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Abstract: Metamaterial biosensors have been extensively used to identify cell types and detect con-
centrations of tumor biomarkers. However, the methods for in situ and non-destruction measurement
of cell migration, which plays a key role in tumor progression and metastasis, are highly desirable.
Therefore, a flexible terahertz metamaterial biosensor based on parylene C substrate was proposed for
label-free and non-destructive detection of breast cancer cell growth and migration. The maximum
resonance peak frequency shift achieved 183.2 GHz when breast cancer cell MDA−MB−231 was
cultured onto the surface of the metamaterial biosensor for 72 h. A designed polydimethylsiloxane
(PDMS) barrier sheet was applied to detect the cell growth rate which was quantified as 14.9 µm/h.
The experimental peak shift expressed a linear relationship with the covered area and a quadratic
relationship with the distance, which was consistent with simulation results. Additionally, the cell
migration indicated that the transform growth factor-β (TGF-β) promoted the cancer cell migration.
The terahertz metamaterial biosensor shows great potential for the investigation of cell biology in the
future.

Keywords: terahertz metamaterial; biosensor; cell migration; transform growth factor-β

1. Introduction

Metamaterials are types of artificial media composed of periodically arranged sub-
wavelength structures. They exhibit many unique properties that could not exist in natural
materials and have attracted great attention recently [1–6]. Metamaterials especially gen-
erated resonant absorption peaks as a response to incident electromagnetic waves, which
are sensitive to the change in the dielectric environment on the surface of metamateri-
als [7]. Moreover, THz radiation has quite low photon energy, effectively avoiding harmful
ionization to biomolecules which determines their suitability for biosensing. Therefore,
the metamaterial has been used in the sensing of protein [8], cell [9], and ribonucleic acid
(RNA) [10]. Particularly, the effective sensing depth for the terahertz metamaterial biosen-
sor is about 10 µm above the surface [11], which means metamaterials are more suitable for
thick sample sensing, such as cell sensing. Several research papers about the detection of
cells by terahertz metamaterial biosensors have been reported in recent years. For example,
Zhang proposed a metamaterial biosensor with five concentric ring structures, which was
used as a label-free and in situ detection tool in researching cell apoptosis [12]. The peak
frequency shift depended on the change of the refractive index on the whole surface. Yang
applied the metamaterial biosensor with an electromagnetically induced transparency (EIT)
structure to detect different concentrations of lung cancer cells. In addition, the dielectric
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parameters of different cell concentrations were simulated to match experiment results [13].
Zhang distinguished different types of cells according to the resonance frequency shift
and peak magnitude variation, which depended on the dielectric loss of the analyte [14].
Yan [15] applied EIT-type structural metamaterial biosensors to study the inhibitory effect
of anti-cancer drugs on cancer cells. The current research mainly focuses on cell concen-
tration detection and distinguishing the cell types [16], which are related to the change of
dielectric parameters on the surface. However, research demonstrated that the resonance
peak frequency of metamaterial biosensors is also sensitive to the cell distribution [17]. This
special property indicates that the terahertz metamaterial biosensor could be applied to
observe the dynamic processes of cells that depend on the cell position, such as cell growth
and migration, which were never reported.

Cell migration plays a key role in various biological processes, such as angiogenesis,
cancer metastasis, wound healing, and inflammation [18]. Traditional cell migration de-
tection methods are the wound-healing assay [19] and the Boyden chamber assay [20], of
which the processes are time-consuming and require professionals. The “wound” area is
made by a pipette, which may damage the cells at the edge of the wound [21]. With the
development of microfluidic technology, microfluidic-based wound-healing assays have
been proposed [22–24]. This method still has some limitations, including complex manual
operation [25], precise fluid control [26], and special materials [27]. Therefore, developing
a simple, label-free, and non-destructive detection method for cell migration is highly
required.

Here, we proposed a terahertz metamaterial biosensor based on a double U-shaped
structure for label-free and non-destructive sensing of cells, offering a feasible strategy to
study cell migration. The metamaterial structure was fabricated on a thin low-refractive-
index flexible parylene substrate, which shows good performance in the detection of
cell concentrations. A linear relation is found between cell area and the resonance peak
frequency shift in simulation and experiment by introducing a polydimethylsiloxane
(PDMS) barrier sheet as a “wound”, which means that our biosensor would quantify the
cell growth. Moreover, the effects of transform growth factor-β (TGF-β), which could
promote MDA−MB−231 cell migration [28], were investigated by the biosensor. The
results indicate that cells migrate further when the concentration of TGF-β is increased,
which is consistent with the biological method. This terahertz metamaterial biosensor
exhibits great promise for future biological and biomedical detection of cancer cells.

2. Materials and Methods
2.1. Design and Fabrication of Metamaterial

Figure 1a–c shows the experimental scheme and geometric parameter dimensions.
The metamaterial is composed of periodic double U-shaped metal structures, which were
fabricated on a 15 µm thick parylene C substrate. The dielectric constant of parylene C is
2.7, which is smaller than traditional substrate materials quartz and polyimide (PI). That
means it is more suitable for sensing. The parylene C substrate was grown on a 4-inch
silicon wafer by chemical vapor deposition (CVD) (PDS2010, Specialty Coating Systems
company). Then the metamaterial structure was fabricated on the parylene C substrate
by a standard UV lithography method. Next, 5 nm of Cr and 100 nm Au was deposited
on the parylene C by electron beam evaporation. Then, the 4-inch biosensor was peeled
off from the Si wafer in water, and the biosensor was cut into a 20 mm × 20 mm sensing
unit. Figure 1d, e shows photographs of the 4-inch biosensor and the sensing unit. The
radiuses of the two circles were r1 = 5 mm and r2 = 1.5 mm, respectively, which were used
for locating the PDMS chamber and barrier sheet. Figure 1f is the microscope image of the
double U-shaped metamaterial.
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Figure 1. (a) Schematic illustration of the metamaterial biosensor: THz beams normally incident 
through the biosensor on which the MDA−MB−231 cell was cultured; (b) the structure of the met-
amaterial biosensor. The geometrical parameters are l1 = l2 = 20 mm, r1 = 5 mm, r2 = 1.5 mm, and t = 
15 µm, respectively; (c) the structure of double U-shaped metamaterial. The geometrical parameters 
are p1 = p2 = 44 µm, w1 = w2 = 36 µm, w3 = 2 = 0 µm, and g = 4 µm, respectively; (d) physical photograph 
of 4-inch biosensor; (e) physical photograph of 20 × 20 mm biosensor; (f) micrograph of the met-
amaterial. 

2.2. Cell Growth on Biosensor 
To quantify the growth and migration of cells, we proposed a “wound-healing” de-

vice composed of a PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) culture cham-
ber and a PDMS barrier sheet. The device was prepared as follows. First, Sylgard 184 
PDMS base and curing agents (Sylgard 184, Dow Corning Corp.) were mixed in the ratio 
of 10:1 and were degassed. Then the mixture was poured into glass containers with thick-
nesses of 4 mm (chamber) and 0.5 mm (barrier sheet) respectively. Second, the containers 
were put in an oven at 70 °C for 2 h to make the PDMS completely cured. Finally, PDMS 
films were cut into chambers and barrier sheets by molds. The radius of the culture cham-
ber is 5 mm, and the radius of the barrier sheets is 1.5 mm, as shown in Figure 2a. The 
surfaces of PDMS and parylene fit well without leakage since both are hydrophobic. Fig-
ure 2b is the photograph after cell loading. 

Figure 1. (a) Schematic illustration of the metamaterial biosensor: THz beams normally incident
through the biosensor on which the MDA−MB−231 cell was cultured; (b) the structure of the
metamaterial biosensor. The geometrical parameters are l1 = l2 = 20 mm, r1 = 5 mm, r2 = 1.5 mm, and t
= 15 µm, respectively; (c) the structure of double U-shaped metamaterial. The geometrical parameters
are p1 = p2 = 44 µm, w1 = w2 = 36 µm, w3 = 2 = 0 µm, and g = 4 µm, respectively; (d) physical
photograph of 4-inch biosensor; (e) physical photograph of 20 × 20 mm biosensor; (f) micrograph of
the metamaterial.

2.2. Cell Growth on Biosensor

To quantify the growth and migration of cells, we proposed a “wound-healing” device
composed of a PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) culture chamber
and a PDMS barrier sheet. The device was prepared as follows. First, Sylgard 184 PDMS
base and curing agents (Sylgard 184, Dow Corning Corp.) were mixed in the ratio of 10:1
and were degassed. Then the mixture was poured into glass containers with thicknesses
of 4 mm (chamber) and 0.5 mm (barrier sheet) respectively. Second, the containers were
put in an oven at 70 ◦C for 2 h to make the PDMS completely cured. Finally, PDMS films
were cut into chambers and barrier sheets by molds. The radius of the culture chamber is
5 mm, and the radius of the barrier sheets is 1.5 mm, as shown in Figure 2a. The surfaces of
PDMS and parylene fit well without leakage since both are hydrophobic. Figure 2b is the
photograph after cell loading.

The human breast cancer cell lines MDA−MB−231 transfected with red fluorescent
protein gene (MDA−MB−231−RFP) were obtained from China Infrastructure of Cell
Line Resource. These cell lines were cultured in high-glucose Dulbecco’s Modified Eagle
Medium (DMEM; HyClone) supplemented with 10% fetal bovine serum (FBS; HyClone),
penicillin (100 U/mL, Gibco), and streptomycin (100 µg/mL, Gibco) and maintained at
37 ◦C in a humidified incubator with 5% CO2.
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sheet was pasted on the biosensor aligned with the inner circle (r2 = 1.5 mm), which was 
used as a “wound” to prevent cell adhesion inside the inner circle (Figure 2c). Secondly, 
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Figure 2. (a) Photograph of PDMS chamber and barrier sheet; (b) photograph of biosensor after cell
loading; (c–f) schematic diagram of the process of cell migration experiment; (c) fibronectin function;
(d) cell loading; (e) cell adhesion; (f) cell migration.

The operation of the cell growth and migration experiment is shown in Figure 2c–f,
which mainly involved four steps: fibronectin function on the chip surface, cell loading, cell
adhesion, and cell migration. Firstly, all the devices (PDMS chamber, PDMS barrier sheet,
biosensor) were sterilized under UV light for 30 min. Then, the PDMS chamber was tightly
bonded to the metamaterial as the hole edges aligned with the outer circle (r1 = 5 mm)
to form the culture chamber. The PDMS chamber was treated with fibronectin solution
(Millipore) at a concentration of 50 µg/mL before cell loading. Then, the PDMS barrier sheet
was pasted on the biosensor aligned with the inner circle (r2 = 1.5 mm), which was used as a
“wound” to prevent cell adhesion inside the inner circle (Figure 2c). Secondly, breast cancer
cell line MDA−MB−231 at a density of 1 × 105 cell/mL, which was transfected with a red
fluorescent protein, was introduced into the cell chamber (Figure 2d). Thirdly, the whole
device was maintained at 37 ◦C in a humidified incubator with 5% CO2 for promoting
cell attachment and spreading. The PDMS barrier sheet was removed after the outer circle
metamaterial surface was completely covered with cells (Figure 2e). Finally, the cell grew
in the chamber by adding different culture mediums for different experiments (Figure 2f).
There is no need to introduce the PDMS barrier sheet for the cell concentration examination.
The cells grow directly in the PDMS chamber to verify the growth ability of cells on the
surface of the metamaterial. For the cell growth rate test, the culture medium was DMEM
supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin. The cells
gradually grow inward through the inner circular boundary after removing the PDMS
barrier sheet. The growth rate would be achieved by analyzing the growth distance and
resonance peak shift (∆ f ) against time. For cell migration detection, the culture medium
contained TGF-β. The effects of TGF-β on breast cancer cell migration would be obtained by
analyzing the migration distance and resonance peak shift (∆f ) against the concentrations
and time.

2.3. Fluorescence and Terahertz Spectroscopy Measurement

Fluorescent pictures were captured to observe cell growth and migration. The cells
were washed with PBS, fixed with 4% paraformaldehyde for 10 min at room temperature
after growing under different conditions. Then, a microscope (Ti-s, Nikon, Tokyo, Japan)
with a CCD camera (Ds-Ri1, Nikon, Japan) was used to record the fluorescent pictures at a
magnification of 20 times.



Micromachines 2022, 13, 631 5 of 12

The THz transmission spectrum of terahertz metamaterials was measured by a com-
mercial terahertz time-domain spectroscopy test system (CIP-TDS, Daheng Optics). The
test environment temperature was 23 ± 0.5 ◦C, and the relative humidity was less than
5%. The cells were washed with PBS, fixed with 4% paraformaldehyde for 10 min at room
temperature after growing under different conditions. Then, the fixed cells were rinsed
with deionized water and sucked out. A dust-free paper was used to dry the residual water
on the surface quickly. Finally, time-domain spectroscopy of the biosensor was measured
as E1(ω) by CIP-TDS, and spectroscopy of air was measured as E2(ω), the transmissivity
can be obtained by:

T(ω) = E1(ω)/E2(ω) (1)

3. Result and Discussion
3.1. Simulation of Metamaterial Biosensor

The simulations of the double U-shaped metamaterial structure were completed by
COMSOL Multiphysics. The parylene C and Au thickness were 15 µm and 100 nm, respec-
tively. The dielectric constant of the parylene C substrate is εp = 2.7. The conductivity of Au
is σ = 4.56 × 107 S/m, in accordance with the Debye distribution. The boundary conditions
were periodic boundary conditions. The electric field of the incident electromagnetic wave
was along the X direction, and the magnetic field was along the Y direction. To investigate
the effect of the cell concentrations on the biosensor surface for resonance peak, different
numbers of hemispheres, which were regarded as cells, were randomly put on the surface
of the metamaterial. The radius of the hemispheres was 5 µm. The dielectric constant of
the sample was 1.4. The transmittance simulation results are shown in Figure 3a. The
insert figure was the schematic diagram of the simulation. The transmission curve had two
absorption peaks when there were no cells on the surface of the metamaterial. The high-
frequency peak (peak 1) was at 1.706 THz with a narrow half-width, and the low-frequency
peak (peak 2) was at 1.12 THz with a wider half-width. The resonance peaks shifted to low
frequency when the number of cells increased, indicating that the sensor could sense cell
concentration on the surface. The slopes (shown in Figure 3b) indicated that the sensitivity
of the high-frequency peak was higher than that of the low-frequency peak. Consequently,
our follow-up research was focused on the high-frequency peak changes. Figure 3c, d
exhibits the surface electric field distribution on the X-Y plane at the two resonance frequen-
cies, respectively. The electric field is enhanced at the outer U ring for the low-frequency
peak and at the inner U ring for the high-frequency peak. The surface current distributions
in the X-Y plane at the two resonance frequencies are shown in Figure 3e, f. The results
indicated that the low-frequency peak was formed by the LC oscillation of the outer U
structure independently. On the other hand, the high-frequency peak is formed by the LC
oscillation of the inner U structure. The values of capacitance and inductance are related
to the size of the metamaterial. To investigate the dependence of the peak shift on the cell
growth distance, a sample layer was set above the metamaterial as cells. The sample layer
increased from the edge of the metamaterial unit to the center following a concentric circle.
The thickness of the sample layer is 10 µm, and the refractive index is 1.4. The simulation
result is shown in Figure 4a. The insert figure shows the simulation schematic diagram.
The resonance peak frequency decreased as the growth distance increased. Figure 4b shows
the relationship between the growth distance and the peak frequency. The fitting curve is a
quadratic relation. According to the perturbation theory, the relative change of the resonant
angular frequency ∆ω/ω0 is:

∆ω

ω0
=

−
∫

ν0

(
∆ε
∣∣E0
∣∣2 + ∆µ

∣∣H0
∣∣2)dν∫

ν0

(
ε
∣∣E0
∣∣2 + µ

∣∣H0
∣∣2)dν

≈
−
∫

ν0

(
∆ε
∣∣E0
∣∣2)dν

2
∫

ν0

(
ε
∣∣E0
∣∣2)dν

(2)

where E0 and H0 are the electric and magnetic fields of the environment above metamaterial,
∆ε is a change of the dielectric constant in the environment, and ν0 is the effective integral
volume. In our model, the thickness of the sample layer was 10 µm, which means the
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effective integral volume ν0 was proportional to the area of the sample layer. Dielectric
constant ε was set as 1.4, which would not change. Therefore, peak shift ∆f was proportional
to the area of the sample layer. Figure 4a would be changed into Figure 4c when we
calculated the ratio of Ssample/Smetamaterial. Figure 4d shows the relationship between the
area ratios and peak frequency. The fitting equation was y = 1.7573 – 0.23x. The peak
frequency was proportional to the area ratios, which was consistent with the theory.
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Figure 3. The simulated results of the metamaterial biosensor. (a) The transmission spectra of
metamaterial with different numbers of cells on the surface. The inner graph shows the schematic
illustration of the simulation; (b) the peak shift of the two peaks with different numbers of cells. (c)
Electric field distribution in the X-Y plane at peak 2. (d) Electric field distribution in the X-Y plane at
peak 1. (e) Surface current distribution in the X-Y plane at peak 2. (f) Surface current distribution in
the X-Y plane at peak 1.
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Figure 4. The cell growth simulations of the metamaterial biosensor. (a) The simulated transmission
spectra of metamaterial under different cell growth distances. The inner graph shows the schematic
illustration of simulation; (b) the dependence of peak 1 shift extracted from (a) on growth distance.
(c) The simulated transmission spectra of metamaterial under different cell area ratios. (d) The
dependence of peak 1 shift extracted from (c) on the growth distance area ratio of the cell.

3.2. Cell Concentration Measurement

To investigate the sensing performance of the metamaterial biosensor, the breast cancer
cells MDA−MB−231−RFP were directly cultured onto the biosensor’s surface without the
PDMS barrier. Figure 5a–c shows the brightfield images of cells at 24, 48, and 72 h. The black
border in the images was the boundary of the inner circle. Figure 5d–f shows the fluorescent
images of cells at 24, 48, and 72 h. It could be found that the density of cells increased
with time. The surface of the biosensor was almost completely covered after 72 h. The
results showed that the cells grew and proliferated with good viability on the surface of the
biosensor. Terahertz time-domain spectroscopy is shown in Figure 5g. The transmittance
curves of cells gradually shift to the left as the growth time increases. Figure 5h,i shows the
peak frequency versus grow time of the two resonance peaks, respectively. The slope of
peak 1 was larger than peak 2, which indicated that the sensitivity of peak 1 was higher than
peak 2. The experimental results are consistent with the simulation. The largest frequency
shift of peak 1 was discovered as 183.2 GHz when the cells were cultured for 72 h. The
experiment results illustrate that the THz metamaterial biosensor would be applied to
detect the cell concentration.
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Figure 5. Experiment results of cells growing on the biosensor. (a–c) Micrograph of the biosensor with
cells growing after 24 h, 48 h, and 72 h; (d–f) fluorescence pictures corresponding; (g) the transmission
spectra of the biosensor with cells growing after 24 h, 48 h, and 72 h; (h) the dependence of peak
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3.3. Cell Growth Rate Quantification

The growth rate of cells was investigated by introducing the PDMS barrier sheet as
“would”, which was used to prevent cells proliferating into the inner circle. As described
in Figure 2e, f, the PDMS barrier sheet was removed when the cells completely covered the
biosensor. Afterward, DMEM was put into the culture chamber to promote cell spreading.
Figure 6a–e shows the fluorescent images of the cells at 0, 24, 36, 72, and 96 h. It could be
clearly seen that cells gradually grew from the boundary of the inner circle to the center,
eventually covering the whole surface of the biosensor at 96 h. The growth distance was
measured by the microscope. Figure 6f shows the relationship between growth distance
and time. The linear fitting function was y = 17.67 + 14.9x, indicating that the growth rate
was 14.9 µm/h. The biosensors were measured by a time-domain spectroscopy system.
The transmission curve is shown in Figure 6g. The curve shifted to the left as the growth
time increases. The dependence of peak frequency on distance is shown in Figure 6h, the
peak frequency and growth time have a quadratic relationship, of which the fitting function
was y = 1.6186 – 0.0016x + 8.4 × 10−6x2. As the growth time increased, the peak frequency
change gradually slowed down. The results are consistent with the simulation shown in
Figure 4b. Figure 6i shows the peak position versus the growth distance, which is also
a quadratic relationship. For further research on the relationship between cell growth
and peak shift, the area ratio Scell/Scircle was calculated, where Scell was the area of cells
entering the inner circle and Scircle was the area of the inner circle (7.065 mm2). As shown in
Figure 6j, the peak frequency was proportional to the area ratio, which was consistent with
the simulation results. It proves that the terahertz metamaterial biosensor could quantify
the growth rate of cells. Furthermore, the metamaterial biosensor could be applied to
distinguish the cell types by the growth rate.
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3.4. Effects of Transforming Growth Factors on Cell Migration

Cell migration provides important information in various biological processes. Studies
have demonstrated that TGF-β could promote MDA−MB−231 cell migration [29]. To
expand the application of the biosensor, the effect of TGF-β on MDA−MB−231 cells
migration was investigated without any cell damage by the biosensor. As shown in
Figure 2f, the cells were incubated with the medium containing different concentrations
of TGF-β (0, 10, 20 ng/mL) for different times (0, 24, 48, 72 h) after removing the PDMS
barrier sheet. The biosensors were then recorded for fluorescent images and terahertz
time-domain spectroscopy. Figure 7a–l shows fluorescent images of biosensors for varied
conditions. It could be seen from Figure 7a–c that the cells were at the boundary of the
inner circle at 0 h indicating that cells almost would not migrate without TGF-β. As shown
in Figure 7d–l, the migration of MDA−MB−231 cells was enhanced as the concentrations
of TGF-β increased at the same growing time. In addition, cell migration exhibited a
positive correlation with time. The biosensors were measured by CIP−TDS and shown
in Figure 7m–p. Obviously, the peak frequency shift to the left as the concentration of
TGF-β increases from 0 ng/mL to 20 ng/mL. Figure 8a shows the growth distance related
to the time. Cells move further when either time or concentration of TGF-β increases.
The corresponding shift values of four growing times under different concentrations were
extracted to acquire the dependence of frequency shift ∆ f on the growing time. The peak
shift ∆ f j at the TGF-β concentration of j ng/mL (j =0, 10, 20) is defined as ∆ f j = f j

i − f j
0,

where f j
i was the peak frequency of biosensor cultured for i h (i = 0, 24, 48, 72) at the

concentration of j ng/mL, f j
0 was the peak frequency of biosensor cultured for 0 h at the

concentration of j ng/mL. As shown in Figure 8b, the frequency shift increased as the time
and concentration of TGF-β increased. After being cultured for 72 h, the peak frequency
shift increased from 19.3 to 79.3 GHz when the concentration of TGF-β changed from 0 to 20
ng/mL. The spectrum results were consistent with the fluorescent results. That means that
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the migration of MDA−MB−231was significantly enhanced after adding TGF-β, which
could be examined by our metamaterials without damage. The results of cell growth and
migration experiments show that our biosensor was sensitive to the concentrations and the
distributions of the cell on the surface of the metamaterial. The metamaterial was easily
fabricated and measured. It could simply and quickly obtain the information of the cell
without labeling. Moreover, the measurement of our biosensor was undamaged as the
photon energy of the THz radiation was low.
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4. Conclusions

A flexible terahertz metamaterial biosensor was proposed and fabricated, which was
utilized for label-free non-destructive detection of cell growth and migration. The biosensor
monitored the growth behavior of breast cancer cell MDA−MB−231 by introducing a
PDMS barrier sheet as a “wound”. The linear relation between peak frequency shift and the
area of the cell, which was explored through the simulation, has been confirmed experimen-
tally. Furthermore, the effects of TGF-β on cell migration were investigated on the surface
of the metamaterial biosensor. The measured results demonstrated that the migration of
MDA−MB−231 would be significantly enhanced when increasing the concentration of
TGF-β, which would cause a further peak shift. Therefore, the metamaterial biosensor
offers a novel method for the detection of cell growth and migration and shows significant
potential in the future biological and biomedical study of cancer cells.
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