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Abstract: Lane detection is an important and challenging part of autonomous driver assistance
systems and other advanced assistance systems. The presence of road potholes and obstacles,
complex road environments (illumination, occlusion, etc.) are ubiquitous, will cause the blur of
images, which is captured by the vision perception system in the lane detection task. To improve the
lane detection accuracy of blurred images, a network (Lane-GAN) for lane line detection is proposed
in the paper, which is robust to blurred images. First, real and complex blur kernels are simulated
to construct a blurred image dataset, and the improved GAN network is used to reinforce the lane
features of the blurred image, and finally the feature information is further enriched with a recurrent
feature transfer aggregator. Extensive experimental results demonstrate that the proposed network
can get robust detection results in complex environments, especially for blurred lane lines. Compared
with the SOTA detector, the proposed detector achieves a larger gain. The proposed method can
enhance the lane detail features of the blurred image, improving the detection accuracy of the blurred
lane effectively, in the driver assistance system in high speed and complex road conditions.

Keywords: autonomous vehicles; lane detection; complex road environment

1. Introduction

With the evolution of advanced assisted driving system and automatic driving technol-
ogy, the road accident probability is greatly reduced and the driving safety is improved [1–4].
As a key and challenging part of automatic driving and advanced assistant system, lane
detection has also become a research hotspot [5–8]. It is vital for driver assistance systems
to obtain the accurate location of each lane, which is also the goal of the lane detection
algorithm. In real scenes, the lane detection model should be able to adapt to a variety of ad-
verse scenarious, such as extreme light (illumination), severe occlusion, atrocious weather
and ambiguous lanes [9–11]. The lane detection model must overcome various challenges.

In recent years, lane detection algorithms in complex scenarios have made great
progress [12–14]. Minh et al. [15] proposed an algorithm to improve detection performance
mainly by eliminating interference factors (shadows) generated by objects. This algorithm
overcomes various illumination problems, especially severe shadows. A neighborhood-
based image transformation method was used by Gu et al. [16] to enhance extreme regions,
which is robust to light changes and shadow but poorly detected in the presence of other
light sources and obstructions. Song et al. [11]. proposed a lane detection method in low
light conditions, which uses a convolutional neural network (CNN) [17] and a semantic
segmentation network for low light image enhancement and lane line detection, and the
combination of the two achieves accurate detection of lane lines in low light environments.
Qin et al. [9] designed a simple and effective formula for the speed of the algorithm and
challenging scenes, using a large receptive field on the global features, which has good
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robustness to severely occluded scenes. The current lane detection in complex scenes
focuses on lighting, occlusion, while few researchers have addressed lane detection in
blurred situations. On the road in real life, potholes on the ground, speed bumps and
high-speed driving of cars can easily lead to blurred images. Therefore, lane detection in
complex scenarios still faces huge challenges.

Aiming at the difficulty of lane detection in blurred scenarios, a lane detection network
for blurred image is proposed in this article. The major contributions in this work are
shown as follows.

1. A blurred lane line dataset is provided in this article.
2. An improved GAN is used to enhance the features of the lanes and improve the

detection efficiency of blurred lanes in complex road environments.
3. The proposed algorithm performs well in complex road conditions (line curves, dirty

lane line, illumination change, occlusions), which is greatly superior to the existing
state-of-the-art detectors in high speed and complex road conditions.

2. Related Works

At present, a great deal of lane line detection algorithms are used in the autonomous
driving field [18,19]. Lane detection algorithms can be divided into two groups: traditional
lane detection methods based on basic image processing [20–25] and lane detection methods
based on deep learning [26–30]. Traditional lane line detection methods often distinguish
lane lines from other regions by detecting the basic characteristics of the image, such as
linear shapes, color [31,32], and edges. In the traditional lane line detection algorithm,
image preprocessing usually includes changing the color space of the image, extracting
regions of interest, image equalization, and filtering to eliminate interference. Subsequently,
image features are extracted from the preprocessed image, such as color, edge and texture.
Edge detection is performed using Canny [33,34] and Sobel operator, and then Hough [35]
transformation is used for lane line detection. A lane line detection solution called HistWind
is proposed in [36], which does not require powerful hardware support to achieve real-
time detection, but it is designed for suburban and highway scenes and is not suitable
for other complex scenes. A new lane detection and lane departure warning algorithm is
presented in [37], which yields satisfactory results when the lane lines are clearly visible,
but encounters difficulties in detection when the lane lines are not visible. Traditional
algorithms based on handcrafted features are not always robust in complex environments.

As the rise of deep learning in the field of computer vision, increasing number of neural
networks for lane line detection have been proposed [38–40]. Lane line detection algorithms
based on deep learning can automatically extract the lane line features without making
assumptions about the road structure and vehicle state, showing excellent robustness. Many
deep learning networks show strong feature extraction and feature processing capabilities
in various situations, which have good robustness. Zou et al. [41] proposed a mixed depth
architecture employing the integration of CNN and recurrent neural networks (RNN) [42]
to investigate lane line detection process in the multiple-frame sequential driving scenes.
Since this method has no lane fitting process, the detected lane lines are not very smooth.
The dataset used in this paper is constructed based on the TuSimple dataset, and the test
follows the TuSimple test criteria with an accuracy of 97.3%. Pan et al. [43] proposed a
spatial convolutional neural network (SCNN), extending the traditional layer-by-layer
convolution to the layer-by-layer convolution in the feature map, so that information can be
transferred more efficiently between pixels. This method of information transfer requires
multiple iterations and is likely to cause information loss during long distance propagation.
The method uses the CULane dataset and the test result F1 is 0.72. A feature aggregator
was proposed by zheng et al. [44] The feature aggregator enriches the lane line features
after the ordinary CNN feature extraction. Since the method is based on segmentation, the
lane cannot be predicted as a whole, so the smoothness of the lane cannot be guaranteed.
The experimental test results of this method on TuSimple and CULane datasets are 96.82%
and 0.75, respectively. Aiming at unfavorable driving environments such as rain and night,
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Seokju Lee et al. [45] proposed an end-to-end multitasking unified network, which is called
VPGNet, and it can be used to handle lane line detection and recognition task in real time.
However, multitasking learning requires a large amount of additional annotations. The
method uses a self-made lane line dataset which includes four scenarios (no rain, rain,
heavy rain, and night), and the results show that the F1 scores of the four scenarios are 0.87,
0.79, 0.77, and 0.74, respectively.

Most current lane detection methods are designed to solve the problems caused by
illumination and occlusion, while few people address the negative impact of ambiguous
situations on lane detection. Hence, an efficient and robust lane detection algorithm for
blurred lanes and other complex environments is proposed in the paper.

3. Blurred Lane Line Enhancement and Detection Algorithm

This chapter will describe the proposed method in detail, which consists of two parts,
a fuzzy image feature enhancement module and a lane line detection module. The overall
framework diagram is depicted in Figure 1.
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3.1. Constructing Blurred Dataset

Constructing the fuzzy dataset uses the method of random generation of motion
trajectories proposed by Boracchi and Foi [46], where the next position point is randomly
generated based on the position, velocity, impulse perturbation, deterministic inertial com-
ponent, and Gaussian perturbation of the previous point. Then, the trajectory between two
random points is generated by sub-pixel interpolation. Each trajectory vector corresponds
to a discrete position of a two-dimensional random moving object in a continuous domain.
Based on the obtained random trajectory kernel, the blurred image is obtained by applying
it to the clear image. The constructed simulated blurred dataset is present in Figure 2.
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3.2. Blur Image Enhancement

Generative Adversarial Network (GAN) [47] has shown good image enhancement and
image restoration capabilities. In this paper, the performance of lane detection algorithm
for fuzzy lane lines is improved by enhancing the features of fuzzy lanes using an improved
GAN, including a generator and a discriminator.

The generator consists of inception-resnet-v2 [48] and an improved feature pyramid
network. Feature reuse in the feature pyramid [49] can significantly decrease the calculation
time and the size of model. Since the top-level features of the feature pyramid structure are
not fused with other features in the top-down stage, the features directly go through a 1 × 1
convolution for dimensionality reduction, the reduction of the number of channels leads to
information loss. To compensate the loss of information, the residual feature augmentation
module (RFA) is used to perform adaptive pooling on the top layer of the bottom-up phase
of the feature pyramid, and then perform 1 × 1 convolutional dimensionality reduction
on the feature maps of each scale, followed by up-sampling. Adaptive spatial fusion
is performed on the features after up-sampling, and the obtained features are added to
the highest layer of the feature pyramid in the top-down stage. The feature enhancement
module provides spatial contextual information to reduce the information loss in the feature
pyramid, which helps to enrich the features of the blurred image lanes. The residual feature
augmentation module is shown in Figure 3.
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The discriminator adopts a dual-scale discriminator, which makes full use of global and
local features, so that GAN can deal with more complex real lane blurring. Discriminator’s
loss function is shown in Equation (1).

LD = Ex∼pdata(x)

[(
D(x)− En∼pn(n)D(G(n))− 1

)2
]
+ En∼pn(n)

[(
D(G(n))− Ex∼pdata(x)D(x) + 1

)2
]

(1)

where n represents the noise, G presents the generator, D is the discriminator. pdata(x)
represent the probability distribution of the real data x obeys. pn(n) is the probability
distribution of n obeys. Ex∼pdata(x) and En∼pn(n) represent expected values.

The generator’s loss function is:

LG = 0.5× Ls + 0.006× Ld + 0.01× Lad (2)

Ls denotes the mean square error loss, which is to correct the texture and color distor-
tion. Ld represents content loss by perceived distance. Lad contains both local and global
discriminator loss.

3.3. Lane Detection

Lane detection process includes three sections: the encoder, RESA module [44], and
the decoder. The encoder uses ResNet [50] for feature extraction. The RESA module
moves the sliced feature map in horizontal and vertical directions cyclically, capturing
the spatial relationship between rows and columns, so that each pixel can collect global
information, which is more beneficial for detecting blurred lanes. The decoder uses a
bilateral up-sampling decoder and integrates two branches to recover the low-resolution
feature maps into pixel-by-pixel predictions accurately.

RESA module is a recursive feature shift aggregator used to collect spatial features. It
first slices the feature map in the vertical and horizontal directions, after which it cyclically
moves the sliced feature map in 4 directions (top to down, left to right, down to top, and
right to left) so that each slice feature receives another slice feature adjacent to a specific
stride. RESA adopts feature shift operation in 4 directions circularly, so that each position
can sense and converge all spatial information. Since the serious loss of lane information in
the blurred situation, in order to accurately detect the lanes in the blurred situation, we can
only rely on the surrounding cues. The RESA module collects features from other places
to enrich the feature map, which can well simulate human guessing of the lane, thereby
improving the effect of lane detection under ambiguous situations. The RESA module is
shown in Figure 4.
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iterations “bottom to top”, L1 to Lk represent k iterations “right to left”, R1 to Rk represent “left
to right” for k iterations. In the two modules “bottom-to-top” and “left-to-right”, information is
propagated repeatedly and simultaneously at different strides.

Suppose there is a tensor X of three-dimensional feature map of size C×H×W, where
H, W and C represent the number of rows, columns and channels. Xk

c,i,j denotes the feature
map X value at the k-order iteration, where c denotes the channel indexes, i and j present
the row and column respectively. K is the number of iterations, which is defined as the
number of information aggregation to be performed in each direction. Then the forward
calculation of recurrent feature shift aggregator is defined as follows:

K = blog2 Lc (3)

sk =
L

2K−k , k = 0, 1, · · · , K− 1, (4)

Zk
c,i,j = ∑

m,n
Fm,c,n · Xk

m,(i+sk)modH,j+n−1, (5)

Zk
c,i,j = ∑

m,n
Fm,c,n · Xk

m,i+n−1,(j+sk)modW, (6)

Xk′
c,i,j = Xk

c,i,j + f (Zk
c,i,j), (7)

where L represents W and H in Equations (5) and (6), respectively. Sk represents the move
step of the k-th iteration. Equations (5) and (6) are the information transfer equations in
the vertical and horizontal directions, respectively. F denotes a set of one-dimensional
convolution kernels of size Nin × Nout × W, and W, Nin and Nout are the kernel width,
quantity of input channels and quantity of output channels. The values of Nin and Nout
are the same as C. Z in Equations (5) and (6) is the middle result of information transfer.
The feature map X is divided into the horizontal direction with H slices and the vertical
direction with W slices. f denotes the nonlinear activation function ReLU. The X is marked
by a superscript ′ indicates the updated member.

The decoder consists of two branches, one of which is used to obtain rough up-sampling
features, and the other for fine-tuning the information loss in the coarse-grained branch.
The decoder is shown in Figure 5. The branch to obtain rough features first uses 1 × 1
convolution to decrease the number of channels by half, then batch normalization, followed
by bilinear interpolation for up-sampling, and finally ReLU activation function. The other
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branch is to complement the fine information. The first is to up-sampling the feature
map using transposed convolution with a stride of 2 and reduce the number of channels
by 2 times, then use the ReLU activation function, and finally stack two non-bottleneck
blocks [51].
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The Loss of Lane Line Detection Module

Lane line detection process is modeled as a semantic segmentation task and a classifi-
cation problem. The segmentation task is to reduce the difference between the predicted
lane segmentation map Spr and the ground truth segmentation map Sgt. Cross entropy loss
is used for the segmentation loss Lseg and the segmentation loss is formulated as follows:

Lseg = LCE
(
Spr, Sgt

)
(8)

where LCE denotes the cross entropy loss. In classification problems, we employ binary
cross entropy to monitor the presence of lane lines, predicting the presence or absence of
lane lines in an image. The existence loss Lexi is expressed by the following equation.

Lexi = LBCE
(
lpr, lgt

)
(9)

where LBCE represents the binary cross-entropy loss, lpr denotes the output of the lane
presence branch, and lgt is the lane presence label.

4. Experiments
4.1. Datasets and Evaluation Metrics

In order to demonstrate the validity of the algorithm, this paper employs real fuzzy
images and simulated fuzzy images. The simulated blurred images are obtained by blurring
the images on the TuSimple [52] dataset and the CULane [43] dataset. The TuSimple
dataset was captured on US highways with heavily worn lanes and short continuous
line segments in relatively good weather and light conditions. The CULane dataset was
collected from rural, urban, and highways in Beijing, covering most traffic scenarios
and weather conditions. The blurred TuSimple dataset consists of 3268 images in the
training set, 358 images in the validation set, and 4173 images in the test set. The test
set includes 2782 simulated blurred images and 1391 real captured images. The 1391 real
captured images in turn include 835 real blurred images and 556 clear images. The blurred
CULane dataset has 88,880 images in the training set, 9675 images in the validation set,
and 34,680 images in the test set. This paper will test the algorithm on real captured lane
images and simulated fuzzy lane images. Figure 6 displays a brief demonstration of the
fuzzy dataset.
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This paper adopts the evaluation metrics officially provided by the TuSimple dataset,
namely accuracy, false positive rate and false negative rate. The evaluation criterion of
accuracy, false positive rate, and false negative rate are calculated as follows.

accuracy =
∑clip Cclip

∑clip Sclip
(10)

FP =
Fpre

Npre
(11)

FN =
Mpre

Ngt
(12)

where Cclip denotes the correctly predicted lane points, the mismatch distance between
the predicted value and the ground truth value is within a certain scope. Sclip represents
the amount of total ground truth points in each segment. Fpre is the number of lane lines
predicted incorrectly, Npre is the total number of lane lines predicted, Mpre is the number of
lane lines that failed to predict, and Ngt is the number of all lane lines in the label.

Traditionally, the F1 metric is used in the CULane dataset. Firstly, the predicted lane
line is regarded as the width of 30 pixels, and then calculate the intersection over union
(IoU) of the predicted lane line and the lane line marked in the label. Then, according to the
set threshold, the lane lines predicted by the network are divided into true positive cases
(TP), false positive cases (FP) and false negative cases (FN). The equation of F1 is calculated
as follows.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2× Precision× Recall

Precision + Recall
(15)

The method proposed in this article is based on Python programming and PyTorch deep
learning framework. In order to run the algorithm, we built the deep learning environment
for PyTorch on the Ubuntu operating system, i.e., CUDA v10.1 + cuDNN v7.6.4 + PyTorch1.4.
All experiments are performed on Ubuntu operating system with 32 G RAM and 3.6 GHz
CPU, NVIDIA GeForce RTX 2080 Ti 11 GB GPU.

4.2. Experimental Results

To illustrate the performance of the proposed network, Lane-GAN was utilized on
the test part of constructed dataset. Some test results are shown in Figure 7, which are
picked randomly from the test set. Lane-GAN performed well in terms of lane line wear,
short continuous line segments, curves, blurring and shadows. It clearly appears that the
lane position can still be accurately detected despite the severely worn lane lines, short
continuous line segments, and occluded lanes in the Figure 7a–c. The experimental results
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demonstrate that the detection performance is still good for curved lane lines, which are
present in Figure 7d–f. The proposed model is robust when the lane lines are obscured by
shadows, as shown in Figure 7g–i. The first row of Figure 7j–l display the detected lanes
results of proposed method in blur case, and the second row presents the blurred source
images. The experimental results indicate that the method proposed in this paper yields
better performance for fuzzy lane detection.
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(d–f) present the detection results in the cases of curved lane lines; (g–i) display the detection results
in the cases of shading; the first row in (j–l) is the detection results of blurred images, and the second
row shows the images after enhancement of blurred features.
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The proposed model not only performs well in the detection of blurred lane lines, but
also has good robustness to other complex environments (lane wear, shadows, occlusions).

The comparison results between our algorithm and the state-of-the-art detectors
are shown in Table 1. The results demonstrate that the proposed algorithm shows a
notable improvement.

Table 1. The comparison results between the proposed method and the state-of-the-art methods on
the constructed dataset.

Methods Input Size Accuracy (%) FP FN FPS Runtime (ms)

SCNN [43] 1280 × 720 91.04 0.1342 0.1600 8 133.5
UFNet [9] 1280 × 720 92.64 0.2625 0.1244 313 3.2

CondLaneNet [53] 1280 × 720 92.41 0.1287 0.1135 220 4.5
RESA [44] 1280 × 720 93.71 0.0682 0.0867 35 28.5
Lane-GAN 1280 × 720 96.56 0.0464 0.0254 7 138.9

As shown in Table 1, the accuracy of CondLaneNet is 92.41%, which is caused by its
poor detection of blurred lanes. Although the accuracy of the SCNN method is not too low,
it only transmits feature information to adjacent rows or columns, and there is information
loss in the process of propagation. The accuracy of UFNet is 92.64%. In UFNet, the con-
straints of the mask do not exactly match the specified line shapes, so the direct application
of conditional instance segmentation to lane detection is not satisfactory. RESA improves
the accuracy of detection by repeatedly moving slices of the feature map in the horizontal
and vertical directions to aggregate information so that global information is available for
each pixel. However, compared with Lane-GAN, RESA has lower detection performance
on the constructed dataset, which is due to the ambiguous nature of complex scenes.

To further validate the superiority of the Lane-GAN algorithm, we used the blurred
TuSimple dataset to train the comparison algorithms in Table 1 separately, and the test
results are shown in Table 2. However, since the CondLaneNet algorithm does not give
instructions for training the TuSimple dataset, the CondLaneNet algorithm cannot use
blurred TuSimple dataset for training. It can be seen from Table 2 that our algorithm still
achieves good results after training with the same dataset.

Table 2. The proposed method is compared with retrained state-of-the-art methods on the constructed dataset.

Methods Input Size Accuracy (%) FP FN FPS Runtime (ms)

SCNN [43] 1280 × 720 95.56 0.0509 0.0547 8 133.5
UFNet [9] 1280 × 720 94.84 0.0445 0.0544 313 3.2
RESA [44] 1280 × 720 96.26 0.0350 0.0368 35 28.5
Lane-GAN 1280 × 720 96.56 0.0464 0.0254 7 138.9

Figure 8 shows the visualization results of lane prediction with different methods
under simulated fuzzy images and real fuzzy images. The proposed network is superior to
the existing lane detection methods for the simulated blurred images obviously, especially
in heavily obscured and curved areas.

Under the clear images captured in the real scenes, our method can effectively coun-
teract the situation of pseudo lane lines, which are easily detected as lane lines when the
road is contaminated mistakenly, while also ensuring smooth detection of all lane lines. For
the blurred images captured in the real scene, our algorithm increases the accuracy of lane
detection (lanes obscured by vehicles) and decreases the false detection rate of lanes (water
stains that are mistakenly detected as lanes). Moreover, it can lessen the disturbance of
ambiguous messages and regain detailed information of lanes, which helps to detect lane
lines accurately in complex road environments. Lane-GAN achieves the best performance
in both sets of images.
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The Lane-GAN proposed in this paper has achieved good results but is prone to false
detection in the case of rich road markings at intersections, such as zebra crossings. The
reason for this is that the zebra crossings have the same appearance as the discontinuous
lane lines, and the zebra crossings usually appear at the end of the lane lines. These
phenomena can easily cause zebra crossings to be mistakenly detected as lane lines.

In the blurred CULane dataset, the scene complexity of the images can be classified into
nine categories. This paper uses the blurred CULane dataset to train the algorithms in the
comparative experiments, and the results show that the Lane-GAN algorithm achieves the
best detection performance. The results of Lane-GAN and other state-of-the-art methods
are shown in Table 3.
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Table 3. The comparison results between the proposed method and the state-of-the-art methods on
the simulated blurred CULane dataset.

Methods Input Size F1 TP FP Precision Recall

SCNN [43] 1640 × 590 70.5 73236 29594 0.7122 0.6982
RESA [44] 1640 × 590 70.1 72020 28712 0.7150 0.6867
Lane-GAN 1640 × 590 72.9 75052 25946 0.7431 0.7156

Figure 9 shows the visualization results of lane prediction of different methods on
the blurred CULane dataset. It can be seen that our method has good detection effect
and high robustness in the heavily occluded, dark, curved scenes, and can well resist
the complex scenes in the blurred situation, which means that our method has good
generalization ability.
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4.3. Ablation Study

For analyzing the significance of image enhancement for lane detection in blurred
scenes, the results of the ablation study are shown in Table 4.

Table 4. Ablation studies of the constructed dataset.

RESA Improved GAN Accuracy (%)
√

96.26√ √
96.56



Micromachines 2022, 13, 716 15 of 17

Multiple experimental comparison analysis on the constructed dataset indicated that
feature enhancement using blurred lanes improves the accuracy by 0.3% (from 96.26% to
96.56%). It indicates that the Lane-GAN algorithm strongly increases the lane line detection
performance of blurred scenes. To address the inevitable problem of blurred lane line
detection in real road scenes, a high-precision model is successfully proposed in the paper.

Despite the better results gained by the proposed model, there is still room for im-
provement in accurately detecting lane positions in complex scenes.

5. Conclusions

In the real scene of the road, potholes on the ground, speed bumps and high-speed
driving of cars can easily lead to blurred images. Aiming at the problem of unavoidable
blurred lane lines in real road scenes, a method Lane-GAN for blurred lane detection is
proposed, which addresses the problem of low lane detection rate when lane lines are
blurred. First, the blurred image dataset is constructed, then the features of blurred lane
lanes in the image are enhanced by using the improved GAN module. Finally, the lane
lines are detected. The results of the experiments reveal that the algorithm proposed can
increase the detection precision of lane line effectively and lower the false/miss detection
rate. The proposed Lane-GAN is robust to water stain, occlusion and blurring. It can
also yield excellent results under the real blur condition. In the future, further research
on related fields will be studied to keep raising the performance of lane line detection on
blurred images.
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