metal Oxide Semiconductor) circuits,
thus giving birth to many microbridge MHPs, cantilever MHPs, and microbridge-supported
MHPs. However, with the development of bulk micromachining, the above structures can
be easily fabricated by silicon etching processes, which have been standard micromachining
processes. Today, many new fabrication methods have been proposed to make MHPs more
reliable and improved. A Polymorphs technology can eliminate the need for alignment
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masks during post-processing, making the fabrication of MHPs easier, even though the
design rules are intentionally violated [16]. A controlled two-step gate notch-etching
method improves the performance of MHPs in gas sensors [17]. Simultaneously, a modified
front-end etching process was introduced to fabricate a bridge-type MHP with a compact
active region of 4 µm × 8 µm powered less than 10 mW [18].

Based on the rapidly developing micromachining technology, various geometries of
MHPs have been investigated in literature, as shown in Table 1. It can be observed that
planar-type (also called membrane type) MHPs can provide larger active heating areas
than suspended type (also called microbridge type) MHPs. Here, planar MHPs usually
have their active heating areas completely attached to the base, while for suspended MHPs,
the active heating areas are supported by 1 to n bridges [19–22], such as cantilever (one
anchorage point), bridge type (two anchorage points), and plate hanging by several bridges
(more than two). The most typical suspended MHP is the four-bridge supported plate,
showing a good symmetry and very low power for heating. However, as they are anchored
by several points, the suspended-types are easily damaged by the post fabrication process,
which reduces the yield and reliability of devices. Accordingly, the planar-type structure
shows good supportive performance, but its heating power is significantly high due to
the absence of any thermal isolation window. More support bridges or thermal isolation
windows were used to improve the mechanical properties of the suspended structure, but
the disadvantage is the increased fabrication difficulty [23,24]. Silicon island structures
have also been used for planar MHPs to obtain better temperature uniformity and better
mechanical properties, but heat losses are increased [25]. Hence, new planar MHP designs
with high heating efficiency and good mechanical support are critical.

Table 1. Comparison of various MHP designs that have been reported in literature. If exact values are
not given, they have been deduced from the information given in the specific literature. (Note: For
suspended devices, the total device area is often not given and is therefore not included for some of
the devices).

Year Active Area
(1000 µm2)

MHP Area
(1000 µm2)

Power at
300 ◦C (mW)

Power/
Heater Area 1

Already
Fabricated?

Planar/
Suspended

Material
of Heater

Material
of Plate Ref.

2002 10 30 3 Yes Suspended Poly Si SiO2 [26]
2010 140.6 13.5 0.096 Yes Suspended 3C-SiC AlN/SiC [27]
2012 108 1000 22.68 0.21 Yes Planar Molybdenum SiO2/SiN [28]
2014 10 19 1.9 Yes Suspended W SiO2 [29]
2014 10 267.3 27.66 (367 ◦C) 2.77 No Planar Pt SiO2/Si3N4 [30]
2016 846.4 100 0.118 Yes Planar ITO Si3N4 [19]
2016 17.6 250 14 0.79 Yes Planar W SiO2 [20]
2018 250 4 0.016 No Suspended Pt Si3N4/SiC [21]
2018 6.4 22.5 10 1.56 Yes Suspended Pt SiO2 [22]
2018 10 90 13 1.3 Yes Suspended W SiO2/Si3N4 [23]
2018 101.7 540 8 0.079 No Suspended Pt SiO2/Si3N4 [31]
2019 0.032 7 218.75 Yes Suspended Pt Si [18]
2019 250 490 30 0.12 Yes Planar Pt SiN/SiO2 [32]

Thiswork 553.9 6154.4 35.2 0.064 No Planar Pt SiO2-Si3N4

1 The unit of “Power/Heater area” is mW/1000 µm2.

Pattern shape and material of the heater have been issues of MHP. The shape of the
heaters has been investigated, affecting the temperature distribution of MHP. An optimized
serpentine heater with up to 86.64% coverage on a rectangular film has been reported [30].
Two semicircular heaters have also been designed on a circular plate to achieve a tempera-
ture of 300 ◦C at 8 mW [33]. Heater materials, such as tin, polysilicon (poly-Si), molybde-
num, platinum (Pt), tungsten (W), and some alloys, have been explored [28,29,31,32,34–36].
Ideally, the heater material should have high thermal conductivity, low thermal expansion
coefficient, high melting point, and compatibility with standard silicon manufacturing
processes. Polysilicon has been the most widely used material for heaters due to its com-
patibility with CMOS processes. However, the resistivity of heaters is unstable due to the
instability of polysilicon grains at high temperatures. Platinum has proven to be a good
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candidate for MHP heaters because of its satisfied performances, and has been widely
adopted, as shown in Table 1.

Dielectric layers for heaters are often fabricated as interlayers, which are actually the
main part of the MHP. SiO2 and Si3N4 are often chosen as the dielectric materials because
of their well-established processes in most MHPs [29]. In recent years, new materials such
as SiC, polyamide and porous silicon have also been proposed for MHPs as insulation
layers [27,37,38], but the fabrication processes of these materials are too complex and still
in research. Because SiO2 and Si3N4 have internal and tensile stresses, respectively, they
can mitigate the thermal deformation of MHPs if used in combination [39,40]. Therefore,
most MHPs use vertical-layered SiO2/Si3N4 as plate materials, as shown in Table 1.

Simulation has proven to be a useful technique to study, not only electrical, but also
heat transfer and mechanical properties, with the help of finite element analysis software,
such as ANSYS, COMSOL, and ConventorWare [41,42]. An electrical heating model is
generally adopted to simulate the operation of MHPs [26]. Based on the designed model, the
effect of the thickness of the Si3N4 layer on the temperature, mechanical stability, and power
consumption of the MHP can be predicted by electro-thermo-mechanical multiphysics field
simulations [43]. An array of MHPs can be analyzed and the dimensions of MHPs can also
be optimized [44]. Various heater geometries were simulated to determine which geometry
would provide a more uniform temperature distribution [45]. Parameters of MHPs were
optimized by simulation, such as the thickness of the MHP substrate [46] and size of the
insulation nitride area of the MHP [47]. Several simulated MHP designs have been listed
in Table 1 for comparison, which further proves simulation to be a very effective way to
optimize and verify MHP designs.

Inspired by the above literature review, it can be observed that MHPs with high heating
efficiency and good mechanical support are still hot research points. Planar-type MHPs
demonstrate better mechanical support and stability, while have more power consumption
than the suspended-type. To resolve this dilemma, new heat isolation approach and
structure design are demanded. This paper proposes a new planar MHP design introducing
a transverse composite dielectric layer with an annular platinum heater based on the most
common and fundamental micromachining process. A systematic simulation of the design
is performed with the COMSOL software. Section 2 presents the thermal analysis model
and design methodology. Section 3 shows the validation of the model and the detailed
results of the parameter simulation. Finally, Section 4 concludes the paper.

2. Analytical Models and Design Methods
2.1. Heat Transfer Model of MHP

Currently, most researchers believe that the heat transfer paths of MHP can be divided
into three main categories: conduction, radiation, and convection, as shown in Figure 1a [48].
Assuming that the total heat of the MHP is defined as Qtot, the ambient temperature is Tamb,
and the operating temperature of the MHP is Thot, according to Fourier’s heat transfer law
and Stefan-Boltzmann’s law, the simplified MHP heat transfer equation, including thermal
radiation and convection, is defined as: [49,50]:

Qtot = Gmλm(Thot − Tamb) + (Gairλair + Gair f h f )(Thot − Tamb) + GradKBεT(T4
hot − T4

amb) (1)

where λm and λair are the thermal conductivity of the membrane material and air, re-
spectively. h f is the air convection coefficient, εT is the radiation coefficient, and KB is
the Boltzmann coefficient. Gm is the geometric factors of heat conduction related to the
membrane structure. For a multi-layer composite membrane of radius rm embedded with
a heating zone of radius rh,

Gm =
2πd

ln
(

rm
rh

) (2)
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where d represents the thickness of the membrane [49]. In addition, the thermal conductivity
of a membrane composed with n layers is defined as

λm =
∑n

i=1 λi × di

∑n
i=1 di

(3)

where di and λi are the thickness and the thermal conductivity of the ith layer, respec-
tively. Generally, Gair = 4πrh, Gair f = πr2

h, and Grad are geometric factors related to the
membrane structure corresponding to the thermal conduction of air, convection of air, and
thermal radiation.
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The air convection coefficient h f can be obtained by Equation (4), where Nu represents
the Nusselt number [51].

h f =
Nuλair

rh
(4)

For a free convection heat transfer, the Nusselt number is related to the thermal
conductivity and heat capacity of the air, the air density, temperature, and the geometric
factors of the MHP, which is still a quite nonlinear and controversial term. Most studies of
the MHPs empirically set this value as a constant term [52].

Based on these models, heat conduction in composite media and heat transfer in
microscale air gaps were analyzed and investigated [53,54]. It has been noted that the effect
of heat loss due to radiation can be neglected; heat conduction should be the dominant
form of heat transfer when the temperature is below 500 ◦C [55,56]. Outer air flow greatly
influences the thermal convection, which mostly affects the air convection coefficient. For
simplicity, natural air convection is usually considered in experiments [49,54].

2.2. Thermal Deformation Computation

Based on the heat transfer model, temperature distribution of the MHP can be acquired
when inputting the heating power, Qtot. However, due to the different thermal expansion
of materials, the thermal stress caused by the temperature variation may lead to large
thermal strain, according to the thermal stress and mechanical static equation, as shown in
Equations (5) and (6) [57].

σ = E(εT − ε0) (5)

εT = α∆T (6)

where εT , ε0, E, α, and ∆T are the strain at temperature T, initial thermal strain, Young’s
modulus matrix, thermal expansion coefficient, and temperature difference, respectively.

This thermal strain is related with the displacement of material, which is usually
expressed by the Cauchy equation. Its simplified form is shown as Equation (7) [58],

εall =
1
2
[(∇→u )T +∇→u ] (7)
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where εall represents the total strain (generally approximates to the εT if only the thermal
strain is considered),∇→u represents the displacement vector, and T represents the transpose.
This displacement is defined as the mechanical deformation, or thermal deformation, as it
is majorly caused by the temperature variation.

The basic thermal transfer and thermal deformation models have been integrated
into the multiphysics software of COMSOL. Hence, the temperature distribution, thermal
deformation, and power consumption of the designed MHPs are simulated by COMSOL
in the following sections.

2.3. Presumption Verification

More intuitively, heat conduction in the MHPs can be equated to the longitudinal
interlayer conduction and transverse conduction, as shown in Figure 1b. Combining the
heat transfer equation, it can be concluded that reducing the heat contact area or heat
transfer coefficient of MHP can prevent the heat conduction loss.

To verify the presumption, three MHP models (Types A–C) were simulated with
COMSOL at the specific power consumption of 35 mW, as shown in Table 2. Their active
heating areas were uniformly set to 800 µm × 800 µm, consisting of a 1.4 µm thick SiO2
support layer and 0.6 µm thick Si3N4 dielectric layer. The same Pt heater was embedded in
the Si3N4 dielectric layer. The other dimensions and parameters remained the same for all
models, except with the addition of air windows.

Table 2. Comparison of MHPs at 35 mW heating power.

Type Structure Heat Area (µm) Center
Temperature (◦C)

Maximum
Deformation (µm)

A
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Type A is a most common kind of planar MHP with two vertical layers of SiO2 and
Si3N4, reaching 158 ◦C at 35 mW heating power, as shown in the first row of Table 2.
However, if 2 and 4 etching windows are added to the plate, which is Type B and C, higher
temperatures of 174 ◦C and 199 ◦C will be reached at the same heating power, respectively.
Obviously, this demonstrates that the etched window greatly isolates the transverse heat
conduction in the plate. These are actually the suspended type (microbridge) MHPs.
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However, mechanical deformation also increases severely when the window is in-
creased from Type A to Type C. Thermal deformation will cause a degradation of the
functional material and definitely leads to a low stability and short lifetime of the device.
This dilemma between temperature and mechanical deformation inspired the design of
Type D in Table 2. By designing a transverse composite dielectric layer with different
thermal conductivity, planar type MHPs can reach higher temperatures and lower thermal
deformation with the same heating power. Novel materials with a low thermal conductivity
can be introduced, but the fabrication process may be complexed. It is worth noting that
SiO2 and Si3N4 are widely used in MHPs as the most common materials, but with different
thermal conductivity.

2.4. Structural Design of the New MHP

The newly designed planar type MHP with composite dielectric layer is shown in
Figure 2. The plate contains a SiO2 support layer, a composite dielectric layer of Si3N4 and
SiO2, an annular heater, and a comb interdigital electrode. SiO2 and Si3N4 are two very
basic and mature dielectric materials in silicon fabrication processes, but they exhibit very
different thermal conductivity properties. Their thermal conductivity is 1.4 Wm−1K−1 and
20 Wm−1K−1, respectively, while their thermal expansion coefficients are 0.5 × 10−6 K−1

and 2.3 × 10−6 K−1, respectively. Since Si3N4 shows better thermal conductivity and
expansion than SiO2, it is designed as a central heating zone for thermal conductance,
while the SiO2 layer is designed around it for better thermal insulation. Hence, a composite
dielectric layer with Si3N4 encircled by the SiO2 layer is obtained. The layers of MHP are
shown in Figure 2a.
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Figure 2b,c shows the planar view of the Si3N4-SiO2 composite dielectric layer with the
annular heater and the cross-sectional view of the MHP on the transverse line A-A’. Initially,
the chip size was set to 4000 µm × 4000 µm, the total plate thickness was set to 2 µm,
including the SiO2 support layer (1.4 µm thick) and the Si3N4-SiO2 composite dielectric
layer (0.6 µm thick). The radius rm of the Si3N4 zone of the dielectric layer was initially
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designed to be 1000 µm. The Pt heater was embedded in the dielectric layer with an initial
radius rh of 420 µm, to balance the power consumption and heating area demands [59]. In
addition, its width w and space i were initially set to 30 µm.

2.5. The Process Design

The simplified MHP fabrication steps are designed as follows and shown in Figure 3.
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(a) Thermal oxidation of the silicon substrate, and the deposition of low-stress 1.4 µm
thick SiO2 as the support layer.

(b) Sputtering of 0.2 µm thick Pt, photo-lithography, and etching of Pt as the heater.
(c) Patterning the circular Si3N4 zone and deposition of the low-stress 0.6 µm thick

Si3N4 layer.
(d) Patterning the outer SiO2 layer and deposition of low-stress 0.6 µm thick SiO2 to

compose the dielectric layer with Si3N4 in step (c).
(e) Patterning, sputtering, and lift-off Au as the comb electrode.
(f) Patterning and back-side etching to release the planar MHP structure.
In order to enhance the adhesion of Pt, a layer of TiO2 with a thickness of 5–15 nm

is usually sputtered before and after Pt deposition [33]. As there will be great stress at
the Si3N4-SiO2 junction in the composite dielectric layer, high temperature annealing is
required to relieve the stress after step (d). In addition, to remove the overlap at the
interface of the composite film, Chemical Mechanical Polishing (CMP) is required for
planarization. The total fabrication steps of the MHP are completely general and standard
MEMS processes.

3. Simulation and Optimization
3.1. Validation of the MHP Model

As shown in Figure 2, the designed MHP is based on a silicon substrate with a
thickness of 250 µm. The material parameters used are shown in Table 3, and the heat
convection coefficient of air h f was set to 30 (W m−2·K−1) [49]. Unless stated separately,
the input power of the solid heat transfer mode of COMSOL was set to constant in the
following experiments.

For the MHP shown in Figure 2, the temperature distribution of the MHP at a power
of 34 mW was obtained by the COMSOL software. The center temperature of the MHP
was 319 ◦C, the edge temperature of the MHP was 24 ◦C, and the temperature difference
∆T is 295 ◦C. Based on the heater transfer models in Section 2, the theoretical solid heat
conduction power, air heat conduction power, and air heat convection power consume
27.8 mW, 0.7 mW, and 4.9 mW, respectively. The total theoretical power consumption is
33.4 mW, which is close to the input power in COMSOL.
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Table 3. Material properties used in the simulations [26,42,60–63].

Material Pt Si SiO2 Si3N4 Au

Thermal conductivity
coefficient (W m−1 K−1) 71.6 130 1.4 20 317

Range of thermal conductivity
coefficient found in literature

(W m−1 K−1)
70–72 130 1.2–1.4 9–30 317

Electrical conductivity
(S m−1) 8.9 × 106 1 × 10−12 1 × 10−10 1 × 10−2 45.6 × 106

Heat capacity (J Kg−1 K−1) 133 703 730 700 129
Density (Kg m−3) 24,150 2329 2200 3100 19,300

Thermal expansion
coefficient (10−6 K−1) 8.80 2.6 0.5 2.3 14.2

3.2. Dielectric Layer Analysis

The temperature distribution and thermal deformation of the Si3N4-SiO2 composite
dielectric layer-based MHP were analyzed by establishing the physical field of solid heat
transfer. Results are shown in Figure 4a,b. For comparison, the dielectric layers of pure
SiO2 and pure Si3N4 were also explored. Excepting the material of the dielectric layer, all
other setups are the same as in Figure 2. Heating power was set to constant 41 mW. It can be
observed that the plate embedded with a pure SiO2 dielectric layer reaches 500 ◦C, but has
a non-uniform temperature distribution in the high temperature region and a mechanical
deformation of up to 0.188 µm. The plate embedded with a Si3N4 dielectric layer shows a
more uniform temperature distribution, but the maximum temperature is below 200 ◦C
and the mechanical deformation is only 0.08 µm. For the plate with a composite layer, the
maximum temperature exceeds 300 ◦C while having a smooth distribution, which verifies
that the external SiO2 prevents the transverse heat conduction, while Si3N4 has a better heat
transfer in the central region. In terms of mechanical deformation, it is noteworthy that the
maximum deformation of the plate with the composite layer is reduced to 0.155 µm, which
is about 82% of the MHP with a pure SiO2 dielectric layer. Moreover, the deformation
gradient in the central region is quite less pronounced compared to the SiO2 layer, which
suggests that the Si3N4 in the center of the composite layer mitigates the deformation
caused by thermal stress.
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3.3. The Heater Design

The heat source of MHP is Joule heat generated when the DC-current flows through
the Pt resistor. The designed annular heater consists of multiple concentric rings and was
compared with the generally used zigzag heater shape. Figure 5a,b shows the temperature
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distribution of the two kinds of heater. The width and interval were set as 30 µm, thickness
was 0.2 µm, and the total length was 9400 µm. The other parameters of the MHPs were set
the same, and the maximum temperature of the MHP was set at 450 ◦C. Figure 5c more
visually shows that both heaters demonstrate a similar temperature distribution, while at
the central zone, the annular heater demonstrates a smoother temperature distribution.
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Figure 5. Temperature distribution of (a) zigzag heater, (b) annular heater, and (c) the central region
with an enlarged view. The width and interval of the two heaters were set as 30 µm, the thickness
was 0.2 µm, and the total length was 9400 µm. The input power was set to 41 mW.

The effects of heater resistive track width and gap on the temperature distribution
were also studied at the same power of 41 mW, and the heater radius was set as 420 µm
constant. Fixed power consumption is often used in literature to study the effect of size
on MHP [42,64–66], in order to investigate the heating efficiency. Figure 6a shows the
temperature distribution at the transverse line for heater widths of 50 µm–0 µm at the
constant gap, with corresponsive resistance values of 103 Ω–517 Ω. When the heater width
is less than 30 µm, the uniformity of the central temperature distribution is lower. There
is a good high temperature distribution when the width is set to 50 µm, and its resistance
decreases to about 100 Ω. For narrower width, the uniformity is greatly descended. In
addition, heaters that are too narrow are more likely to be damaged during fabrication.
Figure 6b shows that a wider gap between the resistive tracks of the heater will also increase
the temperature. Because the radius of the outermost layer of the annular heater is constant,
increasing the gap allows the heater to cover the central area more evenly, thereby increasing
the temperature. When the gap is higher or lower than 30 µm, the high temperature
distribution in the center begins to become less uniform. Taken together, the MHP with a
heater of width and gap of 30 µm not only achieves a uniform high temperature of 300 ◦C,
but also allows the high temperature zone to be close to 800 µm in diameter.
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3.4. Effect of Back-Side Etching Window Size

Back-side etching is required to reduce the heat loss of planar MHPs. The MHP model
was designed as Figure 2, with both the width and gap of the heater resistance tracks setting
to 30 µm; Figure 7 shows the effect of the variation of the back-side etched area on the
maximum temperature and its mechanical deformation at the same power consumption.
In the figures, “Center temperature” denotes the temperature at the central of the plate
and “Edge temperature” denotes the temperature at the die edge. It can be concluded
that the center temperature increases with the increase in the back-side etching size. The
temperature tends to be flat 329 ◦C when the etched windows radius is larger than 1300 µm,
and the edge temperature is less than 30 ◦C. However, the deformation increases almost
linearly, as the back-side etched area increases, as shown in Figure 7b. Relatively, the
optimal back-etched radius should be 1300 µm under the settings above. The mechanical
deformation of the MHP is only 0.147 µm, which is 7.38% of the total thickness of the MHP.
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the Si3N4-SiO2 composite film with 41 mW power input.

3.5. Effect of Si3N4 Circular Area in the Composite Layer

The effect of the lateral dimensions of the Si3N4 circular region was further investi-
gated. The relationship of the temperature, mechanical deformation, and the radius rm of
the Si3N4 region is shown in Figure 8, with the previous optimized dimensions of the heater
and the back-etching radius of the MHP. As the radius increases, the center temperature
gradually decreases, while the edge temperature increases. However, after 1200 µm, the
decreasing trend tends to be slow. Meanwhile, it can be observed from Figure 9b that a
larger Si3N4 area can better alleviate the thermal deformation. When the Si3N4 radius is set
to 1200 µm, the center temperature can reach 320 ◦C, while the thermal deformation is only
0.143 µm, which is 7.15% of the total thickness of the MHP.

3.6. Effect of the Thickness of the Dielectric Layer

Figure 9 shows the effect of the thickness of the composite layer on the temperature and
mechanical deformation at the same power consumption. In this case, the total thickness of
the plate was set constant of 2 µm, while the other parameters were set previous optimized
values. In Figure 9a, it can be observed that increasing the proportion of the composite layer
will lead to additional heat loss due to the increase in the heat conduction cross-sectional
area. Therefore, as the thickness of the composite layer increases, the center temperature
and the edge temperature keep decreasing and increasing, respectively. When the thickness
of the composite layer exceeds 0.7 µm, the temperature of the MHP is already below 300 ◦C.

Figure 9b shows that increasing the thickness will alleviate the thermal deformation
effect. The reason is that a thicker Si3N4 layer in the center can relieve the thermal stress
more effectively. When the thickness of the composite layer exceeds 0.7 µm, the ability to
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relieve mechanical deformation starts to decrease. The mechanical deformation is only
0.132 µm at a center temperature of 303 ◦C, which is 6.58% of the total thickness of the MHP.
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Figure 9. Effect of Si3N4- SiO2 composite layer thickness on (a) MHP temperature and (b) mechanical
deformation due to thermal stress; absolute and normalized values are shown with respect to the
total thickness of the MHP (2 µm).

3.7. Power Optimization Analysis

Figure 10 shows the power consumption of three types of MHPs without the signal
electrodes. All MHPs use optimized dimensions for all layers. The MHP with a Si3N4-SiO2
composite layer shows clearly higher temperature than the MHP with a Si3N4 layer of the
same dimensions. The designed membrane with an annular heater can reach 320 ◦C at
35 mW of power. The MHP with a zigzag heater can reach 299 ◦C, which is a bit lower than
the annular heater at the same power.

Finally, the parameters of the designed MHP are extracted and listed in the last row of
Table 1. With the heating area of 0.5539 mm2, the MHP designed with the annular heater
and composite layer in this paper requires only 35.2 mW heating power to reach 300 ◦C.
The specific area power, 0.0064 (mW/1000 µm2), which is the ratio of power per heated
area, is greatly lower than other MHPs in the literature, as listed in Table 1. Hence, it can
be observed that the designed MHP does demonstrate a higher power conversion effi-
ciency. This further indicates that the proposed design of Si3N4-SiO2 transversal composite
dielectric layer effectively reduces the heat loss.
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ture listed in Table 1, demonstrating that a very high heating efficiency is obtained by this 
design. 
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4. Conclusions

The reduction of the heat loss of MHPs is an active research topic. To reduce the heat
loss of planar type MHPs, a Si3N4-SiO2 composite layer is proposed to form a new design
of MHP. Detailed analyses and systematic simulations verify that the designed MHP can
effectively block the transverse thermal conduction loss and obtain a more uniform high
temperature region, greatly mitigating the mechanical deformation due to thermal stress.
In addition, an optimized planar MHP is obtained. It can heat an area of about 0.5 mm2 to
300 ◦C with a power consumption as low as 35.2 mW and mechanical deformation as low
as 0.132 µm, about 6.58% relative deformation to the plate. The specific power to the heated
area is only 0.0064 (mW/1000 µm2), which is much lower than the values in literature listed
in Table 1, demonstrating that a very high heating efficiency is obtained by this design.
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53. Furmański, P.; Łapka, P. Micro-macro heat conduction model for the prediction of local, transient temperature in composite
media. Int. J. Therm. Sci. 2020, 154, 106401. [CrossRef]

54. Huang, Z.; Wang, J.; Bai, S.; Guan, J.; Zhang, F.; Tang, Z. Size effect of heat transport in microscale gas gap. IEEE Trans. Ind.
Electron. 2017, 64, 7387–7391. [CrossRef]

55. Kim, K.J.; King, W.P. Thermal conduction between a heated microcantilever and a surrounding air environment. Appl. Therm.
Eng. 2009, 29, 1631–1641. [CrossRef]

56. Walden, P.; Kneer, J.; Knobelspies, S.; Kronast, W.; Mescheder, U.; Palzer, S. Micromachined hotplate platform for the investigation
of Ink-Jet printed, functionalized metal oxide nanoparticles. J. Microelectromech. Syst. 2015, 24, 1384–1390. [CrossRef]

57. Joy, S.; Antony, J.K. Design and simulation of a micro hotplate using COMSOL multiphysics for MEMS based gas sensor. In
Proceedings of the 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), Kochi, India,
2–4 September 2015; pp. 465–468.

58. Linear Elasticity. Available online: https://en.wikipedia.org/wiki/Linear_elasticity#Displacement_formulation (accessed on
10 December 2021).

59. Ali, S.Z.; Udrea, F.; Milne, W.I.; Gardner, J.W. Tungsten-based SOI microhotplates for smart gas Sensors. J. Microelectromech. Syst.
2008, 17, 1408–1417. [CrossRef]

http://doi.org/10.1109/JSEN.2018.2790001
http://doi.org/10.1109/JSEN.2002.807780
http://doi.org/10.1016/j.sna.2011.11.023
http://doi.org/10.1063/1.4869616
http://doi.org/10.1016/j.snb.2007.09.013
http://doi.org/10.1007/s13391-018-0030-5
http://doi.org/10.3390/s17010062
http://www.ncbi.nlm.nih.gov/pubmed/28042839
http://doi.org/10.1007/s00542-014-2337-y
http://doi.org/10.1088/1757-899X/490/2/022007
http://doi.org/10.1007/s00542-018-3731-7
http://doi.org/10.1109/JSEN.2013.2275951
http://doi.org/10.1109/JSEN.2021.3088440
http://doi.org/10.1016/S0924-4247(02)00145-0
http://doi.org/10.1016/S0925-4005(01)00985-6
http://doi.org/10.1109/JMEMS.2020.2987883
http://doi.org/10.1016/j.ijthermalsci.2020.106401
http://doi.org/10.1109/TIE.2016.2645892
http://doi.org/10.1016/j.applthermaleng.2008.07.019
http://doi.org/10.1109/JMEMS.2015.2399696
https://en.wikipedia.org/wiki/Linear_elasticity#Displacement_formulation
http://doi.org/10.1109/JMEMS.2008.2007228


Micromachines 2022, 13, 601 15 of 15

60. MEMS Software—For Micro-Electromechanical Systems. Available online: www.comsol.com/mems-module (accessed on
10 December 2021).

61. Mehmood, Z.; Haneef, I.; Udrea, F. Material selection for micro-electro-mechanical-systems (MEMS) using Ashby’s approach.
Mater. Des. 2018, 157, 412–430. [CrossRef]

62. Udrea, F.; Gardner, J.W.; Setiadi, D.; Covington, J.A. Design and simulations of SOI CMOS micro-hotplate gas sensors. Sens.
Actuators B 2001, 78, 180–190. [CrossRef]

63. Simon, I.; Bârsan, N.; Bauer, M.; Weimar, U. Micromachined metal oxide gas sensors: Opportunities to improve sensor perfor-
mance. Sens. Actuators B 2001, 73, 412–430. [CrossRef]

64. Castagna, M.E.; Modica, R.; Cascino, S. A high stability and uniformity W micro hot plate. Sens. Actuators A 2018, 279, 617–623.
[CrossRef]

65. Zhang, Z.L.; Yin, C.B.; Tao, C.M.; Zhu, B.; Dong, N.N. Design and optimization of planar structure micro-hotplate. Procedia Eng.
2011, 12, 105–110. [CrossRef]

66. Wu, Y.; Yuan, L.J.; Hua, Z.Q.; Zhen, D. Design and optimization of heating plate for metal oxide semiconductor gas sensor.
Microsyst. Technol. 2019, 25, 3511–3519. [CrossRef]

www.comsol.com/mems-module
http://doi.org/10.1016/j.matdes.2018.07.058
http://doi.org/10.1016/S0925-4005(01)00810-3
http://doi.org/10.1016/S0925-4005(00)00639-0
http://doi.org/10.1016/j.sna.2018.06.046
http://doi.org/10.1016/j.proeng.2011.05.018
http://doi.org/10.1007/s00542-019-04318-1

	Introduction 
	Analytical Models and Design Methods 
	Heat Transfer Model of MHP 
	Thermal Deformation Computation 
	Presumption Verification 
	Structural Design of the New MHP 
	The Process Design 

	Simulation and Optimization 
	Validation of the MHP Model 
	Dielectric Layer Analysis 
	The Heater Design 
	Effect of Back-Side Etching Window Size 
	Effect of Si3N4 Circular Area in the Composite Layer 
	Effect of the Thickness of the Dielectric Layer 
	Power Optimization Analysis 

	Conclusions 
	References

