Ultra-Thin Terahertz Deflection Device Based on Laser Direct Writing Graphene Oxide Paper
Abstract
:1. Introduction
2. Comparison between GO and LRGO
3. LRGO-Terahertz-Device Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photonics 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Federici, J.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266–S280. [Google Scholar] [CrossRef]
- Yan, X.; Yang, M.; Zhang, Z.; Liang, L.; Wei, D.; Wang, M.; Zhang, M.; Wang, T.; Liu, L.; Xie, J.; et al. The terahertz electromagnetically induced transparency—like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron. 2019, 126, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Wen, Q.Y.; Tian, W.; Mao, Q.; Chen, Z.; Liu, W.W.; Yang, Q.H.; Sanderson, M.; Zhang, H.W. Graphene based All−Optical Spatial Terahertz Modulator. Sci. Rep. 2014, 4, 7409. [Google Scholar] [CrossRef]
- Wen, Q.; He, Y.; Yang, Q.; Yu, P.; Feng, Z.; Tan, W.; Wen, T.; Zhang, Y.; Chen, Z.; Zhang, H. High−Performance Photo−Induced Spatial Terahertz Modulator Based on Micropyramid Silicon Array. Adv. Mater. Technol. 2020, 5, 8. [Google Scholar] [CrossRef]
- Zheng, Z.; Luo, Y.; Yang, H.; Yi, Z.; Zhang, J.; Song, Q.; Yang, W.; Liu, C.; Wu, P. Thermal tuning of terahertz metamaterial absorber properties based on VO2. Phys. Chem. Chem. Phys. 2022, 24, 8846–8853. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A switchable terahertz device combining ultra—wideband absorption and ultra—wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Luo, Y.; Zhang, J.; Yi, Z.; Wu, X.; Cheng, S.; Yang, W.; Yu, Y.; Wu, P. A four−band and polarization−independent BDS—based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 2021, 23, 26864–26873. [Google Scholar] [CrossRef]
- Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.; Etrich, C.; Kern, K. Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory. Nano Lett. 2010, 10, 3596–3603. [Google Scholar] [CrossRef]
- Hu, D.; Wang, X.; Feng, S.; Ye, J.; Sun, W.; Kan, Q.; Klar, P.J.; Zhang, Y. Ultrathin Terahertz Planar Elements. Adv. Opt. Mater. 2013, 1, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, K.; Hajimiri, A. A 0.28 THz power-generation and beamsteering array in CMOS based on distributed active radiators. IEEE J. Solid-State Circuits 2012, 47, 3013–3031. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, W.H.; Yelin, S.F. All—optical Fresnel lens in coherent media: Controlling image with image. Opt. Express 2011, 19, 981–993. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Sun, W.; Feng, S.; Cui, Y.; Ye, J.; Zhang, Y. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate. Opt. Lett. 2013, 38, 4731–4734. [Google Scholar] [CrossRef] [PubMed]
- Avayu, O.; Eisenbach, O.; Ditcovski, R.; Ellenbogen, T. Optical metasurfaces for polarization-controlled beam shaping. Opt. Lett. 2014, 39, 3892–3895. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Qin, F.; Liu, H.; Ye, H.; Qiu, C.-W.; Hong, M.; Luk’Yanchuk, B.; Teng, J. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. Adv. Mater. 2018, 30, 1704556. [Google Scholar] [CrossRef]
- Shams, I.B.; Jiang, Z.; Rahman, S.M.; Cheng, L.-J.; Hesler, J.L.; Fay, P.; Liu, L. A 740-GHz Dynamic Two-Dimensional Beam-Steering and Forming Antenna Based on Photo—Induced Reconfigurable Fresnel Zone Plates. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 310–319. [Google Scholar] [CrossRef]
- Hristov, H.D. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties. Int. J. Antennas Propag. 2011, 2011, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Liu, W.; Hu, B.; Liu, J.; Zhang, Y.; Guang, L. Patterned laser−induced graphene for terahertz wave modulation. J. Opt. Soc. Am. B 2020, 37, 546–551. [Google Scholar] [CrossRef]
- Solyankin, P.M.; Esaulkov, M.N.; Chernykh, I.A.; Kulikov, I.V.; Zanaveskin, M.L.; Kaul, A.R.; Makarevich, A.M.; Sharovarov, D.I.; Kameshkov, O.E.; Knyazev, B.A.; et al. Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate. J. Infrared Millim. Terahertz Waves 2018, 39, 1203–1210. [Google Scholar] [CrossRef]
- Hristov, H.D.; Rodriguez, J.M.; Grote, W. The grooved-dielectric Fresnel zone plate: An effective terahertz lens and antenna. Microw. Opt. Technol. Lett. 2012, 54, 1343–1348. [Google Scholar] [CrossRef]
- Scherger, B.; Reuter, M.; Scheller, M.; Altmann, K.; Vieweg, N.; Dabrowski, R.; Deibel, J.A.; Koch, M. Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device. J. Infrared Millim. Terahertz Waves 2012, 33, 1117–1122. [Google Scholar] [CrossRef]
- You, R.; Liu, Y.; Hao, Y.; Han, D.; Zhang, Y.; You, Z. Laser Fabrication of Graphene−Based Flexible Electronics. Adv. Mater. 2020, 32, 1901981. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Hao, C.; Xiang, J.; Wang, L.; Hou, H.; Su, Z.; Hu, W.; Liu, Z. Enhanced laser scribed flexible graphene−based micro−supercapacitor performance with reduction of carbon nanotubes diameter. Carbon 2014, 75, 236–243. [Google Scholar] [CrossRef]
- Yang, D.; Bock, C. Laser reduced graphene for supercapacitor applications. J. Power Sources 2017, 337, 73–81. [Google Scholar] [CrossRef]
- dos Júnior, A.G.A.; de Cardoso, G.P.; Paterno, L.G.; Ceschin, A.M. Laser Reduction of Graphene Oxide/Zinc Oxide Nanoparticle Nanocomposites as a One−Step Process for Supercapacitor Fabrication. Phys. Status Solidi A-Appl. Mater. Sci. 2020, 217, 1901046. [Google Scholar] [CrossRef]
- Kong, X.-T.; Khan, A.; Kidambi, P.R.; Deng, S.; Yetisen, A.K.; Dlubak, B.; Hiralal, P.; Montelongo, Y.; Bowen, J.; Xavier, S.; et al. Graphene−Based Ultrathin Flat Lenses. ACS Photonics 2015, 2, 200–207. [Google Scholar] [CrossRef] [Green Version]
- He, Y.-L.; Liu, J.-B.; Wen, T.-L.; Yang, Q.-H.; Feng, Z.; Tan, W.; Li, X.-S.; Wen, Q.-Y.; Zhang, H.-W. Flexible terahertz modulators based on graphene FET with organic high−k dielectric layer. Mater. Res. Express 2018, 5, 115607. [Google Scholar] [CrossRef]
- Currie, M.; Caldwell, J.D.; Bezares, F.J.; Robinson, J.; Anderson, T.; Chun, H.; Tadjer, M. Quantifying pulsed laser induced damage to graphene. Appl. Phys. Lett. 2011, 99, 211909. [Google Scholar] [CrossRef] [Green Version]
- Shui, W.; Li, J.; Wang, H.; Xing, Y.; Li, Y.; Yang, Q.; Xiao, X.; Wen, Q.; Zhang, H. Ti3C2Tx MXene Sponge Composite as Broadband Terahertz Absorber. Adv. Opt. Mater. 2020, 8, 2001120. [Google Scholar] [CrossRef]
- Marcus, M.J. ITU WRC-19 Spectrum Policy Results. IEEE Wirel. Commun. 2019, 26, 4–5. [Google Scholar] [CrossRef]
- Eisenbach, O.; Avayu, O.; Ditcovski, R.; Ellenbogen, T. Metasurfaces based dual wavelength diffractive lenses. Opt. Express 2015, 23, 3928–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
θ | 0° | 7° | 12° | |||
---|---|---|---|---|---|---|
n | ||||||
1 | 0 | 6.66 | 6.19 | 6.73 | 10.72 | 6.88 |
2 | 0 | 9.43 | 6.25 | 9.54 | 10.82 | 9.75 |
3 | 0 | 11.58 | 6.3 | 11.71 | 10.92 | 11.97 |
4 | 0 | 13.40 | 6.36 | 13.55 | 11.01 | 13.86 |
5 | 0 | 15.02 | 6.41 | 15.19 | 11.11 | 15.52 |
6 | 0 | 16.48 | 6.47 | 16.67 | 11.20 | 17.04 |
7 | 0 | 17.84 | 6.52 | 18.05 | 11.30 | 18.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, Y.; Zhang, L.; Li, Y.; Wu, Y.; Zhang, J.; Wen, Q. Ultra-Thin Terahertz Deflection Device Based on Laser Direct Writing Graphene Oxide Paper. Micromachines 2022, 13, 686. https://doi.org/10.3390/mi13050686
Suo Y, Zhang L, Li Y, Wu Y, Zhang J, Wen Q. Ultra-Thin Terahertz Deflection Device Based on Laser Direct Writing Graphene Oxide Paper. Micromachines. 2022; 13(5):686. https://doi.org/10.3390/mi13050686
Chicago/Turabian StyleSuo, Yixin, Luming Zhang, Yihang Li, Yu Wu, Jian Zhang, and Qiye Wen. 2022. "Ultra-Thin Terahertz Deflection Device Based on Laser Direct Writing Graphene Oxide Paper" Micromachines 13, no. 5: 686. https://doi.org/10.3390/mi13050686
APA StyleSuo, Y., Zhang, L., Li, Y., Wu, Y., Zhang, J., & Wen, Q. (2022). Ultra-Thin Terahertz Deflection Device Based on Laser Direct Writing Graphene Oxide Paper. Micromachines, 13(5), 686. https://doi.org/10.3390/mi13050686