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Abstract: In this research, a photonic crystal fiber (PCF)-based sulfuric acid detector is proposed
and investigated to identify the exact concentration of sulfuric acid in a mixture with water. In
order to calculate the sensing and propagation characteristics, a finite element method (FEM) based
on COMSOL Multiphysics software is employed. The extensive simulation results verified that
the proposed optical detector could achieve an ultra-high sensitivity of around 97.8% at optimum
structural and operating conditions. Furthermore, the proposed sensor exhibited negligible loss
with suitable numerical aperture and single-mode propagation at fixed operating conditions. In
addition, the circular air holes in the core and cladding reduce fabrication complexity and can be
easily produced using the current technology. Therefore, we strongly believe that the proposed
detector will soon find its use in numerous industrial applications.

Keywords: optical sensor; relative sensitivity; numerical aperture; single-mode propagation

1. Introduction

Sulfuric acid has become an integral constituent in numerous industries such as drug,
chemical, fertilizer manufacturing plants, etc. This chemical substance has been extensively
employed in thousands of production and process industries as the primary raw material for
the last few decades. A massive amount of sulfuric acid is used to manufacture phosphate
fertilizers, copper leaching, inorganic pigment, petroleum refining, paper production, and
industrial organic chemical production [1,2]. In the case of different industrial applications,
sulfuric acid with different concentrations is required, and most of the time, the required
acid is made by mixing a certain amount of water with it. That is why it is essential to
determine the level of dilution of acid before employing it for any production.

In recent years, numerous optoelectronics researchers proposed various waveguides
such as dielectric waveguides, parallel-plate waveguides, metallic waveguides, and Bragg
fibers, to name a few, to guide electromagnetic waves from source to destination [3–7].
The dielectric waveguides or photonic crystal fibers (PCFs) offer superior propagation
characteristics, compared with the waveguides mentioned earlier [8]. The PCFs can be
classified into three major categories: solid core, porous core, and hollow core. Although
all types of PCFs can be effectively employed in communication applications, only porous
core and hollow-core PCFs can be employed in sensing and spectroscopic applications.
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Hitherto, several optical fiber-based gas and liquid sensors have been proposed to operate
in the terahertz [9–13] or visible optical regimes [14,15]. The optical sensors that operate
on terahertz signals offer higher sensitivity [16,17]. Researchers have proposed using
a constant refractive index through all terahertz bands, which is impractical. On the
other hand, some authors proposed optical sensors where the wavelength-dependent
refractive index of the analyte was considered, which ensures better reliability [14]. In that
article, the authors proposed a hollow-core PCF-based alcohol sensor that offered high
relative sensitivity of 89%, with negligible confinement loss at an operating wavelength
of 1.55 µm. However, in the last few years, several optical fiber-based chemical sensors
were proposed based on the same principle (spectroscopy) used in Ref. [14]. Researchers
recently introduced different metal-coated plasmonic sensors, ensuring excellent sensing
characteristics [18–22]. In 2019, Podder et al. proposed a hybrid core fused silica-based
chemical sensor to identify the concentration level of sulfuric acid [23]. The authors claimed
that the proposed sensor could achieve maximum relative sensitivity of only 64% with
negligible attenuation at optimum structural conditions. However, the proposed sensor
structure is very complicated and challenging to be produced in the laboratory due to
different shaped air holes in the core.

This article presents a novel technique to determine the concentration of sulfuric
acid diluted in water using a PCF. A simple structured hollow-core PCF-based sensor
is proposed and numerically investigated to detect the actual concentration level of the
sulfuric acid solution with water. The optimum design and operating conditions are
selected using a trial-and-error method. The numerical analysis ensures that the proposed
sensor can provide excellent sensing characteristics under those conditions. As a result, the
maximum relative sensitivity of the proposed sensor is almost 97.8%, with very negligible
confinement loss on the order of 10−7 dB/m. In addition, the single-mode PCF also offers
favorable numerical aperture, spot size, and effective core area at optimal conditions.

2. Geometry of the Proposed Sensor

Figure 1 illustrates the two-dimensional view of the proposed sulfuric acid concen-
tration level detector. In the shown structure, a single channel hollow core is proposed,
where the sensing analyte is injected, and the diameter of this channel is denoted by Dc.
In the cladding section, to create a dielectric environment around the core, five rings of
circular air holes are proposed, where the diameter of each air hole is symbolized by d. The
minimum distance between two successive air hole rings is called pitch and is represented
by the symbol p. The ratio between the d and p is called air filling fraction (AFF) and is
maintained throughout the simulation process. To avoid the complexity of realization of
the proposed sensor and for better understanding of the readers, all the parametric values
are related to only parameter p, where, Dc = 1.2 p and d = 0.6 p. By using the trial and error
method, the optimum value of p was found to be 3 µm. It was preserved throughout the
numerical analysis process.

When the light beam travels through the core of the fiber, a fraction of light diverges
from the core and propagates towards the outer surface of the waveguide. After that, a
fraction of that light signal returns to the core due to this back reflection. A circular perfectly
matched layer (PML) boundary condition was used to avoid this undesirable situation,
whose primary function is to absorb the light incident upon it. Finally, fused silica was
selected as the base material of the proposed sensor due to its supreme advantages over
other materials in the optical domain. The light-dependent refractive index (RI) of the
background material is calculated using the Sellmier equations as follows [14]:

n = 1 + 8.06051× 10−5 +
2.480990× 10−2

132.274− λ−2 +
1.74557× 10−4

39.32957− λ−2 (for air) (1)

n2 = 1 +
0.69617λ2

λ2 − 0.06842 +
0.40794λ2

λ2 − 0.116242 +
0.89748λ2

λ2 − 9.896162 (for fused silica) (2)
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lyzing the guiding parameters’ values. In the designing phase, using the Cartesian coor-
dinate system concept, the air holes of the core and cladding were designed. After com-
pleting the design of the PCF, the material properties of the base material, air, and the 
sensing analytes were provided in the simulation environment. The software used FEM 
to solve the differential equations, where the entire PCF structure was considered to con-
sist of a finite number of triangular elements. In the analysis phase, Maxwell’s equations 
were applied to every element, and finally, the complete solution was generated. In order 
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Figure 1. A 2D view of the proposed sulfuric acid concentration level detector.

The numerical values of RI for the fused silica for the operating wavelength range
from 0.8–1.8 µm are tabulated in Table 1.

Table 1. Refractive index of fused silica for different operating wavelengths.

Wavelength
(µm) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

RI of fused silica 1.453 1.452 1.45 1.449 1.448 1.447 1.446 1.445 1.443 1.442 1.44

3. Results and Discussion

The proposed PCF-based sulfuric acid detector was designed and analyzed using
COMSOL Multiphysics Version 4.3, which is widely used by optoelectronics researchers.
The whole process can be divided into two broad categories: designing the PCF and
analyzing the guiding parameters’ values. In the designing phase, using the Cartesian
coordinate system concept, the air holes of the core and cladding were designed. After
completing the design of the PCF, the material properties of the base material, air, and the
sensing analytes were provided in the simulation environment. The software used FEM to
solve the differential equations, where the entire PCF structure was considered to consist of
a finite number of triangular elements. In the analysis phase, Maxwell’s equations were
applied to every element, and finally, the complete solution was generated. In order to
ensure better accuracy, the wavelength-dependent refractive index of sulfuric acid was
used, the values of which were taken from ref. [23]. The critical parameter for any optical
sensor is its relative sensitivity, which indicates the slightest change in the sample detectable
by that sensor. The higher the sensitivity, the better the performance of the sensor. The
mathematical expressions for the relative sensitivity of the sensor and the total power that
travels through the core of the fiber are expressed as follows [9–11]:

r =
nr

ne f f
× P% (3)

P =

∫
sample

Re(Ex Hy − Ey Hx)dxdy∫
total

Re(Ex Hy − Ey Hx)dxdy
× 100 (4)
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where the relative sensitivity is represented by r, the effective refractive index (RI) of the
guided signal and the sample are symbolized by neff and nr, while P indicates the fraction
of total electromagnetic (EM) power that travels through the core. In Equation (4), the
electric and magnetic fields are represented by E and H, respectively. The subscript x and y
represent the polarization modes when the signal travels in the z-direction. Figure 2 shows
the wavelength-dependent RI of sulfuric acid for different concentration levels and the
effective RI of the guiding light through the core of PCF. Figure 2a shows the wavelength-
dependent RI of the sulfuric acid for concentrations from 0% to 40%. as reported in ref. [23].
It also indicates that the RI of the sulfuric acid decreases with the increase in wavelength.
In addition, Figure 2b indicates the effective RI of the guiding light when the core of PCF
is filled with the sample. The two figures are almost identical, as the combined refractive
index (PCF material and sample) changes accordingly to the average RI of the core.
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Figure 2. Graphical representation of the relationship between the (a) refractive index of different
sulfuric acid of different concentrations with wavelength and (b) effective refractive index of the
guided light with wavelength through the optical sensor.

The power fraction of the proposed sensor at different wavelengths is shown in
Figure 3 for different concentration levels of sulfuric acid at an optimum core diameter
of Dc = 3.6 µm. The figure indicates that the power fraction increases for all H2SO4
concentrations till 1.1 µm, and after that, the power fraction decreases. As the relative
sensitivity is proportional to P, the optimum wavelength is considered to be 1.1 µm. In
addition, the value of P is maximum for 40% concentration of H2SO4 in water and lowest
for pure water (RI = 1.33), as the refractive index is maximum for the acid and minimum
for water.

Finally, the relative sensitivity of that sensor is shown in Figure 4 for different concen-
trations of H2SO4 as a function of the operating wavelength. Since the value of r is directly
proportional to P, the relative sensitivity characteristics are almost identical to Figure 3. For
instance, the following Figure 4 shows that the relative sensitivities are 97.8%, 97.4%, 96.8%,
96%, and 95% for 40%, 30%, 20%, 10%, and 0% H2SO4 at a wavelength of 1.1 µm, which
are better than the previously proposed sensor in Ref. [23], where the maximum reported
sensitivity was only around 80%.
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Next, we investigated the loss profile of the proposed sensor under various operating
conditions. When the EM wave travels through the core and interacts with the sample
inside the core, a fraction of light trapped by the air holes surrounds the core. This type of
loss is called the confinement loss and it occurs in every type of optical waveguide and is
calculated by using the following expression [14,15,18]:

Lc =
40π

ln(10)λ
Im(ne f f )× 106dB/m (5)

where λ stands for the operating wavelength and Im(neff) is the imaginary part of the effec-
tive refractive index. The relationship between the confinement loss and the propagating
EM waves is shown in Figure 5. It is evident that the loss is higher for the lower refractive
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indexed sample. This occurs as the tendency of the EM wave is to propagate through
the higher refractive indexed region. As the RI of the sample decreases with the increase
in water mixture, less light travels through the core, and the confinement loss increases.
This phenomenon is already observed in Figure 4, according to which the core power
decreases at higher operating wavelengths, meaning that more light diverges from the core
and is trapped by the cladding air holes. As a result, the confinement loss is higher for
higher operating wavelengths. At optimum conditions, the proposed sensor exhibits low
confinement loss of around 10−7 to 10−9 for different concentrations of analyte at 1.1 µm.
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tions of H2SO4.

Another key parameter to evaluate the proposed sensor is the numerical aperture
(NA), which is a dimensionless parameter and varies from 0.1 to 0.5. The NA is the
maximum incident light angle from the light source that is accepted by the optical fiber.
The relationship to calculate the NA of the proposed sensor is as follows [14]:

NA =
1√

1 +
πAe f f f 2

c2

≈ 1√
1 +

πAe f f
λ2

(6)

where λ is for the wavelength of the EM signal and Aeff is the effective area of the guided
light. The relationship between the NA of the proposed sensor and the wavelength is
reported in Figure 6, which indicates that the NA increases with the increase in λ. The
dominating factor in Equation (4) is the operating wavelength and due to this, the NA is
higher at a longer wavelength. Though the effective area increases at a larger wavelength,
the NA is mainly dependent on λ. At optimum wavelength, the proposed optical sensor
offers a high numerical aperture of 0.28, which, to the best of our knowledge, is not
previously reported in the literature.
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In the PCF-based sensor, the effective area is defined as the total area of the sensor
where the signal actually propagates from source to destination. The effective area can be
calculated by using the given equation [14] as follows:

Ae f f =
[
∫

I(r)rdr]2

[
∫

I2(r)dr]2
(7)

where Aeff is the effective area, and I(r) = |Et|2, is the electric field intensity of the optical
sensor. The effective area versus operating wavelengths is shown in Figure 7. It is quite
evident that the effective area increases as the divergence of EM wave from the core
increase for the larger wavelength. For sensing applications, the smaller effective area is
desirable so that the maximum light signal can interact with the analyte and the relative
sensitivity increases. Here, the proposed sensor offers a very small effective area in the
range of 6 × 10−12–6.4 × 10−12 m2 at an operating wavelength of 1.1 µm for different
concentrations of H2SO4.
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The single-mode propagation parameter, which is also termed as V parameter or
Veff is also calculated. This parameter of any PCF informs whether the fiber will expe-
rience multimodal distortion or not when guiding an EM signal of a particular wave-
length/frequency [24,25]. The fundamental equation of extracting Veff of an optical fiber is
as follows [24]:

Ve f f =
2π

λ
R
√

n2
co − n2

cl (8)

where R is the core radius, and the refractive index of core and cladding are indicated by
nco and ncl, respectively. The only condition to be a single-mode fiber is that the numerical
value of this parameter must be less than or equal to 2.405. If the value exceeds the threshold
value, then the fiber will experience modal distortion. The visual representation of Veff of
the proposed H2SO4 concentration detector is shown in Figure 8 for different operating
wavelengths. It is clear that the value of Veff decreases with the increase in λ. As the
refractive index difference between the core and cladding reduces with the increase in
operating wavelength, the value of Veff also reduces gradually. However, the value of this
parameter is less than 2.405 at λ = 1.1 µm for all different concentrations of sulfuric acid
samples. Therefore, the proposed sensor guarantees multimodal distortion and less light
reception at the receiving end of the sensing system.
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Now the spot size of the proposed optical fiber-based sensor is investigated for differ-
ent operating conditions. A larger spot size is a desirable parameter for sensing applications,
as it indicates better light–analyte interaction in the sensor itself. The mathematical relation
to evaluating the spot size is as follows [26–28]:

We f f = R×
(

0.65 + 1.619×V−1.5 + 2.879×V6
)

(9)

where Weff is the effective spot size, R is the radius of the core, and V is the normalized
V-parameter. The relationship between the spot size and the operating wavelength is shown
in Figure 9, according to which the values of this parameter increase with the operating
wavelength. As all the parameters of the proposed sensor are reported at an operating
wavelength of 1.1 µm, we found that the value of spot size at this operating condition is
1.5 µm, which is better than other reported sensors.
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Table 2 shows a detailed comparison based on important results between the pro-
posed study and past studies. Indeed, the prime characteristic of any sensor is its relative
sensitivity, and the following table confirms that the proposed sensor is far better than the
previously reported studies. Moreover, the other parameters are also comparable with the
recent research findings.

Table 2. Comparison between the guiding and sensing properties of some of the recently proposed
schemes.

Ref Year Sensing
Analyte

Frequency/
Wavelength

Sensitivity
(%)

Confinement
Loss (dB/m)

Numerical
Aperture

Single-Mode
Propagation

Methanol

1.55 µm

75.22 3.29 × 10−10 0.32 Yes
Ethanol 82.52 1.50 × 10−10 0.3 Yes

[14] 2021 Propanol 86.74 1.35 × 10−10 0.29 Yes
Butanol 88.34 9.33 × 10−10 0.28 No

Water
1.33 µm

50 4.25 × 10−10 — N/A
[17] 2016 Ethanol 55.83 8.72 × 10−10 — N/A

Benzene 59.07 2.56 × 10−10 — N/A

0% H2SO4

1.5 µm

60.7 8.48 × 10−19 — N/A
10% H2SO4 61.4 3.48 × 10−19 — N/A
20% H2SO4 62.0 1.96 × 10−19 — N/A

[23] 2019 30% H2SO4 62.70 3.25 × 10−20 — N/A
40% H2SO4 63.4 1.42 × 10−20 — N/A

0% Petrol

2.8 THz

89.40 N/A
20% Petrol 88.85 N/A
40% Petrol 88.15 N/A

[24] 2020 60% Petrol 87.50 Order of
10−8 0.36 N/A

80% Petrol 86.90 N/A

This work

0% H2SO4

1.1 µm

95.0 1.39 × 10−7 Yes
10% H2SO4 96.0 5.87 × 10−8 Yes
20% H2SO4 96.8 1.65 × 10−8 Yes

2022 30% H2SO4 97.4 7.33 × 10−9 0.28 Yes
40% H2SO4 97.8 2.53 × 10−9 Yes
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Finally, the potential fabrication techniques of the proposed sensor are elucidated here.
The proposed sensor is very simple to realize as all the air holes are circular in shape. It
has been reported that circular-type air holes can be produced with high accuracy in the
laboratory setting [29,30]. There are several methods to fabricate the PCFs—namely, the
stack and draw technique, sol–gel method, drilling, and stacking, extrusion, etc. It is well
known that in order to fabricate these types of sensors, the extrusion technique is the most
suitable due to its higher accuracy and reliability [31].

4. Conclusions

In conclusion, we proposed a highly sensitive PCF-based optical sensor to accurately
determine the concentration level of sulfuric acid in water. This sensor was designed by
using all circular structures in the core, as well as the cladding area, to reduce fabrication
complexity. The simulation results were based on FEM, which provides favorable sensing
and guiding properties to be extracted from the proposed sensor. At optimum structural
and operating conditions, the proposed PCF-based sensor offers a very high relative
sensitivity of more than 97%, low confinement loss of 10−9 dB/m, a high numerical
aperture of 0.28, and finally, optimal spot size. We strongly believe that the proposed sensor
design will open new avenues for researchers working in the field of optical sensing.
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