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Abstract: Integrated optics, having the unique properties of small size, low loss, high integration,
and high scalability, is attracting considerable attention and has found many applications in optical
communications, fulfilling the requirements for the ever-growing information rate and complexity in
modern optical communication systems. Femtosecond laser fabrication is an acknowledged technique
for producing integrated photonic devices with unique features, such as three-dimensional fabrication
geometry, rapid prototyping, and single-step fabrication. Thus, plenty of femtosecond laser-fabricated
on-chip devices have been manufactured to realize various optical communication functions, such
as laser generation, laser amplification, laser modulation, frequency conversion, multi-dimensional
multiplexing, and photonic wire bonding. In this paper, we review some of the most relevant research
progress in femtosecond laser-fabricated photonic chips for optical communications, which may
break new ground in this area. First, the basic principle of femtosecond laser fabrication and different
types of laser-inscribed waveguides are briefly introduced. The devices are organized into two
categories: active devices and passive devices. In the former category, waveguide lasers, amplifiers,
electric-optic modulators, and frequency converters are reviewed, while in the latter, polarization
multiplexers, mode multiplexers, and fan-in/fan-out devices are discussed. Later, photonic wire
bonding is also introduced. Finally, conclusions and prospects in this field are also discussed.

Keywords: integrated optics; photonic chips; femtosecond laser fabrication; optical communications

1. Introduction

In recent decades, integrated optics has developed rapidly due to its potential to meet
the increasing capacity demands of communication networks. Since optical fibers largely
replaced metallic wires in telecommunications, a number of optical integrated circuits also
began to be produced for use in a variety of fields, such as photonics, microelectronics,
laser technology and optical information processing [1]. In photonic chips, micro-optical
devices such as lasers, optical modulators, optical (de)multiplexers, optical couplers, and
optical detectors are integrated on the same substrate, which has great potential in modern
optical communication applications [2–4]. Optical waveguides are the basic element of
the photonic chip, which has two typical characteristics [5]. One is that the optical density
in the waveguide is much greater than that of the bulk material, which enhances the
laser characteristics and nonlinear characteristics of the material itself. Hence, better
laser performance (low threshold, high gain and oblique efficiency) and more efficient
nonlinear frequency conversion efficiency [6–8] can be achieved. The other is that the
optical waveguide can guide the light wave to carry out long-distance diffraction-free
propagation in the medium, forming and connecting optical elements to build a highly
compact integrated optical path device [9].

Another technological advance that has encouraged the development of integrated op-
tical devices in recent years is the availability of improved fabrication methods. Traditional
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optical waveguide fabrication methods, such as ion implantation [10], proton exchange [11],
thin film deposition, metal ion diffusion [12] and so on, allow only fabrication of waveguide
architectures on/near substrate surface, which can limit the transmission of light in only
one direction. Although two-dimensional optical waveguides can also be fabricated by
lithography mask technology, it requires optical designs with large dimensions/footprints
and high complexity to ensure efficient optical connections, which is far from meeting the
needs of the development of modern integrated optics. With the increasing integration and
compactness of photonic devices, three-dimensional optical waveguides have become an
inevitable development trend. Therefore, seeking a true three-dimensional optical waveg-
uide fabrication method with high resolution, flexibility and processing quality is of great
significance. With the continuous development of high-performance ultrafast laser technol-
ogy, femtosecond laser fabrication technology has developed rapidly since the 1990s [13,14]
and is widely used in basic and application research of many fields, especially providing a
flexible and efficient true three-dimensional fabrication method for monolithic devices in
integrated optics [15,16]. The ultrashort pulse width of femtosecond lasers greatly reduces
the thermal expansion and heat dissipation effect in the processing process, and provides a
necessary physical premise for obtaining high-precision spatial processing resolution [17].
With the help of three-dimensional or even six-dimensional electric moving platforms, fem-
tosecond lasers can be used to design and fabricate three-dimensional photonics integrated
devices with any configuration according to the actual needs [18]. In addition, the tightly
focused femtosecond laser produces extremely high peak power at the focus, inducing a
variety of nonlinear processes, such as multiphoton absorption, so that the laser can go deep
into the interior of the material for three-dimensional processing beyond the diffraction
limit [19]. The ubiquitous physical mechanisms make femtosecond laser fabrication a uni-
versal tool for a wide range of materials including glasses [20], crystals [21], polymers [22],
and graphene [23–26]. Glasses, crystals, and polymers have been widely applied in this
field for their diversity and universality. Graphene, as an advanced material, also attracts
much attention in a wide range of areas due to its unique chemical and physical properties,
such as high electrical conductivity, high mechanical strength, high thermal conductivity,
low coefficient of thermal expansion and high optical transmittance [26]. Based on the
optical waveguide structure fabricated by a femtosecond laser in transparent materials,
a variety of passive or active waveguide devices in modern integrated optical systems
can be realized. Femtosecond laser-fabricated active devices, such as waveguide lasers,
waveguide amplifiers, electro-optic modulators, and nonlinear frequency converters, have
been utilized in optical communication systems to realize laser generation, laser amplifi-
cation, laser modulation, and frequency conversion [27,28]. Femtosecond laser-fabricated
passive devices [29–38], especially polarization multiplexers, mode-multiplexers, and fan-
in/fan-out devices can support multi-dimensional multiplexing in optical communication
systems [39–41]. The photonic wire bonding technology based on polymers is one of the
most promising practical advances of femtosecond laser fabrication, which solves issues
regarding the connection of different photonic chips [42].

Several review articles on femtosecond laser-fabricated devices have been
published [18,20,21,26,43,44]. Unlike these good reviews concentrated on devices based
on specific materials, such as glasses, crystals, polymers, and graphene, this review is
organized from the perspective of optical communications. Different components in optical
communication systems have been realized by femtosecond laser fabrication in various
materials. The fabrication of diverse waveguide configurations by femtosecond laser direct
writing is introduced in Section 2. Section 3 focuses on the femtosecond laser-fabricated
active devices including waveguide lasers, amplifiers, electric-optic (EO) modulators, and
frequency converters. Section 4 focuses on the femtosecond laser-inscribed passive devices
including polarization–division multiplexers, mode–division multiplexers, and fan-in/fan-
out devices. In Section 5, photonic wire bonding for efficient optical coupling between
different photonic integrated devices is introduced. An outlook with a summary will be
given in Section 6.
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2. Different Types of Waveguides Based on Femtosecond Laser Direct Writing

Femtosecond laser fabrication has been widely applied in the fabrication of waveguide
devices in various materials. The femtosecond laser is usually focused by a microscopic
objective onto the surface or into the bulk of samples to perform 3D precise fabrication.
During the femtosecond laser direct-writing process, different physical mechanisms, such
as multiphoton absorption, tunneling ionization, and avalanche ionization, are considered
to be responsible for the generation of free electron plasmas, which could lead to localized
modifications of materials [45–47].

The femtosecond laser-induced modifications can be divided into refractive index
increasing modification and refractive index decreasing modification, which are jointly
determined by the laser irradiation parameters and the properties of the transparent
material itself. When the pulse energy exceeds the modification threshold slightly, a smooth
refractive index change, referred to as Type I modification, is generated [48–50]. The sign of
refractive index change can be either positive or negative according to the material itself.
As the pulse energy rises to a high degree, the modification would turn up with severe
damage in the materials, leading to a reduction in the refractive index, which is called
Type II modification [51–53]. In the area around the tracks with Type II modification, an
increment of refractive index occurs because of the stress field. Type II modification usually
occurs in crystalline materials.

Femtosecond lasers can manufacture optical waveguide structures with different
morphological structures and dimensions in different materials. Based on the above two
types of refractive index modification, the femtosecond laser-inscribed optical waveguides
can be divided into the following three types. Based on the Type I modification, single-line
waveguides can be formed in irradiated regions with the increased refractive index [54],
as shown in Figure 1a. This positive change mechanism is very common in amorphous
materials, e.g., in a majority of glasses [55–57]. This kind of optical waveguide with a
simple structure and an efficient and convenient fabricating process easily forms three-
dimensional optical waveguide devices. Combined with laser multiple scanning technology,
the symmetrical waveguide structure with an arbitrary size can be realized by arranging
a certain number of laser writing scratches in space. In crystals, however, single-line
waveguides have been realized in only a handful of hosts, e.g., LiNbO3 [58]. The physical
properties of the crystal material, such as laser characteristics and nonlinear characteristics,
would be damaged due to the femtosecond laser direct radiation. Moreover, this kind
of optical waveguide is polarization-dependent, which only supports the transmission
of light waves in a specific polarization direction. Based on the type II modification, the
area between the writing lines possesses a relative higher refractive index due to the
stress-field, which is called double-line waveguide [52,53], as shown in Figure 1b. Without
laser irradiation in the light guiding region, the laser and nonlinear characteristics of the
crystal itself are well preserved. The performance remains stable at high temperatures. The
structure is suitable for most crystal materials. However, the effective distance between
the two laser-induced traces of this kind of optical waveguide is limited (10–30 µm),
which is not conducive to the coupling of larger cross-sections. Such waveguides still
suffer from the same polarization-dependent guiding as the single-line ones, which makes
the realization of some nonlinear optical devices challenging. Additionally, a depressed
cladding waveguide [59–62], which is surrounded by a number of tracks with Type II
modification, can support guidance along both TE and TM polarizations, as shown in
Figure 1c. In principle, arbitrary geometries of optical waveguide structure can be fabricated
by arranging and combining multiple parallel lines flexibly. In practice, a circular shape
with adjustable diameter size is preferred because it fits well to the optical fibers, and it
can support fundamental or high-order modes in an individual waveguide. Since the
guiding core in such structures is beyond the area of the laser-induced damages, most of
the advantages that double-line waveguides possess also apply to cladding waveguides.
However, since its relative complexity and large size in fabrication, depressed cladding
waveguide fabrications are usually quite challenging and time-consuming.
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Figure 1. Schematic of the fabrication procedure of femtosecond laser-inscribed waveguides:
(a) Single-line waveguide, (b) Double-line waveguide, and (c) Depressed cladding waveguide.
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fs-laser-induced tracks, and the dashed lines indicate the spatial locations of the waveguide cores.

3. Active Devices

Femtosecond laser fabrication has been applied to several active materials, and some
of them resulted in being suitable to demonstrate active photonic devices. As shown in
Figure 2, active devices, such as waveguide lasers, waveguide amplifiers, EO modulators
and frequency converters, have been fabricated by femtosecond laser direct writing. Addi-
tionally, these active devices have been used in optical communication applications with
diverse functions including laser generation, laser amplification, laser modulation and
frequency conversion.
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3.1. Waveguide Lasers

The femtosecond laser fabrication technique has already been successfully utilized to
create waveguide lasers based on various rare-earth doped glasses and crystals. The rare-
earth doped structures provide advantageous spectroscopic properties of the waveguide
lasers. High optical efficiency with reduced heat generation can also be obtained due to
the low quantum defects of these materials, which is extremely useful for the realization
of compact, high-power devices. Furthermore, the waveguide configuration provides
excellent beam confinement and good spatial overlap between the pump and signal beams,
resulting in higher lasing efficiencies and lower pumping thresholds [63].

3.1.1. Waveguide Lasers Based on Glass

Femtosecond laser-inscribed waveguide lasers have been reported in a range of dif-
ferent rare-earth doped glass hosts, such as Er:Yb-doped phosphate glass [64], Yb-doped
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bismuthate glass [63], Er:Yb-doped oxyfluoride silicate glass [49], Ho-doped fluorozirconate
glass [65] and Yb-doped silicate glass [66]. A broad range of laser spectrum ranging from
1 µm to the mid-infrared has been achieved.

Ytterbium-doped medium, which emits laser wavelengths of around 1 micron, is
anideal medium for high-power direct diode pumping with a low thermal load. Yb:ZBLAN
(ZrF4-BaF2-LaF3-AlF3-NaF) and Yb : IOG10 waveguide lasers fabricated by the femtosec-
ond laser direct writing technique were reported [66]. Multiple negative refractive index
modifications were aligned in a depressed cladding geometry to create waveguides in both
glasses. In Yb:ZBLAN glass, the high laser slope efficiency of 84% with a maximum output
power of 170 mW at 1030 nm was demonstrated. By using Yb : IOG10, a laser performance
of 25% slope efficiency and 72 mW output power at 1030 nm was achieved.

There is also study pointing out the outstanding properties of Yb-doped bismuthate
glasses, such as their large fluorescence lifetimes, large absorption and emission cross
sections, low quantum defects, moderate cooperative absorption probabilities, and broad
fluorescence bands [63]. Laser slope efficiencies close to the quantum defect limit and in
excess of 78% have been obtained from a femtosecond laser-inscribed waveguide laser in
the ytterbium-doped bismuthate glass.

Lasers at 1.5µm are essential tools for optical communications applications. A 20 mm-long
waveguide laser was fabricated on an Er:Yb-doped phosphate glass by a femtosecond laser.
The output power of 1.7 mW with 300 mW of pump power was obtained at 1533.5 nm [64].
A more compact and efficient single longitudinal mode laser at 1.5 µm based on a fem-
tosecond laser-inscribed erbium–ytterbium-doped phosphate waveguide was also demon-
strated [48], as shown in Figure 3a. The maximum output power exceeding 50 mW with
21% slope efficiency was measured in single longitudinal and transverse mode operation.
The active medium was a 20 mm-long single-line waveguide fabricated in a phosphate
glass substrate doped with 2 wt.% of Er2O3 and 4 wt.% of Yb2O3. Dopant concentrations
and sample length have been optimized to obtain high gain per unit length. The waveguide
laser cavity employed a linear configuration, and the active waveguide was butt-coupled
on both sides to fiber Bragg gratings (FBGs). On one side, a broad-band flat top FBG with
1 nm bandwidth (FWHM) was used to provide high reflectivity (99.8%). On the other
side, a narrow-bandwidth FBG with about 0.1 nm FWHM was used as output coupler. An
index-matching fluid is inserted between waveguide and fiber ends to support high power
density at 980 nm.

Fluor-zirconate glasses, in particular ZBLAN, have attracted a great deal of atten-
tion for laser applications beyond 1 µm wavelength due to their material properties of
outstanding WG circularity and excellent reproducibility of the laser written modifica-
tions. A femtosecond laser-inscribed depressed cladding waveguide laser on Tm3+-doped
ZBLAN glass that produces 47 mW at 1880 nm with a 50% internal slope efficiency was
reported [67]. Furthermore, a large mode-area holmium-doped ZBLAN waveguide laser
operating at 2.9 µm was also reported [65]. The laser was also based on ultrafast laser-
inscribed depressed cladding waveguides fabricated in uniformly rare-earth-doped bulk
glass. It had a threshold of 28 mW and produced up to 27 mW of output power at an
internal slope efficiency of approximately 20%.
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plate; MO1 and MO2: microscope objective lens; M1 and M2: laser cavity mirrors adhered to the two
end-facets of the sample [68]. Reproduced from [48] with permission of the Optica Publishing Group.
Reproduced from [68] with permission of the AIP Publishing, 2022.

3.1.2. Waveguide Lasers Based on Crystals

Waveguide lasers have also been realized in a couple of crystalline gain materials,
e.g., Nd or Yb-doped YAG [52,62,69–72], Nd-doped YVO4 [68], Nd-doped KGW [73], and
Ti:Sapphire [74].

A continuous-wave 1064 nm laser generation from a femtosecond laser-inscribed
waveguide in Nd : YVO4 with pumping at 808 nm was reported. Single-mode stable laser
operations had been observed with pump powers at thresholds as low as 14 mW [68]. The
waveguide laser experiments were performed by using an end-face coupling system as
shown in Figure 3b. A 20× microscope objective lens was used to focus the pump light
beam into the waveguides. The generated laser beam at 1064 nm was collected by another
20×microscope objective from the output facet of the waveguide and separated from the
residual pump through a dichroic beam splitter. When the laser gain experiments were
performed with cavity mirrors (a mirror with transmission of 98% at 808 nm and reflectivity
99% at 1064 nm for the front face, and a mirror with reflectivity 99% at 808 nm and 95%
at 1064 nm as the output coupler), the output coupler efficiency of the composed laser
cavity was 5%. In the case without using any laser mirrors, the laser generation can still be
realized by directly using the two polished facets with Fresnel reflection. The transmittance
of the waveguide facets can be estimated to be close to 90%. Laser slope efficiencies as high
as 38.7% with a maximum output light power of about 9.5 mW was obtained. Mirrorless
waveguide laser is one of the most straightforward solutions toward monolithic on-chip
photonic integration in robust and compact packages [68].

Nd:YAG crystal is also widely used for solid-state lasers due to its outstanding fluores-
cence and thermal and mechanical properties. A rectangular Y-branch depressed cladding
waveguide laser has been fabricated in Nd:YAG crystals by femtosecond laser direct writ-
ing. Continuous wave laser generation at a wavelength of 1.06 µm has been achieved under
the optical pump at 808 nm. When the splitting angle of Y-branch waveguides reached
0.5◦, the maximum output power of 0.2 W with a slope efficiency of 20% was obtained [72].
The Y-branch splitter can serve as the basic element to realize the wavelength division
multiplexing in the optical networks.

Benefiting from the flexible geometries, sizes and refractive index profiles defined
by femtosecond laser direct writing, the depressed-cladding waveguides are capable of
supporting excellent single- as well as multi-mode light. Furthermore, a novel family
of three-dimensional (3D) photonic microstructure lasers monolithically integrated in a
Nd:YAG crystal wafer by femtosecond laser direct writing was demonstrated. They are
capable of simultaneous light generation, waveguiding, and manipulation. The waveguides
with multiple configurations and geometries are fabricated by a femtosecond laser with the
unique feature of flexible 3D micro-engineering, as shown in Figure 4a. The microscopic
image of the cross section of the femtosecond laser-written photonic fundamental mode
waveguide is shown in Figure 4b. Figure 4c,d display the measured near-field modal
profiles along both TE (Figure 4c) and TM (Figure 4d) polarizations at 1064 nm. By changing
the cross-sectional topography of the waveguide, the light-beam manipulation of beam
splitting and ring-shaped transformation are achieved, as shown in Figure 4e–h. The
integration of thin-layer graphene as a saturable absorber in the 3D laser structures allows
for efficient passive Q-switching of tailored laser radiations, which may enable miniature
waveguiding lasers for broader applications. By using the direct pump of the monolithic
integrated structures, waveguide lasing has been obtained in both continuous wave (CW)
and pulsed (passively Q-switched by graphene) regimes [70].
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3.2. Waveguide Amplifiers

To increase the number of channels in the wavelength-division multiplexing (WDM)
system, amplifiers with broad and flat gain regions are crucial components for optical
communication. Femtosecond laser-inscribed waveguide amplifiers have been fabricated
in various RE-doped glass systems: Yb-doped phosphate glass (Kigre QX), Er-Yb co-doped
phosphate glass (Kigre QX), Nd-doped silicate glass, Er-doped oxyfluoride silicate glass,
and Er-Yb co-doped oxyfluoride silicate glass [75–78]. The first active waveguide fabricated
by a femtosecond laser was in Nd-doped glass, which is very efficient four-level active
media, but unsuitable for application at telecom wavelengths. Therefore, other active
glasses, especially Er-doped and Er-Yb co-doped glasses allowing operation in the C band,
have attracted much attention.

Phosphate glasses have the advantages of a broadband emission spectrum around
1.5 µm, long lifetime of the Er metastable state, and high phonon energies allowing very
efficient pumping. Hence, an optical waveguide on erbium–ytterbium-doped phosphate
glass with an appreciable net gain in the full C-band of optical communications was
fabricated by femtosecond laser direct writing [75]. The 37 mm-long amplifier was butt-
coupled on both sides to single-mode fibers (SMFs), using an index-matching fluid to
reduce coupling loss. The peak internal gain of 9.2 dB was obtained at 1535 nm, and a
minimum internal gain of 5.2 dB was obtained at 1565 nm. The relatively low insertion
losses of 1.9 dB in the system enable an appreciable net gain in the full C-band of optical
communications for the first time.

Erbium-doped oxyfluoride silicate glass combines the promising spectroscopic proper-
ties of fluoride glasses (similar to phosphate) with the structural stability and compatibility
of silicate glasses [76]. A waveguide amplifier in this oxyfluoride silicate glass was fabri-
cated with a total background insertion loss excluding absorption of only 1.2 dB. A max-
imum net gain of 1.4 dB in the C band (1529–1561 nm) was observed in the 10 mm-long
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waveguide [77]. Other materials, such as bismuthate (Bi2O3) glass, may also be suitable for
Er-doped waveguide amplifiers while providing additional benefits of a wide and flat gain
spectrum and the ability to be doped with sufficient concentrations of Er3+ ions. An Er-
doped bismuthate glass waveguide amplifier fabricated by femtosecond laser direct writing
has been reported. When pumped with 1050 mW of 980 nm light, the amplifier exhibited a
peak internal gain per unit length of 2.3 dB/cm at 1533 nm and a peak fiber-to-fiber net
gain of 16.0 dB at 1533 nm.

To broaden the emission bandwidth compared to phosphate glasses, tellurite-modified
phosphates have been recently proposed to extend the amplification into the L band
(1565–1625 nm). Waveguide amplifiers on Er-doped tellurite glass modified by phosphate
have also been fabricated by femtosecond direct writing [78], as shown in Figure 5a.
Figure 5b displays the measured absorption spectrum of the 25 mm-long active waveguide
and internal gain at 200 mW incident pump power. A maximum internal gain of 1.25 dB
at 1555 nm was demonstrated, as well as internal gain in the whole C+L band. The small-
signal internal gain as a function of incident pump power at 1534 nm, 1555 nm and 1590 nm
signal wavelengths is shown in Figure 5c. Phosphate modification induced a positive index
change in tellurite glass by femtosecond laser writing. The optical waveguide amplifier in
phospho-tellurite glass provided a large internal gain bandwidth of 100 nm, spanning the
entire C and L bands (1530–1630 nm) [56].
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It is worth pointing out that another promising active substrate, the Bi-doped silica
glass [79], can exhibit broadband emission around 1.3 µm. A high-quality waveguide
amplifier of 1.7 cm inside Bi-doped silicate glass was fabricated by femtosecond laser direct
writing. A broadband fluorescence with a bandwidth (FWHM) of up to 500 nm centered
on 1.3 µm was obtained.

3.3. EO Modulator

EO modulators are designed to modulate the phase, amplitude, intensity and polar-
ization of light with the external voltage. Femtosecond laser-fabricated EO modulators
based on a Mach–Zehnder interferometer (MZI) [80–84], waveguide Bragg grating [85,86]
and a microresonator [87,88] have been reported. Additionally, lithium niobate (LiNbO3) is
widely used in optoelectronics due to its large transmission window and excellent nonlinear
properties [86].

MZI-based EO modulators are composed of a MZI and metal electrodes either coated
on the substrate surfaces or embedded in femtosecond laser ablated grooves [83], as
shown in Figure 6a. The effective EO coefficient r33 in a Type-I-based single-line LiNbO3
(x-cut) waveguide has been found to be only half of the original value, leading a degraded
performance of EO behavior. Thus, type-II-based double-line geometries in MZI-based EO
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modulators are more common. The extinction ratios (ERs) of 9 dB with a half-wave voltage
Vπ of 19 V at a wavelength of 632.8 nm, 11 dB (Vπ of 23 V) at 532 nm, and 11 dB (Vπ of 45 V)
at 1.55 µm have been reported. The performances are unsatisfied due to the non-optimized
EO overlap and the high bending losses. For further improvement, waveguide of low loss
and the optimization of EO overlap are urgently needed.
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Periodic refractive index changes embedded into waveguides, which can exhibit
spectral frequency selectivity, have been applied to EO modulators. The EO first-order
waveguide Bragg grating in a double-line LiNbO3 waveguide has been reported [85]. The
distance between waveguide lines was adjusted from 7 µm to 15 µm to support sufficient
guiding at 1550 nm. The first-order grating was fabricated by separating refractive index
voxels with a periodicity of 349.6 nm. The waveguide was covered by copper electrodes
from the top and bottom faces and connected to a high-voltage power supply unit to
achieve an electro-optic response. A maximum shift in the reflection peak of 625 pm was
observed with the external electrical field increasing from −22 to +22 V/µm.

Furthermore, the EO modulator waveguide Bragg grating was improved by taking a
hybrid design of a circular type-II waveguide and a multi-scan type-I Bragg grating [86].
The type-II waveguide geometry was fabricated to provide low loss, symmetric guiding
with a superior mode fidelity, and the largest electro–optic coefficient r33 for extraordinary
polarization. Inside the type-II waveguide, type-I Bragg gratings were inscribed with a
period of Λ = 704 nm by using the multi-scan technique, as shown in Figure 6b. The mea-
sured maximum peak shift was 1180 pm, with the applied voltage ranging from −840 to
+840 V [85].

High-Q on-chip LiNbO3 microresonators based on the femtosecond laser direct writing
technique have been reported [88]. The metallic microelectrodes were first fabricated on
the substrate by using femtosecond laser0assisted selective electroless copper plating, as
shown in Figure 6c. Then, the microresonator located between the microelectrodes was
further fabricated by femtosecond laser direct writing accompanied by focused ion beam
milling. The experimental results indicate that the tuning coefficient of 3.41 pm/V can be
reached with the external voltage above 80 V.

A higher effective mechanical quality (Qm) factor of 2.86 × 108 in a lithium nio-
bate microresonator fabricated by femtosecond laser direct writing followed by chemo-
mechanical polishing have been reported [87]. Additionally, the real-time electrical tuning
of the optomechanical frequency with an electro-mechanical tuning efficiency around
−134 kHz/100 V was measured, suggesting a great potential for a broad range of applica-
tions in metrology, sensing, information processing and quantum physics.
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3.4. Frequency Converters

Waveguide-based frequency converters exhibit superior performance compared to
their bulk counterparts due to the non-diffraction beam over a long distance in the waveg-
uide and high optical intensity. Frequency conversion processes, mainly second harmonic
generation (SHG), have been demonstrated in various femtosecond laser-inscribed waveg-
uide frequency converters. Meeting the phase-matching condition is a precondition to
achieve efficient SHG, by either birefringence phase matching (BPM) [89] or quasi phase
matching (QPM) [90–95].

The SHG can be generated using BPM in standard crystals, which are cut along
a specific orientation. Lithium niobate (LiNbO3) is widely used in nonlinear optics be-
cause of its large electro-optic and nonlinear coefficients and availability in high optical
quality [89,96,97]. Frequency doubling of 1064 nm radiation was reported utilizing birefrin-
gent phase matching in a Lithium niobate waveguide fabricated by femtosecond laser direct
writing [89]. The LiNbO3 sample doped with 7 mol% MgO was used to avoid the degener-
ation of waveguide properties caused by photorefractive effects with the generated green
laser light. To achieve phase matching, the propagation constants of the fundamental and
second harmonic modes were designed to be equal. For BPM, the double-line waveguide
was fabricated along the y direction in x-cut LiNbO3 to ensure a propagation perpendicular
to the optic axis. A suitable temperature which depends on the crystal stoichiometry and
doping was also chosen to achieve maximal SHG efficiency. The maximal conversion effi-
ciency of 49% was obtained with an input peak power of 480 W. The normalized conversion
efficiency was 0.6%/(W cm2).

Compared to the relatively low nonlinear coefficient and the instability in time and
temperature for BPM, QPM in periodically domain-inverted crystals, such as periodically
poled LN (PPLN), exhibits huge advantages of the large coefficient d33 and the ability to
arbitrarily choose the phase matching wavelength and temperature. Frequency doubling
with QPM has been reported in PPLN single-line waveguides [90]. However, single-line
waveguides in PPLN yield a reduced nonlinearity. Additionally, single-line waveguides
are only suitable for low input powers because they can be thermally annealed at 150 ◦C.
To achieve more efficient SHG, the fabrication of thermally stable double-line waveguides
in Z-cut PPLN crystals utilizing femtosecond lasers has been demonstrated. The 10 mm-
long Z-cut PPLN crystal sample was fabricated using the external pulse field poling
technique with a QPM period of 18.6 um, as shown in Figure 7a. The normalized efficiency
of 4.8%/(W cm2) was obtained at a QPM wavelength of 1548.2 nm and at an optimal
temperature of 150.4 ◦C.
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The QPM structure can also be fabricated by femtosecond laser direct writing. Instead
of domain inversion, the nonlinearity is damped after laser modification, which reduces
the phase contributions of the SHG process. The efficiency of such a laser-induced quasi
phase-matching waveguide is below that of PPLN fabricated by the external pulse field
poling technique. However, the laser-induced quasi phase-matching waveguide can be
fabricated in a single monolithic process, which provides immediate compatibility to
integrated optical elements. SHGs of 1064 nm radiation in quasi phase-matched waveguide
structures fabricated by femtosecond laser direct writing have been demonstrated [94]. The
standard femtosecond laser direct writing setup to fabricate the waveguides is illustrated in
Figure 7b. A cladding waveguide with circular cross section based on type-II modifications
is shown in Figure 7c. The QPM waveguide with a phase-matching period of 6.7 µm
is shown in Figure 7d. The grating is inscribed by the multi-scan technique with high
transverse resolution of 700 nm in both directions. A maximum conversion efficiency of
5.72% was obtained for a 6 mm-long femtosecond laser-inscribed QPM waveguide.

4. Passive Devices

With the popularization of cloud-computing-related applications and the development
of virtual reality and artificial intelligence, the demand for network capacity is explosively
increasing. To meet this demand, optical fiber communication systems are evolving from
multi-channel and high-speed to ultra-high-speed, ultra-large capacity and ultra-long
distance. On-chip multiplexing technology is a common method to solve the problem
of high transmission rate, which can reduce the cost and facilitate later maintenance by
integrating multiple channels into one optical fiber for transmission. At present, there
are three multiplexing technologies in the physical layer: space-division multiplexing
(SDM) [98–100], polarization-division multiplexing (PDM) [101] and wavelength-division
multiplexing (WDM) [102,103]. Space-division multiplexing technology includes multi-core
division multiplexing (MCF) [41] and mode-division multiplexing (MDM) [104–108]. As
shown in Figure 8, passive devices, such as polarization multiplexers, mode multiplexers,
and fan-in/fan-out devices have been fabricated by femtosecond laser direct writing in
applying PDM, MDM and SDM in optical communications.
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4.1. Polarization Multiplexers

The birefringence effect of the waveguide produces transverse electric (TE) field and
transverse magnetic (TM) field, which are orthogonal and independent from each other.
Polarization division multiplexing technology, with two orthogonal polarization states
used for signal multiplexing/demultiplexing, can double the system capacity. Depend-
ing on the material and the irradiation conditions, birefringence in femtosecond laser
modification (typical values rang in 10−6–10−4) can originate from one or more of the
following sources, such as the laser-induced periodic nano-structures, the asymmetric
mechanical stresses induced in the focal region, or the ellipticity of the written waveguide
cross section [39,109–116]. Hence, through different fabrication parameters, femtosecond
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lasers can flexibly change the birefringence effect of waveguides, so as to manufacture
various polarization-sensitive or polarization-insensitive devices [111].

Laser-induced nanogratings contribute a strong-form birefringence effect for waveg-
uides fabricated in fused silica [110]. The orientation of nanogratings is linear and oriented
to be parallel or perpendicular with respect to the scanning direction by using a half-wave
plate. For parallel and perpendicular writing polarizations, the form birefringence values
were measured to be (5.2 ± 0.5) × 10−5 and (2.1 ± 0.1) × 10−4 at a 1550 nm wavelength,
respectively. By finely tunning the laser exposure parameters, waveguides with special
wave retardance and polarization-dependent coupling with minimal optical losses can
be examined and optimized in the 1250 nm to 1700 nm spectrum domain. Furthermore,
zero-order quarter-wave and half-wave retarders together with polarization beam splitters
were demonstrated. As shown in Figure 9a, polarization-splitting directional couplers were
designed and demonstrated with −19 dB and −24 dB extinction ratios for the polarization
splitting [39]. The measured coupling ratio of directional couplers fabricated with S = 8 µm
waveguide separation is shown in Figure 9d as a function of interaction length.
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Figure 9. (a) Schematic of the integrated polarization directional coupler (PDC) [110]. (b) Femtosec-
ond laser writing of tilted integrated waveplates [115]. (c) Sketch of the writing setting, with which
the waveplates are fabricated [109]. (d) Measured coupling ratio, r, as a function of coupling length for
vertical polarized (blue circle) and horizontal polarized (red square) modes together with calculated
fits (solid and dashed lines) [110]. (e) For horizontally polarized input light, the measured normal-
ized power transferred into the horizontal/vertical polarization states and diagonal/antidiagonal
polarization states is reported [115]. (f) Experimental data and best fit model of the reorientation of
the optical axis as a function of the azimuthal position of the defect [109]. Reproduced from [110]
with permission of the Optica Publishing Group, 2022. Reproduced from [109,115] with permission
of the Springer Nature, 2022.

Generally speaking, the polarization birefringence direction is fixed along the trans-
mission direction of femtosecond laser. However, by tilting the transmission direction
of the writing beam, the inscribed waveguide optical axis can be rotated as well, thus
changing the polarization birefringence direction [115], as shown in Figure 9b. In the
experiment, the laser beam impinges on the objective aperture in an off-center way, leading
the beam propagates in the substrate at an angle with the focus position not altered. For
horizontally polarized input light, the measured normalized power transferred into the
horizontal/vertical polarization states and diagonal/antidiagonal polarization states is
displayed in Figure 9e. The fabricated waveguide will then have a tilted cross-section,
resulting in a rotated optical axis. Hence, femtosecond laser-inscribed waveguide-based
optical waveplates, with arbitrarily rotated birefringence axis, are also presented.
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Moreover, the intrinsic birefringence of the femtosecond laser-inscribed waveguides is
usually weak. Therefore, the polarization beam splitter (PBS) composed of such waveguides
needs a larger size to realize the corresponding functions. A method to decrease the size of
the PBS is proposed. By shortening the distance between the coupled waveguides, strong
anisotropic mechanical stress was introduced to increase the polarization birefringence of
the two waveguides. When the distance between the waveguides is below 5 µm, a PBS with
an order of magnitude lower interaction length of 3.7 mm is demonstrated. The extinction
ratios for the horizontal and vertical polarizations are 16 dB and 20 dB, respectively [112].

In addition, the optical axis of the birefringent waveguide can also be rotated due to
the artificial stress. The stress can be introduced to the waveguide by writing an additional
modification track near to the waveguide, as shown in Figure 9c [109]. By adjusting the
length of the track along the waveguide, the retardation between ordinary and extraordi-
nary field components can be precisely tuned to realize half-wave plate and quarter-wave
plate operations. The orientation of the optical axis is a function of the relative position of
the two guides. Thus, arbitrary desired wave-plate operations in the waveguide can be
achieved. The orientation of the optical axis as a monotonous function of the azimuthal
angle h of the track is plotted in Figure 9f. When the azimuthal angle of the track increases,
the tilt of the waveguide’s optical axis also increases and reaches a maximum of ∝max = 90◦

for θ = 90◦. The main advantage of this approach is that the original waveguide shape
remains unchanged when the optical axis’ orientation is changed, leading to an additional
loss in the presence of the track less than 0.01 dB/cm.

Different from the above method with defect tracks written nearby the waveguide,
another method with a pair of tracks laid out quite close with a bit overlapped was
proposed [113]. The track pairs can still guide light behaving as a single-mode waveguide
with an optimal separation without energy dissipation into the defect track. A precise
change in relative position in the track pairs can induce the artificial asymmetric distribution
of the refractive index, generating a rotation of the birefringent optical axis. A rotated
polarization directional coupler with the two axis-rotated waveguides was obtained with
the extinction ratios on average about 16 dB and 20 dB for the corresponding orthogonal
polarizations, respectively.

4.2. Mode Multiplexers

In order to overcome the current limitation of the transmission capacity in the single-
mode fiber (SMF) systems, mode-division multiplexing (MDM) technology, one of the
promising approaches in space-division multiplexing technology, has been intensively
investigated by multiplexing independent signals into the spatial modes acting as separate
paths in a multi-mode fiber (MMF). Several kinds of mode multiplexers have been pro-
posed to achieve MDM transmission. Free-space optics using phase plates or spatial light
modulators can excite the spatial modes directly. However, it requires large bulk optics,
and the insertion loss may increase with the number of modes. Mode multiplexers based
on optical fiber or waveguide can be a more practical approach due to intrinsic low loss and
compactness. Among of them, mode multiplexers based on femtosecond laser-inscribed 3D
waveguides attract more and more attention due to the features of 3D processing ability and
flexibility. It includes mode multiplexing by cascaded mode selective couplers applying the
coupling between the waveguide modes and photonic lanterns, bringing the waveguide
core closer together. Mode multiplexers based on mode-selective couplers (MSC) and mode
multiplexers based on photonic lantern are discussed here.

4.2.1. Mode Multiplexers Based on Mode-Selective Couplers

An MSC is a directional coupler that provides selective mode coupling between
the fundamental mode of a single-mode waveguide and a higher-order mode of a few-
mode waveguide [117]. Figure 10a displays the schematic of the horizontal and verti-
cal two-couplers, each comprising a multimode and single-mode core. A femtosecond
laser-inscribed mode multiplexer composed of consecutive mode selective couplers was
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proposed [118]. The structure of the fabricated coupler is shown in Figure 10b. As shown
in Figure 10c,d, horizontally and vertically written two-core couplers are designed to allow
for the multiplexing of the LPa

11 and LPb
11 spatial modes of an optical fiber, respectively.

The excellent mode extinction ratios (25–37 + dB) and low loss (~1 dB) between 1500 and
1580 nm were obtained. The mode-selective functionality was achieved by matching the
modal propagation constants. By adjusting the average power of the laser, the waveguide
size can be adjusted flexibly. The core diameters were chosen to make sure that the propa-
gation constants of the fundamental LP01 modes in the horizontal and vertical single-mode
cores matched those of the respective orthogonal LPa

11 and LPb
11 modes in the multimode

core. When written in sequence, the couplers allow for the multiplexing of all LP01, LPa
11

and LPb
11 modes, forming a single three-dimensional three-core mode multiplexer.
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Figure 10. (a) Schematic of the (a) horizontal and vertical two-couplers, each comprising a multimode
and single-mode core [118]. (b) Brightfield microscope images of the end-faces (writing laser incident
from the top) and 3D sketch of the fabricated coupler [119]. The measured coupling ratios for the
(c) horizontal and (d) vertical couplers as compared with approximate analytic models. The coupling
ratios of two other horizontal couplers written using the same pulse energy but with different
interaction length are also shown. The LPa

11 and LPb
11 mode profiles are shown in the inset [119].

(e) Schematic of a two-core tapered mode-selective coupler comprising a tapered multimode and a
counter-tapered single-mode waveguide [119]. (f) Brightfield microscope images of the end-faces
(writing laser incident from the top) and 3D sketch of the fabricated coupler [119]. (g) Coupling and
cross-coupling ratios when injecting light into the horizontal single-mode waveguide as a function of
wavelength [119]. (h) Coupling and cross-coupling for light injection into the vertical single-mode
waveguide [119]. Reproduced from [118] with permission of the Optica Publishing Group, 2022.
Reproduced from [119] with permission of the John Wiley and Sons, 2022.

The mode-selective couplers above rely on fastidious phase-matching and interference
to achieve their functionality. To simplify the phase-matching condition, tapered couplers
are presented, which can achieve high mode conversion efficiency with phase matching
at a certain position in the conical coupling region. Figure 10e displays the schematic of a
two-core tapered mode-selective coupler comprising a tapered multimode and a counter-
tapered single-mode waveguide. A mode multiplexer based on fully pig-tailed tapered
velocity couplers fabricated by femtosecond laser direct writing was demonstrated [119].
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The structure of the fabricated coupler is shown in Figure 10f. Tapering of the waveguides
was accomplished by linearly changing the pulse energy of the femtosecond laser with
a computer-controlled attenuator. Unlike the standard mode coupler, it is not necessary
to meet the precise phase-matching conditions on the extended length, nor to reduce the
coupling coefficient to zero under the specified coupling length because any significant
interaction has long ceased near the end of the device. The precise region of the taper
over which the coupling takes place is also immaterial. For this reason, small shifts in the
propagation constant crossover point along the device caused by changes in wavelength or
the dimensions of the coupler have negligible influence on the performance of the device.
Hence, the device is wavelength-insensitive and high-dimensional-tolerant. As shown in
Figure 10g,h, the coupling and cross-coupling ratios are presented when injecting light into
the horizontal and vertical single-mode waveguide, respectively. The mode multiplexer
enabled multiplexing of the LP01 and LP11 modes across a large bandwidth of 400 nm while
featuring less than −20 dB crosstalk, high mode extinction ratios exceeding 20 dB and
insertion losses well below 2 dB.

4.2.2. Mode Multiplexers Based on Photonic Lantern

A photonic lantern adiabatically merges 16 SMF into a single MMF that supports
16 modes, the 3D schematic of photonic lantern structure is shown in Figure 11a [120]. On
one side, 16 single mode waveguides were arranged in a two-dimensional 4 × 4 array with
the inter-waveguide spacing of 50 µm. On the other side, these waveguides were brought
together to form a single multi-mode waveguide. The microscope images of the 4× 4 single
mode array output facet and the multi-mode waveguide facet are shown in Figure 11b,c,
respectively. When the 1550 nm light is injected into the multi-mode inputs, the nearfield
profiles at the single mode array waveguide output is shown in Figure 11d. Additionally,
when the 1550 nm light is injected into the single mode side input, the nearfield profiles at
the multi-mode waveguide output is shown in Figure 11e. The entire device had an average
insertion loss of 5.7 dB at 1539 nm. To realize the effective mode-division multiplexing,
the signal in each N core will couple to an orthogonal combination of MMF modes when
identical SMFs are used [121,122]. A 57-channel mode multiplexer, which consisted of
19 separate three-port photonic lanterns arranged in a hexagonal array, was fabricated by
femtosecond laser direct writing [123]. The device would be suitable for the transmission
of 114 spatial and polarization modes in a hybrid MCF/FMF fiber with 19 uncoupled
three-mode cores. The laser inscription method is also suitable for the fabrication of spatial
multiplexers with non-hexagonal core arrangements and where the cores support different
numbers of spatial modes within the same fiber. This flexibility could provide additional
degrees of freedom for optimizing the design of fibers with multiple few-mode cores. When
applying the device, coherent detection and MIMO post-processing are required to recover
the transmitted signal because a particular spatial mode in the FMF does not map to a
specific single-mode output.
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To solve the issue above, mode-selectivity is achieved through introducing asymmetry
by using dissimilar single-mode waveguides so that each single-mode input maps to a
specific mode at the multimode output [124–126]. A femtosecond laser-inscribed six-mode
integrated mode-group-selective photonic lantern was demonstrated [127]. The 70 mm
long-device consisted of six waveguides. The six single-mode waveguides were arranged
at the input in a linear array to match a 127 µm pitch fiber array. After remapping into
a pentagon with a central waveguide, the waveguides gradually transited over a 50 mm
length to an 8 µm radius pentagon with one waveguide in the center, forming a composite
few-mode waveguide.

4.3. Fan-In/Fan-Out Devices

Multicore fibers (MCFs) consisting of either a one- or two-dimensional array of guiding
cores have been applied in a number of fields including sensing and communications [128,129].
The coupling of light in and out MCFs is a significant problem due to the close proximity
and geometrical arrangement of the cores [130]. Femtosecond laser fabrication is capable
of creating waveguides that map from an arbitrary 2D arrangement to a linear array.
Hence, the femtosecond laser-inscribed fan-out device is of great interest to the MCF field
because of its capability to allow the coupling of light in and out MCFs with any core
geometry [131,132].

The first femtosecond laser-inscribed fan-out device for the coupling between a
4 × 1 fiber V-groove array (FVA) and a 2 × 2 core array MCF was demonstrated [40]. The
fabricated fan-out device consisted of three linear sections connected end-to-end. At each
side, a 2.5 mm-long “run-in” section was placed to directly couple with the MCF or FVA
cores. The middle section was used to remap the geometric arrangement. At the MCF
coupling end of the fan-out, the four run-in sections were arranged in a 50 µm × 50 µm
array to match the MCF. At the FVA coupling end of the fan-out device, the four run-in
sections were arranged in a one-dimensional array with a 250 µm spacing to match the core
spacing of the FVA. The average insertion loss per core of 5.0 dB in the 1.55 µm spectral
region was obtained. Furthermore, the group reported a prototype three-dimensional
121-waveguide fan-out device capable of reformatting the output of a 120-core multicore
fiber (MCF) into a one-dimensional linear array by the same fabrication method [131].
When used in conjunction with an actual MCF, an overall throughput loss of about 7.0 dB
was obtained.
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An 84-channel fan-out device in fused silica was also introduced for high-density edge
coupling of multicore fibers to a SiP chip [129]. Figure 12a presents the schematic of the 3D
fan-out device. As shown in Figure 12b, the 84 waveguides fan out from a densely packed
linear array of 30 um pitch at the SiP chip side into a 2D pattern composed of twelve
sockets of seven-core waveguide arrangement matching with the MCF. At the SiP chip
side, each silicon waveguide ends with an air-suspended cantilever inverse taper serving
as a mode expander for better matching with the 3D fan-out device waveguide mode
size. Figure 12c,d show the end facets of the waveguide sockets and MCF, respectively.
On the opposing facet of the fan-out device, the twelve sockets were arranged in a linear
array of 250 µm pitch, providing ample space for aligning and adhesive dispensing with
the 125 µm diameter MMF. Each inscribed waveguide in the fan-out device followed a
sequence of straight and circular arc bends, which were optimized to obtain minimum
path length difference, low bending loss and crosstalk. The 12.7 mm-long 3D femtosecond
laser-inscribed fan-out device was shown in Figure 12e. For the fully packaged photonic
system, the insertion losses were measured ranging from −6.9 to −10.9 dB at 1310 nm and
from −5.5 dB to −8.2 dB at 1550 nm. The channel crosstalk was better than −20 dB.
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5. Photonic Wire Bonding

Photonic wire bonding is introduced as a novel concept for automated 3D fabrication
of optical chip-to-chip interconnections. Three-dimensional (3D) nano-printing of freeform
optical waveguides, also referred to as photonic wire bonding, is based on the femtosecond
laser two-photon polymerization (TPP) technology, which is a powerful and potential tech-
nology to fabricate true three-dimensional (3D) micro/nanostructures of various materials
with sub-diffraction limit resolution. The shape and the trajectory of photonic wire bonds
can be adapted to the mode-field profiles and the positions of the chips, which is a key
advantage [133,134].

The first single-mode PWB link between two different nanophotonic SOI chips was
demonstrated in 2012 [42]. Femtosecond laser two-photon polymerization was deployed
to fabricate 3D photonic wire bonds that connect standard SOI waveguides. The shapes
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of the photonic wire bonds (PWB) were adapted to the actual positions of the integrated
waveguide facets, obsoleting the high-precision alignment of optical devices. To precisely
attach the wire bond to the SOI waveguides, the lateral positions of the inverse tapers were
visually determined by the microscope camera through the lithography objective. To get the
accurate vertical position, the focus of the image was optimized manually. The achievable
alignment tolerances of the photonic wire bond with respect to the SOI waveguides were
estimated to be better than 500 nm in all directions. The high-quality three-dimensional
taper can ideally realize adiabatic conversion and single-mode transmission, to realize low
insertion loss of 2.5± 1.2 dB between 1240 nm and 1580 nm, and with losses of 1.6 ± 0.4 dB
in the C-band (1530–1565 nm). The signal with a 5.25 Tbit/s aggregate data rate was
transmitted through a photonic wire bond without any measurable signal degradation,
which proves the reliability of the photonic wire bond. Photonic wire bonding can play a
vital role in interconnects with spatial densities in the Pbit/s/mm range.

Photonic wire bonding can also connect multi-core fibers and single-mode SOI waveg-
uides with low insertion loss. In the demonstration, the photonic wire bond had tapered
sections on the fiber enfaces as well as towards the SOI chip for adapting the mode fields.
Between the tapered structures, the PWB had a round cross-section, the axis of which
follows a 3D trajectory in space. The PWB trajectory was carefully designed and optimized
to minimize the transmission loss. The technique does not need to consider the strict
coupling alignment conditions between devices, greatly simplifies the coupling process,
and can realize full-automatic coupling. The insertion losses between the multi-core fibers
and single-mode SOI waveguides were down to 1.7 dB, which has much potential for
further improvement [135].

A flexible fabrication process enables photonic wire bonding to match various device
platforms. A photonic wire bonding connecting InP-based horizontal-cavity surface-
emitting lasers (HCSEL) to passive silicon photonic circuits with insertion losses down to
0.4 dB was demonstrated [136]. To minimize optical loss, the design of a PWB should obey
several constraints. At first, the end facets of the PWB must overlap with the connecting
waveguides on both sides. Secondly, the starting and ending orientation of the PWB axes
must coincide with the connecting waveguide axes. Thirdly, the trajectory of the PWB axis
is to be chosen such that intersections with obstacles such as fibers, chip edges or other
PWB are avoided. Finally, increased losses by a strong curvature of the trajectory and a
large length should be avoided, and a suitable compromise should be found. Hence, hybrid
photonic multi-chip assemblies that combine known good devices of different materials
together to form high-performance hybrid multi-chip modules can be achieved by photonic
wire bonding.

Furthermore, the photonic wire bonds which connect arrays of silicon photonic mod-
ulators to InP lasers and single-mode fibers was also demonstrated. Figure 13a shows
the concept and implementation of hybrid multi-chip modules by 3D nano-printing of
PWBs. Figure 13b displays the interface between an InP laser chip and the silicon photonic
transmitter chip. The light source was realized as a HCSEL, which consisted of a waveguide-
based optical cavity in the substrate plane and an etched 45◦ mirror that redirects the light
towards the substrate-normal direction, while Figure 13c displays the fiber-to-chip interface.
Since the waveguide shape and position can be freely set in three-dimensional space, highly
integrated fan-in and fan-out connecting based on photonic wire bonding can be realized.
The insertion losses of the photonic wire bonds are measured to be (0.7 ± 0.15) dB. The
resilience of photonic wire bonds in environmental stability and at high optical power were
tested to be of good performance [137].
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It is worth mentioning that the PWB prototypes exhibit excellent mechanical and
chemical stability: Repeated testing of the waveguides over several weeks with optical
powers of up to 100 mW did not reveal any degradation of the transmission loss. The
mechanical stability of the structures is excellent because that they are not affected by
manual handling of the chip with tweezers or by intensive rinsing in water after the
development step. Moreover, the fabricated wire bonds exhibit strong adhesion to the
silicon chip surface and do not detach even when treated with oxygen plasma or when
immersed in acetone [42].

6. Conclusions

In summary, we focus on femtosecond laser-fabricated photonic chips for optical
communications in this review article. We first briefly introduce the basic concept of
femtosecond laser fabrication and different types of laser-inscribed waveguides. Then,
the on-chip laser-fabricated active devices and passive devices are presented. By direct
fabrication and flexible 3D configuration of waveguide-based optical components in a wide
spectrum of optical materials, various optical functionalities including laser generation,
laser amplification, EO modulation, frequency conversion, polarization–division multiplex-
ing, mode–division multiplexing, multi-core multiplexing and photonic wire bonding have
been achieved. The devices with these functionalities can be easily integrated with novel
optical materials for optical communication applications.

The femtosecond laser fabrication technology has shown the powerful ability and
unique capability to construct diverse waveguide devices with high qualities for future
photonic networks. As shown in Figure 14, the future efforts in this research would
mostly focus on three directions: exploring the undisclosed physical mechanisms, devel-
oping new fabrication techniques, and extending the application range. It is well known
that femtosecond laser fabrication provides unique advantages such as the suppression
of thermal diffusion, nonlinear multiphoton excitation of carriers, deterministic optical
breakdown threshold, internal modification of transparent materials and reproducible
nanoscale resolution. However, the physical mechanisms of material modification are not
yet fully understood, especially after the free-electron plasma transferring its energy to the
lattice [138]. Understanding these physical mechanisms requires the detailed diagnosis of
ultrafast plasma dynamics inside transparent materials, which would enable us to make
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better use of this technology. The rich variety of parameters provided by femtosecond
laser pulses has allowed femtosecond laser beam shaping to be extensively investigated.
Early efforts were mainly focused on spatial or temporal shaping of ultrafast laser pulses
to improve waveguide quality. Several beam-shaping technologies have been proposed,
including slit beam shaping, astigmatic beam shaping and spatial light modulator (SLM)
beam shaping [139–144]. Multi-scan technology and thermal annealing technologies are
applied to improve the quality of the inscribed waveguide. Beam shaping effects also aimed
at high-speed parallel processing and sub-diffraction limited fabrication, such as simul-
taneous spatiotemporal manipulation and two-photon polymerization technology [145].
The research of various materials would promote the development of applications based
on femtosecond laser fabrication. The femtosecond laser-fabricated chips based on glass
and crystals have also been applied to integrated optics and photonics in both classical
and quantum fields. Surface nano-structuring can be applied not only on the surfaces
of various materials including metals, glass, ceramics, semiconductors, and insulators,
but also advanced materials such as graphene. Several laser-fabricated graphene devices,
such as flexible electrodes, photovoltaic devices, sensors, and micro-supercapacitors, have
been demonstrated [26]. The fabrication of 3D polymer micro- and nanocomponents
by TPP, such as optofluidics, optomechanics, glass welding and biomedicine becomes
more and more open for not only scientific research in various fields, but also for product
development [44,146,147].
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