Surface Plasmon Resonance of Large-Size Ag Nanobars
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaman, M.A.; Padhy, P.; Hesselink, L. Near-field Optical Trapping in a Non-conservative Force Field. Sci. Rep. 2019, 9, 649. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, O.; De la Pena, F.; Leary, R.K.; Holland, D.J.; Ducati, C.; Midgley, P.A. Three-Dimensional Imaging of Localized Surface Plasmon Resonances of Metal Nanoparticles. Nature 2013, 502, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, F.; Heidarzadeh, H.; Bahador, H. Photocurrent Improvement of an Ultra-thin Silicon Solar Cell Using the Localized Surface Plasmonic Effect of Clustering Nanoparticles. Chin. Phys. B 2020, 29, 068401. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 2018, 7, 1800995. [Google Scholar] [CrossRef] [Green Version]
- Ueno, K.; Oshikiri, T.; Misawa, H. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes. Chemphyschem 2016, 17, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, T.; Gong, J. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting. Adv. Mater. 2015, 27, 5328–5342. [Google Scholar] [CrossRef]
- Lednicky, T.; Bonyar, A. Large Scale Fabrication of Ordered Gold Nanoparticle-Epoxy Surface Nanocomposites and Their Application as Label-Free Plasmonic DNA Biosensors. ACS Appl. Mater. Interfaces 2020, 12, 4804–4814. [Google Scholar] [CrossRef]
- Danilov, A.; Tselikov, G.; Wu, F.; Kravets, V.G.; Ozerov, I.; Bedu, F.; Grigorenko, A.N.; Kabashin, A.V. Ultra-Narrow Surface Lattice Resonances in Plasmonic Metamaterial Arrays for Biosensing Applications. Biosens. Bioelectron. 2018, 104, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Tang, H.; Liu, B.; Kasani, S.; Huang, L.; Wu, N. Origin of Strong and Narrow Localized Surface Plasmon Resonance of Copper Nanocubes. Nano Res. 2018, 12, 63–68. [Google Scholar] [CrossRef]
- Wu, F.; Wang, W.; Xu, Z.; Li, F. Bromide (Br)-Based Synthesis of Ag Nanocubes with High-Yield. Sci. Rep. 2015, 5, 10772. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Tian, C.; Ren, Z.; Yang, J.; Chen, Y.; Sun, L.; Li, Z.; Wu, A.; Yin, J.; Fu, H. LSPR-Dependent SERS Performance of Silver Nanoplates with Highly Stable and Broad Tunable LSPRs Prepared through an Improved Seed-Mediated Strategy. Phys. Chem. Chem. Phys. 2013, 15, 21034–21042. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.K.; Debu, D.T.; French, D.A.; Herzog, J.B. Calculated Thickness Dependent Plasmonic Properties of Gold Nanobars in the Visible to near-Infrared Light Regime. PLoS ONE 2017, 12, e0177463. [Google Scholar] [CrossRef]
- Chen, Y. Nanofabrication by Electron Beam Lithography and Its Applications: A Review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Shi, X.; Verschueren, D.; Pud, S.; Dekker, C. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores. Small 2018, 14, e1703307. [Google Scholar] [CrossRef]
- Gu, P.; Zhang, W.; Zhang, G. Plasmonic Nanogaps: From Fabrications to Optical Applications. Adv. Mater. Interfaces 2018, 5, 1800648. [Google Scholar] [CrossRef]
- Cordoba, R.; Orus, P.; Strohauer, S.; Torres, T.E.; De Teresa, J.M. Ultra-Fast Direct Growth of Metallic Micro- and Nano-Structures by Focused Ion Beam Irradiation. Sci. Rep. 2019, 9, 14076. [Google Scholar] [CrossRef] [Green Version]
- Michaeli, L.; Keren-Zur, S.; Avayu, O.; Suchowski, H.; Ellenbogen, T. Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays. Phys. Rev. Lett. 2017, 118, 243904. [Google Scholar] [CrossRef]
- Sanchez-Esquivel, H.; Raygoza-Sanchez, K.Y.; Rangel-Rojo, R.; Kalinic, B.; Michieli, N.; Cesca, T.; Mattei, G. Ultra-Fast Dynamics in the Nonlinear Optical Response of Silver Nanoprism Ordered Arrays. Nanoscale 2018, 10, 5182–5190. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Tong, H.; Yang, X.; Wu, X.; Pang, Z.; Yang, H.; Qi, Y. A Theoretical Study of a Plasmonic Sensor Comprising a Gold Nano-Disk Array on Gold Film with a SiO2 Spacer. Chin. Phys. B 2019, 28, 044201. [Google Scholar] [CrossRef]
- Singh, P. SPR Biosensors: Historical Perspectives and Current Challenges. Sens. Actuators B Chem. 2016, 229, 110–130. [Google Scholar] [CrossRef]
- Zhou, S.; Mesina, D.S.; Organt, M.A.; Yang, T.-H.; Yang, X.; Huo, D.; Zhao, M.; Xia, Y. Site-Selective Growth of Ag Nanocubes for Sharpening Their Corners and Edges, Followed by Elongation into Nanobars through Symmetry Reduction. J. Mater. Chem. C 2018, 6, 1384–1392. [Google Scholar] [CrossRef]
- Tuersun, P. Simulated Localized Surface Plasmon Spectra of Single Gold and Silver Nanobars. Optik 2016, 127, 3466–3470. [Google Scholar] [CrossRef]
- Wiley, B.J.; Chen, Y.; McLellan, J.M.; Xiong, Y.; Li, Z.; Ginger, D.; Xia, Y. Synthesis and Optical Properties of Silver Nanobars and Nanorice. Nano Lett. 2007, 7, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Moran, C.H.; Xia, X.; Rycenga, M.; Li, N.; Xia, Y. Synthesis of Ag Nanobars in the Presence of Single-Crystal Seeds and a Bromide Compound, and Their Surface-Enhanced Raman Scattering (SERS) Properties. Langmuir 2012, 28, 9047–9054. [Google Scholar] [CrossRef]
- Hu, X.L.; Sun, L.B.; Shi, B.; Ye, M.; Xu, Y.; Wang, L.S.; Zhao, J.; Li, X.L.; Wu, Y.Q.; Yang, S.M.; et al. Influence of Film Thickness and Nanograting Period on Color-Filter Behaviors of Plasmonic Metal Ag Films. J. Appl. Phys. 2014, 115, 113104. [Google Scholar] [CrossRef]
- Dong, J.; Cao, Y.; Han, Q.; Gao, W.; Li, T.; Qi, J. Nanoscale Flexible Ag Grating/AuNPs Self-Assembly Hybrid for Ultra-Sensitive Sensors. Nanotechnology 2021, 32, 155603. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Mamykin, S.V.; Lanara, C.; Hevko, I.; Dusheyko, M.; Bellucci, S.; Stratakis, E. Laser Nanostructuring for Diffraction Grating Based Surface Plasmon-Resonance Sensors. Nanomaterials 2021, 11, 591. [Google Scholar] [CrossRef]
- Li, G.; Hu, H.; Wu, L. Tailoring Fano Lineshapes Using Plasmonic Nanobars for Highly Sensitive Sensing and Directional Emission. Phys. Chem. Chem. Phys. 2018, 21, 252–259. [Google Scholar] [CrossRef]
- Si, G.Y.; Leong, E.S.; Pan, W.; Chum, C.C.; Liu, Y.J. Plasmon-Induced Transparency in Coupled Triangle-Rod Arrays. Nanotechnology 2015, 26, 025201. [Google Scholar] [CrossRef]
- Chen, H.-Y.; He, C.-L.; Wang, C.-Y.; Lin, M.-H.; Mitsui, D.; Eguchi, M.; Teranishi, T.; Gwo, S. Far-Field Optical Imaging of a Linear Array of Coupled Gold Nanocubes: Direct Visualization of Dark Plasmon Propagating Modes. ACS Nano 2011, 5, 8223–8229. [Google Scholar] [CrossRef] [PubMed]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Kim, J.H.; Ehrman, S.H.; Mulholland, G.W.; Germer, T.A. Polarized Light Scattering by Dielectric and Metallic Spheres on Silicon Wafers. Appl. Opt. 2002, 41, 5405–5412. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Schonbrun, E.; Steinvurzel, P.; Crozier, K.B. Trapping and Rotating Nanoparticles Using a Plasmonic Nano-tweezer with an Integrated Heat Sink. Nat. Commun. 2011, 2, 469. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.A.; Padhy, P.; Hesselink, L. Solenoidal Optical Forces from a Plasmonic Archimedean Spiral. Phys. Rev. A 2019, 100, 013857. [Google Scholar] [CrossRef] [PubMed]
- Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Kooh, M.R.R.; Kumara, N.T.R.N.; Lim, C.M.; Chiang, H.P. Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination. Nanomaterials 2020, 10, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou Chau, Y.F.; Chou Chao, C.T.; Rao, J.Y.; Chiang, H.P.; Lim, C.M.; Lim, R.C.; Voo, N.Y. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities. Nanoscale Res. Lett. 2016, 11, 411. [Google Scholar] [CrossRef] [Green Version]
- Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Anwar, U.; Lim, C.M.; Voo, N.Y.; Mahadi, A.H.; Kumara, N.T.R.N.; Chiang, H.-P. Plasmonic Perfect Absorber Based on Metal Nanorod Arrays Connected with Veins. Results Phys. 2019, 15, 102567. [Google Scholar] [CrossRef]
- Chou Chau, Y.F.; Lee, C.M.; Lee, C.; Huang, H.J.; Lin, C.-T.; Kumara, N.T.R.N.; Yoong, V.N.; Chiang, H.P. Tailoring Surface Plasmon Resonance and Dipole Cavity Plasmon Modes of Scattering Cross Section Spectra on the Single Solid-Gold/Gold-Shell Nanorod. J. Appl. Phys. 2016, 120, 093110. [Google Scholar] [CrossRef]
- Chou Chau, Y.F. Intriguing Standing Wave Numbers and Plasmonic Effects on the Solid-Metal/Metal-Shell Nanorod Surface. Plasmonics 2017, 12, 277–285. [Google Scholar] [CrossRef]
- Sönnichsen, C.; Franzl, T.; Wilk, T.; Plessen, G.; Feldmann, J. Plasmon Resonances in Large Noble-Metal Clusters. New J. Phys. 2002, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Hartland, G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiang, J.; Jiang, S.; Dai, Q.; Tie, S.; Lan, S. Multipole Radiations from Large Gold Nanospheres Excited by Evanescent Wave. Nanomaterials 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Mock, J.J.; Hill, R.T.; Chilkoti, A.; Smith, D.R.; Lazarides, A.A. Gold Nanoparticles on Polarizable Surfaces as Raman Scattering Antennas. ACS Nano 2010, 4, 6535–6546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirin, N.A.; Bao, K.; Nordlander, P. Fano Resonances in Plasmonic Nanoparticle Aggregates. J. Phys. Chem. A 2009, 113, 4028–4034. [Google Scholar] [CrossRef] [PubMed]
- McFarland, A.D.; Van Duyne, R.P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3, 1057–1062. [Google Scholar] [CrossRef] [Green Version]
- Sherry, L.J.; Chang, S.-H.; Schatz, G.C.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett. 2005, 5, 2034–2038. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hu, H.; Jiang, W.; Xu, Y.; Zhang, S.; Xu, H. Ultrasensitive Nanosensors Based on Localized Surface Plasmon Resonances: From Theory to Applications. Chin. Phys. B 2018, 27, 107403. [Google Scholar] [CrossRef]
- Kumara, N.T.R.N.; Chou Chau, Y.F.; Huang, J.W.; Huang, H.J.; Lin, C.-T.; Chiang, H.P. Plasmonic Spectrum on 1D and 2D Periodic Arrays of Rod-Shape Metal Nanoparticle Pairs with Different Core Patterns for Biosensor and Solar Cell Applications. J. Opt. 2016, 18, 115003. [Google Scholar] [CrossRef]
- Julien Burgin, M.L.; Philippe, G.-S. Dielectric Sensing with Deposited Gold Bipyramids. J. Phys. Chem. C 2008, 112, 19279–19282. [Google Scholar] [CrossRef]
- Lassiter, J.B.; Sobhani, H.; Fan, J.A.; Kundu, J.; Capasso, F.; Nordlander, P.; Halas, N.J. Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability. Nano Lett. 2010, 10, 3184–3189. [Google Scholar] [CrossRef]
- Ye, J.; Van Dorpe, P. Improvement of Figure of Merit for Gold Nanobar Array Plasmonic Sensors. Plasmonics 2011, 6, 665–671. [Google Scholar] [CrossRef]
Nanostructure | Sensitivity (nm/RIU) | FOM (RIU−1) | Type | Reference |
---|---|---|---|---|
Rodlike Ag nanoparticle | 235 | 4.1 | experiment | [46] |
Ag nanobar | 1193 | 3.4 | simulation | this work |
Ag nanocube | 1565 | 5.4 | experiment | [47] |
Au bipyramids | 2000 | 4.5 | experiment | [50] |
Au nanodisk heptamer | 2340 | 5.4 | experiment | [51] |
Au heptamer | 940 | 20.9 | simulation | [29] |
Ag sphere septamer | 515 | 10.6 | simulation | [45] |
Au nanobar array | 600 | 4.68 | simulation | [52] |
Au nanodisk array | 853 | 126 | simulation | [20] |
Cross-hair/nanorod combination | 1200 | 26.67 | simulation | [36] |
Ag nanorod arrays with the connected veins | 800 | 12.17 | simulation | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Cheng, L.; Wang, W. Surface Plasmon Resonance of Large-Size Ag Nanobars. Micromachines 2022, 13, 638. https://doi.org/10.3390/mi13040638
Wu F, Cheng L, Wang W. Surface Plasmon Resonance of Large-Size Ag Nanobars. Micromachines. 2022; 13(4):638. https://doi.org/10.3390/mi13040638
Chicago/Turabian StyleWu, Fan, Lin Cheng, and Wenhui Wang. 2022. "Surface Plasmon Resonance of Large-Size Ag Nanobars" Micromachines 13, no. 4: 638. https://doi.org/10.3390/mi13040638
APA StyleWu, F., Cheng, L., & Wang, W. (2022). Surface Plasmon Resonance of Large-Size Ag Nanobars. Micromachines, 13(4), 638. https://doi.org/10.3390/mi13040638