Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology, a Comprehensive Study
Abstract
:1. Introduction
2. 5G Antenna Development Trends for Base Station (Access Point) and Mobile Terminal
2.1. Evolution of (BSAs) Technology and Capacity Enhancement Techniques
2.2. 5G Antennas for Base-Station Communication Scenario
2.3. 5G Antenna Applications in Base Station or Access Point
2.4. 5G Antenna Applications in Mobile Terminal (Shared Aperture)
2.5. Shared Aperture Using Reconfigurability Techniques
2.6. Shared Aperture Using Reconfigurability Techniques
3. Antenna Performance Enhancement Techniques
3.1. Effect of Substrate Choice on Performance Enhancement
3.2. Effect of Corrugation on Bandwidth and Front-to-Back Ratio
3.3. Impact of Dielectric Lens on Directivity and Gain
3.4. Multielements
3.5. Effect of Dielectric Resonator on Gain and Bandwidth Enhancement
3.6. Substrate-Integrated Waveguide Feeding Techniques (SIW)
3.7. Effect of Slots in Radiator with Different Geometrical Shapes
3.8. Role of Parasitic Patches in the Band and Gain Enhancement
3.9. Role of Hybrid Feeding Structure in Performance Enhancement
3.10. Differential Feeding Network (Specific Feeding)
3.11. Performance Enhancement Using Metamaterials
4. Beam Steerability and Beam Forming
4.1. Dielectric Resonator with Beemsteerability
4.2. Impact of Fabrication Techniques
5. Reconfigurability
6. MIMO Antenna Performance Enhancement Techniques
6.1. Mutual Coupling Reduction Using CDRA in Ground
6.2. Neutralization Lines
6.3. Decoupling Network
6.4. Electromagnetic Bandgap (EBG) Structure
6.5. Dielectric Resonator
6.6. Defected Ground Structure (DGS)
6.7. Metamaterial
6.8. Recnfigurability
7. Future Challenges and Opportunities
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khalily, M.; Tafazolli, R.; Rahman, T.A.; Kamarudin, M.R. Design of Phased Arrays of Series-Fed Patch Antennas with Reduced Number of the Controllers for 28-GHz mm-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Khalily, M.; Tafazolli, R.; Xiao, P.; Kishk, A.A. Broadband mm-Wave Microstrip Array Antenna with Improved Radiation Characteristics for Different 5G Applications. IEEE Trans. Antennas Propag. 2018, 66, 4641–4647. [Google Scholar] [CrossRef]
- Mao, C.-X.; Khalily, M.; Xiao, P.; Brown, T.W.C.; Gao, S. Planar Sub-Millimeter-Wave Array Antenna with Enhanced Gain and Reduced Sidelobes for 5G Broadcast Applications. IEEE Trans. Antennas Propag. 2019, 67, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Koul, S.K.; Karthikeya, G.S. Millimetre Wave Antennas for 5G Mobile Terminals and Base Stations, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Liu, S.; Wei, Y.; Hwang, S.-H. Hybrid of Angular and Distance Protection for Coexistence of 5G Base Stations and Satellite Earth Stations. Electronics 2022, 11, 623. [Google Scholar] [CrossRef]
- Farasat, M.; Thalakotuna, D.N.; Hu, Z.; Yang, Y. A Review on 5G Sub-6 GHz Base Station Antenna Design Challenges. Electronics 2021, 10, 2000. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, S.; Hwang, S.-H. Distance Protection for Coexistence of 5G Base Station and Satellite Earth Station. Electronics 2021, 10, 1481. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, J.; Tang, P.; Tian, L.; Zheng, Y.; Dou, J.; Asplund, H.; Raschkowski, L.; D’Errico, R.; Jämsä, T. 3GPP Standardized 5G Channel Model for IIoT Scenarios: A Survey. IEEE Internet Things J. 2021, 8, 8799–8815. [Google Scholar] [CrossRef]
- Aliakbari, H.; Abdipour, A.; Mirzavand, R.; Costanzo, A.; Mousavi, P. A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Bao, X.; Xiao, S.-Q. 60-GHz LTCC Integrated Circularly Polarized Helical Antenna Array. IEEE Trans. Antennas Propag. 2012, 60, 1329–1335. [Google Scholar] [CrossRef]
- Zada, M.; Shah, I.A.; Yoo, H. Integration of Sub-6-GHz and mm-Wave Bands with a Large Frequency Ratio for Future 5G MIMO Applications. IEEE Access 2021, 9, 11241–11251. [Google Scholar] [CrossRef]
- Islam, S.; Zada, M.; Yoo, H. Low-Pass Filter Based Integrated 5G Smartphone Antenna for Sub-6-GHz and mm-Wave Bands. IEEE Trans. Antennas Propag. 2021, 69, 5424–5436. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5 G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Hong, W.; Baek, K.-H.; Lee, Y.; Kim, Y.; Ko, S.-T. Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Commun. Mag. 2014, 52, 63–69. [Google Scholar] [CrossRef]
- Aryanfar, F. Millimeter-wave beam forming as an enabling technology for 5 G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar]
- Gandhi, O.; Riazi, A. Absorption of Millimeter Waves by Human Beings and its Biological Implications. IEEE Trans. Microw. Theory Tech. 1986, 34, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Yang, K.; Sim, C.-Y.; Yang, G. A Novel 28 GHz Beam Steering Array for 5G Mobile Device with Metallic Casing Application. IEEE Trans. Antennas Propag. 2018, 66, 462–466. [Google Scholar] [CrossRef]
- Ali, I.; Jamaluddin, M.H.; Gaya, A.; Rahim, H.A. A Dielectric Resonator Antenna with Enhanced Gain and Bandwidth for 5G Applications. Sensors 2020, 20, 675. [Google Scholar] [CrossRef] [Green Version]
- Ishteyaq, I.; Masoodi, I.S.; Muzaffar, K. A compact double-band planar printed slot antenna for sub-6 GHz 5G wireless applications. Int. J. Microw. Wirel. Technol. 2020, 13, 469–477. [Google Scholar] [CrossRef]
- Xu, J.; Hong, W.; Jiang, Z.H.; Zhang, H. Wideband, low-profile patch array antenna with corporate stacked micro strip and substrate integrated waveguide feeding structure. IEEE Trans. Antennas Propag. 2019, 67, 1368–1373. [Google Scholar] [CrossRef]
- Masaud, S.; Cheema, H.M.; Abbasi, Q.H. Substrate Integrated Waveguide Antenna System for 5G In-Band Full Duplex Applications. Electronics 2021, 10, 2456. [Google Scholar]
- Zhu, Q.; Bo, K.; Chi, N.; Chan, H.; Luk, K.-M. Substrate-Integrated-Waveguide-Fed Array Antenna Covering 57–71 GHz Band for 5G Applications. IEEE Trans. Antennas Propag. 2017, 65, 6298–6306. [Google Scholar] [CrossRef]
- Yin, J.; Wu, Q.; Yu, C.; Wang, H.; Hong, W. Broadband symmetrica E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 67, 4474–4483. [Google Scholar] [CrossRef]
- Mohsen, M.K.; Isa, M.S.; Isa, A.A.; Abdulhameed, M.K.; Attiah, M.L.; Dinar, A.M. Enhancement bandwidth of half width-microstrip leaky wave antenna using circular slots. Prog. Electromagn. Res. 2019, 94, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Tahir, F.A. A Novel Snowflake Fractal Antenna for Dual-Beam Applications in 28 GHz Band. IEEE Access 2020, 8, 19873–19879. [Google Scholar] [CrossRef]
- Rafique, U.; Din, S.; Khalil, H. Compact CPW-fed super wideband planar elliptical antenna. Int. J. Microw. Wirel. Technol. 2021, 13, 407–414. [Google Scholar] [CrossRef]
- Shah, I.; Hayat, S.; Basir, A.; Zada, M.; Shah, S.; Ullah, S. Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication. AEU-Int. J. Electron. Commun. 2018, 98, 80–88. [Google Scholar] [CrossRef]
- Im, C.; Lim, T.-H.; Jang, D.; Kong, N.-K.; Choo, H. Design of a Printed 5G Monopole Antenna on Vehicle Window Glass Using Parasitic Elements and a Lattice-Structure Reflector for Gain Enhancement. Appl. Sci. 2021, 11, 9953. [Google Scholar] [CrossRef]
- Kiani, S.H.; Altaf, A.; Abdullah, M.; Muhammad, F.; Shoaib, N.; Anjum, M.R.; Damaševičius, R.; Blažauskas, T. Eight Element Side Edged Framed MIMO Antenna Array for Future 5G Smart Phones. Micromachines 2020, 11, 956. [Google Scholar] [CrossRef]
- Abdullah, M.; Altaf, A.; Anjum, M.R.; Arain, Z.A.; Jamali, A.A.; Alibakhshikenari, M.; Falcone, F.; Limiti, E. Future Smartphone: MIMO Antenna System for 5G Mobile Terminals. IEEE Access 2021, 9, 91593–91603. [Google Scholar] [CrossRef]
- Ahmad, I.; Sun, H.; Rafique, U.; Yi, Z. Triangular Slot-Loaded Wideband Planar Rectangular Antenna Array for Millimeter-Wave 5G Applications. Electronics 2021, 10, 778. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.; Park, J.; Rhee, S.; Kim, P.; Kim, N. A compact size 2.9–23.5 GHz micro strip patch antenna with WLAN band-rejection. Microw. Opt. Technol. Lett. 2019, 61, 1307–1313. [Google Scholar] [CrossRef]
- Awan, W.; Naqvi, S.; Ali, W.; Hussain, N.; Iqbal, A.; Tran, H.; Alibakhshikenari, M.; Limiti, E. Design and Realization of a Frequency Reconfigurable Antenna with Wide, Dual, and Single-Band Operations for Compact Sized Wireless Applications. Electronics 2021, 10, 1321. [Google Scholar] [CrossRef]
- Haraz, O.M.; Elboushi, A.; Alshebeili, S.A.; Sebak, A.-R. Dense Dielectric Patch Array Antenna with Improved Radiation Characteristics Using EBG Ground Structure and Dielectric Superstrate for Future 5G Cellular Networks. IEEE Access 2014, 2, 909–913. [Google Scholar] [CrossRef]
- Salucci, M.; Castlunger, C.; Marcantonio, D.; Oliveri, G.; Robol, F.; Rosatti, P.; Tosato, L.; Zardi, F.; Massa, A. High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance. Technologies 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Ikram, M.; Nguyen-Trong, N.; Abbosh, A.M. Common-Aperture Sub-6 GHz and Millimeter-Wave 5G Antenna System. IEEE Access 2020, 8, 199415–199423. [Google Scholar] [CrossRef]
- Park, J.; Jeong, M.; Hussain, N.; Rhee, S.; Park, S.; Kim, N. A lowprofile high-gain filtering antenna for fifth generation systems based on nonuniform metasurface. Microw. Opt. Technol. Lett. 2019, 61, 2513–2519. [Google Scholar] [CrossRef]
- Dixit, A.S.; Kumar, S. A Miniaturized Antipodal Vivaldi Antenna for 5G Communication Applications. In Proceedings of the 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020; pp. 800–803. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Tang, Z.; Yin, Y. Differentially-Fed, Wideband Dual-Polarized Filtering Antenna with Novel Feeding Structure for 5G Sub-6 GHz Base Station Applications. IEEE Access 2019, 7, 184718–184725. [Google Scholar] [CrossRef]
- Zarifi, D.; Farahbakhsh, A.; Zaman, A.U.; Kildal, P.-S. Design and Fabrication of a High-Gain 60-GHz Corrugated Slot Antenna Array with Ridge Gap Waveguide Distribution Layer. IEEE Trans. Antennas Propag. 2016, 64, 2905–2913. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, H.; Yu, J.; Chen, X. High Gain, Broadband and Dual-Polarized Substrate Integrated Waveguide Cavity-Backed Slot Antenna Array for 60 GHz Band. IEEE Access 2018, 6, 31012–31022. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Luk, K.M. Millimeter-wave multi beam aperture-coupled magneto electric dipole array with planar substrate integrated beam forming network for 5G applications. IEEE Trans. Antennas Propag. 2017, 65, 6422–6431. [Google Scholar] [CrossRef]
- Tian, Y.; Ouyang, J.; Hu, P.F.; Pan, Y. Millimeter-Wave Wideband Circularly Polarized End fire Planar Magneto-Electric Dipole Antenna Based on Substrate Integrated Waveguide. IEEE Antennas Wirel. Propag. Lett. 2021, 21, 49–53. [Google Scholar] [CrossRef]
- Kumar, K.B.; Shanmuganantham, T. 3-Port T-junction SIW power divider for 60 GHz applications. In Proceedings of the 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), Bangalore, India, 24–26 November 2017; pp. 1–4. [Google Scholar]
- Xi, L. A wideband planar filtering dipole antenna for 5G communication applications. Microw. Opt. Technol. Lett. 2019, 61, 2746–2751. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, H.; Chen, Q.; Zhong, T. Isolation Enhancement for 1 × 3 Closely Spaced E-Plane Patch Antenna Array Using Defect Ground Structure and Metal-Vias. IEEE Access 2019, 7, 119375. [Google Scholar] [CrossRef]
- Li, M.Y.; Ban, Y.L.; Xu, Z.Q.; Wu, G.; Sim, C.Y.D.; Kang, K.; Yu, Z.F. Eight-Port Orthogonally Dual-Polarized Antenna Array for 5G Smartphone Applications. IEEE Trans. Antennas Propag. 2016, 64, 3820–3830. [Google Scholar] [CrossRef]
- Vallappil, A.K.; Rahim, M.K.A.; Khawaja, B.A.; Iqbal, M.N. Compact Metamaterial Based 4 × 4 Butler Matrix with Improved Bandwidth for 5G Applications. IEEE Access 2020, 8, 13573–13583. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. Broadband planar antenna array for future 5G communication standards. IET Microw. Antennas Propag. 2019, 13, 2661–2668. [Google Scholar] [CrossRef]
- Dzagbletey, P.A.; Jung, Y.B. Stacked micro strip linear array for millimeter-wave 5G baseband communication. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 780–783. [Google Scholar] [CrossRef]
- Liu, H.; Yang, W.; Zhang, A.; Zhu, S.; Wang, Z.; Huang, T. A Miniaturized Gain-Enhanced Antipodal Vivaldi Antenna and Its Array for 5G Communication Applications. IEEE Access 2018, 6, 76282–76288. [Google Scholar] [CrossRef]
- Goel, T.; Patnaik, A. Novel Broadband Antennas for Future Mobile Communications. IEEE Trans. Antennas Propag. 2018, 66, 2299–2308. [Google Scholar] [CrossRef]
- Dixit, A.S.; Kumar, S. A Survey of Performance Enhancement Techniques of Antipodal Vivaldi Antenna. IEEE Access 2020, 8, 45774–45796. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Sorkherizi, M.S.; Kishk, A.A. High-Efficient Circularly Polarized Magnetoelectric Dipole Antenna for 5G Applications Using Dual-Polarized Split-Ring Resonator Lens. IEEE Trans. Antennas Propag. 2017, 65, 4263–4267. [Google Scholar] [CrossRef]
- Kim, E.; Ko, S.-T.; Lee, Y.J.; Oh, J. Millimeter-Wave Tiny Lens Antenna Employing U-Shaped Filter Arrays for 5G. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 845–848. [Google Scholar] [CrossRef]
- Alizadeh, F.; Ghobadi, C.; Nourinia, J.; Zayer, R. Band width enhancement of patch antennas loaded with complementary split-ring resonators. In Proceedings of the 7th International Symposium on Telecommunications (IST’2014), Tehran, Iran, 9–11 September 2014. [Google Scholar]
- Tan, W.; Xiao, Y.; Li, C.; Zhu, K.; Luo, H.; Sun, H. A Wide-Band High-Efficiency Hybrid-Feed Antenna Array for mm-Wave Wireless Systems. Electronics 2021, 10, 2383. [Google Scholar] [CrossRef]
- Griguer, H.; Marzolf, E.; Lalj, H.; Riouch, F.; Drissi, M. Patch antenna bandwidth enhancement through the use of meta materials. In Proceedings of the International Conference on Telecommunications, Marrakech, Morroco, 25–27 May 2009; pp. 323–327. [Google Scholar]
- Li, T.; Chen, Z.N. Shared-Surface Dual-Band Antenna for 5G Applications. IEEE Trans. Antennas Propag. 2019, 68, 1128–1133. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.; Abbas, A.; Kim, T.; Kim, N. A Meta surface-Based Low-Profile Wideband Circularly Polarized Patch Antenna for 5G Millimeter-Wave Systems. IEEE Access 2020, 8, 22127–22135. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.; Abbas, A.; Kim, N. Metasurface-Based Single-Layer Wideband Circularly Polarized MIMO Antenna for 5G Millimeter-Wave Systems. IEEE Access 2020, 8, 130293–130304. [Google Scholar] [CrossRef]
- Shahadan, N.H.; Jamaluddin, M.H.; Kamarudin, M.R.; Yamada, Y.; Khalily, M.; Jusoh, M.; Dahlan, S.H. Steerable Higher Order Mode Dielectric Resonator Antenna with Parasitic Elements for 5G Applications. IEEE Access 2017, 5, 22234–22243. [Google Scholar] [CrossRef] [Green Version]
- Yassin, M.E.; Mohamed, H.A.; Abdallah, E.A.F.; El-Hennawy, H.S. Single-fed 4G/5G multiband 2.4/5.5/28 GHz antenna. IET Microw. Antennas Propag. 2019, 13, 286–290. [Google Scholar] [CrossRef]
- Jiang, X.; Jia, F.; Cao, Y.; Huang, P.; Yu, J.; Wang, X.; Shi, Y. Ka-Band 8 × 8 Low-Side lobe Slot Antenna Array using a 1-to-64 High-Efficiency Network Designed by New Printed RGW Technology. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1248–1252. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, R.; Ma, Y.; Guo, Z.; Wei, X.; Xing, W.; Wang, Y. A 45° Linearly Polarized Slot Array Antenna with Substrate Integrated Coaxial Line Technique. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 339–342. [Google Scholar] [CrossRef]
- Li, Y.; Luk, K.M. A 60-GHz Wideband Circularly Polarized Aperture-Coupled Magneto-Electric Dipole Antenna Array. IEEE Trans. Antennas Propag. 2016, 64, 1325–1333. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Guo, Y.X. A Ka-Band Wideband Dual-Polarized Magnetoelectric Dipole Antenna Array on LTCC. IEEE Trans. Antennas Propag. 2019, 68, 4985–4990. [Google Scholar] [CrossRef]
- Tomura, T.; Hirokawa, J.; Hirano, T.; Ando, M. A 45 degrees Linearly Polarized Hollow-Waveguide 16 × 16-Slot Array Antenna Covering 71–86 GHz Band. IEEE Trans. Antennas Propag. 2014, 62, 5061–5067. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Vila-Jimenez, A. Single-Layer Circularly-Polarized Ka-Band Antenna Using Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2018, 66, 3837–3845. [Google Scholar] [CrossRef]
- Sorkherizi, M.S.; Dadgarpour, A.; Kishk, A. Planar High-efficiency Antenna Array Using New Printed Ridge Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2017, 65, 3772–3776. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Mou, S.; Soothar, P.; Zhou, J. An Air Cavity-Fed Circularly Polarized Magneto-Electric Dipole Antenna Array With Gap Waveguide Technology for mm-Wave Applications. IEEE Trans. Antennas Propag. 2019, 67, 6211–6216. [Google Scholar] [CrossRef]
- Han, T.-Y.; Hsieh, Z.-K.; Lo, J.; Sim, C.-Y. A Pattern Reconfigurable Antenna Design for 5G Communication System. In Proceedings of the 2021 International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan, 19–22 October 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Ahmad, I.; Sun, H.; Zhang, Y.; Ali, Q. Low Profile, Compact Size Frequency Reconfigurable Antenna for 5G mm-Wave Wireless Communication. In Proceedings of the 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 15–18 May 2020; pp. 712–716. [Google Scholar] [CrossRef]
- Afzal, M.U.; Matekovits, L.; Esselle, K.P.; Lalbakhsh, A. Beam-Scanning Antenna Based on Near-Electric Field Phase Transformation and Refraction of Electromagnetic Wave through Dielectric Structures. IEEE Access 2020, 8, 199242–199253. [Google Scholar] [CrossRef]
- Gonçalves, R.; Pinho, P.; Carvalho, N.B. Compact, frequency reconfigurable, printed monopole antenna. Int. J. Antennas Propag. 2012, 2012, 602780. [Google Scholar] [CrossRef]
- Majid, H.A.; Rahim, M.K.A.; Hamid, M.R.; Ismail, M.F. Frequency reconfigurable micro strip patch-slot antenna with directional radiation pattern. Prog. Electromagn. Res. 2014, 144, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhai, H.; Wang, X.; Li, L.; Liang, C. Frequency-Reconfigurable Bow-Tie Antenna for Bluetooth, WiMAX, and WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 171–174. [Google Scholar] [CrossRef]
- Ullah, S.; Hayat, S.; Umar, A.; Ali, U.; Tahir, F.A.; Flint, J.A. Design, fabrication and measurement of triple band frequency reconfigurable antennas for portable wireless communications. AEU-Int. J. Electron. Commun. 2017, 81, 236–242. [Google Scholar] [CrossRef]
- Ali, W.A.E.; Mohamed, H.A.; Ibrahim, A.A.; Hamdalla, M.Z.M. Gain improvement of tunable band-notched UWB antenna using metamaterial lens for high speed wireless communications. Microsyst. Technol. 2019, 25, 4111–4117. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, L.; Yu, H.W.; Zhang, Y.X.; Jiao, Y.C. A SingleLayer Wideband Differential-Fed Microstrip Patch Antenna with Complementary Split-Ring Resonators Loaded. IEEE Access 2019, 7, 132041–132048. [Google Scholar] [CrossRef]
- Hussain, S.; Qu, S.W.; Zhou, W.L.; Zhang, P.; Yang, S. Design and Fabrication of Wideband Dual-Polarized Dipole Array for 5G Wireless Systems. IEEE Access 2020, 8, 65155–65163. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.; Abdulkhaleq, A.M.; Elfergani, I.; Rayit, A.; Noras, J.M.; Rodriguez, J.; Abd-Alhameed, R.A. Frequency reconfigurable antenna array for mm-wave 5G mobile handsets. In Proceedings of the International Conference on Broadband Communications, Networks and Systems, Faro, Portugal, 19–20 September 2018. [Google Scholar]
- Rutschlin, M.; Sokol, V. Reconfigurable Antenna Simulation: Design of Reconfigurable Antennas with Electromagnetic Simulation. IEEE Microw. Mag. 2013, 14, 92–101. [Google Scholar] [CrossRef]
- Thummaluru, S.R.; Kumar, R.; Chaudhary, R.K. Isolation and frequency reconfigurable compact MIMO antenna for WLAN applications. Microw. Antennas Propag. 2019, 13, 519–525. [Google Scholar] [CrossRef]
- Ding, Z.; Jin, R.; Geng, J.; Zhu, W.; Liang, X. Varactor Loaded Pattern Reconfigurable Patch Antenna with Shorting Pins. IEEE Trans. Antennas Propag. 2019, 67, 6267–6277. [Google Scholar] [CrossRef]
- Alazemi, A.J. A tunable single-feed triple-band LTE antenna with harmonic suppression. IEEE Access 2019, 7, 104667–104672. [Google Scholar] [CrossRef]
- Ullah, S.; Yeo, W.-H.; Kim, H.; Yoo, H. Development of 60-GHz millimeter wave, electromagnetic bandgap ground planes for multiple-input multiple-output antenna applications. Sci. Rep. 2020, 10, 8541. [Google Scholar] [CrossRef]
- Li, M.Y.; Xu, Z.Q.; Ban, Y.L.; Sim, C.Y.D.; Yu, Z.F. Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone. IET Microw. Antennas Propag. 2017, 11, 1810–1816. [Google Scholar] [CrossRef]
- Nadeem, I.; Choi, D.-Y. Study on Mutual Coupling Reduction Technique for MIMO Antennas. IEEE Access 2018, 7, 563–586. [Google Scholar] [CrossRef]
- Sharawi, M.S.; Podilchak, S.K.; Khan, M.U.; Antar, Y.M. Dual-frequency DRA-based MIMO antenna system for wireless access points. IET Microw. Antennas Propag. 2017, 11, 1174–1182. [Google Scholar] [CrossRef]
- Kowalewski, J.; Eisenbeis, J.; Jauch, A.; Mayer, J.; Kretschmann, M.; Zwick, T. A mmW Broadband Dual-Polarized Dielectric Resonator Antenna Based on Hybrid Modes. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1068–1072. [Google Scholar] [CrossRef]
- Ali, W.A.; Ibrahim, A.A. A compact double-sided MIMO antenna with an improved isolation for UWB applications. AEU-Int. J. Electron. Commun. 2017, 82, 7–13. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, B.; Cui, Y.; Hu, W. High-Isolation Eight-Element MIMO Array for 5G Smartphone Applications. IEEE Access 2019, 7, 34104–34112. [Google Scholar] [CrossRef]
- Liu, R.; An, X.; Zheng, H.; Wang, M.; Gao, Z.; Li, E. Neutralization Line Decoupling Tri-Band Multiple-Input Multiple-Output Antenna Design. IEEE Access 2020, 8, 27018–27026. [Google Scholar] [CrossRef]
- Nie, Z.; Zhai, H.; Liu, L.; Li, J.; Hu, D.; Shi, J. A Dual-Polarized Frequency-Reconfigurable Low-Profile Antenna with Harmonic Suppression for 5G Application. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1228–1232. [Google Scholar] [CrossRef]
- Ikram, M.; Nguyen-Trong, N.; Abbosh, A. A Simple Single-Layered Continuous Frequency and Polarization-Reconfigurable Patch Antenna Array. IEEE Trans. Antennas Propag. 2019, 68, 4991–4996. [Google Scholar] [CrossRef]
- Jin, G.; Deng, C.; Xu, Y.; Yang, J.; Liao, S. Differential Frequency-Reconfigurable Antenna Based on Dipoles for Sub-6 GHz 5G and WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 472–476. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zhao, L.; Huang, G.L.; Shi, X.; Huang, Q. A Miniaturized Micro strip Antenna Array at 5G Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1671–1675. [Google Scholar] [CrossRef]
- Zhang, S.; Syrytsin, I.; Pedersen, G.F. Compact Beam-Steerable Antenna Array With Two Passive Parasitic Elements for 5G Mobile Terminals at 28 GHz. IEEE Trans. Antennas Propag. 2018, 66, 5193–5203. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Saleem, R.; Abbasi, H.H.; Shafique, M.F.; Brown, A.K. An FSS-Based Nonplanar Quad-Element UWB-MIMO Antenna System. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 987–990. [Google Scholar] [CrossRef]
- Jafri, S.I.; Saleem, R.; Shafique, M.F.; Brown, A.K. Compact reconfigurable multiple-input-multiple-output antenna for ultra-wideband applications. IET Microw. Antennas Propag. 2016, 10, 413–419. [Google Scholar] [CrossRef]
- Khan, M.S.; Rigobello, F.; Ijaz, B.; Autizi, E.; Capobianco, A.D.; Shubair, R.; Khan, S.A. Compact 3-D eight elements UWB-MIMO array. Microw. Opt. Technol. Lett. 2018, 60, 1967–1971. [Google Scholar] [CrossRef]
- Mathur, R.; Dwari, S. 8-port multibeam planar UWB-MIMO antenna with pattern and polarisation diversity. IET Microw. Antennas Propag. 2019, 13, 2297–2302. [Google Scholar] [CrossRef]
- Hu, W.; Liu, X.; Gao, S.; Wen, L.-H.; Qian, L.; Feng, T.; Xu, R.; Fei, P.; Liu, Y. Dual-Band Ten-Element MIMO Array Based on Dual-Mode IFAs for 5G Terminal Applications. IEEE Access 2019, 7, 178476–178485. [Google Scholar] [CrossRef]
- Li, M.-Y.; Ban, Y.-L.; Xu, Z.-Q.; Guo, J.; Yu, Z.-F. Tri-Polarized 12-Antenna MIMO Array for Future 5G Smartphone Applications. IEEE Access 2017, 6, 6160–6170. [Google Scholar] [CrossRef]
- Chen, H.-D.; Tsai, Y.-C.; Sim, C.-Y.; Kuo, C. Antenna Array Design for Sub-6 GHz 5G NR Bands Metal-Frame Smartphone Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1078–1082. [Google Scholar] [CrossRef]
- Singh, A.; Saavedra, C.E. Wide-bandwidth Inverted-F stub fed hybrid loop antenna for 5G sub-6 GHz massive MIMO enabled handsets. IET Microw. Antennas Propag. 2020, 14, 677–683. [Google Scholar] [CrossRef]
- Shabbir, T.; Saleem, R.; Al-Bawri, S.S.; Shafique, M.F.; Islam, M.T. Eight-Port Metamaterial Loaded UWB-MIMO Antenna System for 3D System-in-Package Applications. IEEE Access 2020, 8, 106982–106992. [Google Scholar] [CrossRef]
- Shabbir, T.; Islam, M.T.; Al-Bawri, S.S.; Aldhaheri, R.W.; Alharbi, K.H.; Aljohani, A.J.; Saleem, R. 16-Port Non-Planar MIMO Antenna System With Near-Zero-Index (NZI) Metamaterial Decoupling Structure for 5G Applications. IEEE Access 2020, 8, 157946–157958. [Google Scholar] [CrossRef]
- Iupikov, O.A.; Hallberg, W.; Maaskant, R.; Fager, C.; Rehammar, R.; Buisman, K.; Ivashina, M.V. A Dual-Fed PIFA Antenna Element with nonsymmetric Impedance Matrix for High-Efficiency Doherty Transmitters: Integrated Design and OTA-characterization. IEEE Trans. Antennas Propagat. 2020, 68, 21–32. [Google Scholar] [CrossRef]
- Iupikov, O.A.; Perez-Cisneros, J.-R.; Meyer, P.; Akesson, D.; Maaskant, R.; Buisman, K.; Rehammar, R.; Fager, C.; Ivashina, M.V. A Cavity-Backed Patch Antenna with Distributed Multi-Port Feeding, Enabling Efficient Integration with Doherty Power Amplifier and Band-Pass Filter. IEEE Trans. Antennas Propag. 2021, 69, 4412–4422. [Google Scholar] [CrossRef]
- Chou, H.-T.; Huang, H.-J. Multi-Level Subarray Modularization to Construct Hierarchical Beamforming Networks for Phased Array of Antennas with Low Complexity. IEEE Trans. Antennas Propag. 2017, 65, 5819–5828. [Google Scholar] [CrossRef]
Reference Antennas | Performance Enhancement Techniques | Advantages | Disadvantages |
---|---|---|---|
[45,46] | Substrate Choice | Substrate with low permittivity characteristics have a significant impact on the performance of an antenna and provide enhanced gain, wide bandwidth and high efficiency. Having high permittivity characteristics improves the value of return loss. | Substrate with low permittivity is costly and not easily available. |
[47,48,49] | Mutual Coupling Reduction /Decoupling | Excellently improves the impedance matching and directly enhances both the gain and efficiency. Mutual coupling reduction techniques also reduce the size of antenna. | Mutual reduction has an impact on antenna designing and increases the complexity. |
[50,51] | Multielement | It significantly improves the return loss, bandwidth and radiation efficiency, besides these properties, it also effectively reduces the side- and back-lobe levels. | For such techniques, the feeding network is a difficult task to design and makes complexity to some extent. |
[52,53,54] | Corrugation | Improvement in the gain, efficiency, and bandwidth as well as return loss. | Significantly reduces the input impedance. |
[55,56] | Dielectric Lens | Gain enhancement improvement in front-to-back ratio with stable radiation pattern. Enhancement in the gain, improvement in the front-to-back ration, stability in the radiation pattern, and radiation in the front-side direction. | The size of antenna definitely increases. |
References Antennas | Number of Unit Cells | Total Size Array (λ0) | Effective Bandwidth (S11 < −10 dB) | Maximum Gain | Radiation Efficiency (%) | Fabrication Techniques | ||||
---|---|---|---|---|---|---|---|---|---|---|
[65] | 8 × 8 | 150 × 75 × 7 | 6.4 × 6.4 × 0.17 | Ground Slot | 34–40.1 Hz | 3.3–6.0 | 24 dBi | >18 | 41% | PCB |
[66] | 5 × 6 | 124 × 74 × 6 | 5.07 × 3.82 × 0.1 | Ground Slot | 33.95–34.86 GHz | 3.3–3.6 | 17.09 dBi | >15 | 22% | PCB |
[67] | 8 × 8 | 150 × 80 × 0.8 | 6.12 × 6.8 × 0.5 | No | 55.4–66.5 GHz | 3.4–3.6 | 26.1 dBi | >17.5 | 70% | Multi-Layer PCB |
[68] | 4 × 4 | 150 × 75 × 0.8 | 2 × 2 × 0.12 | Orthogonal Polarization | 25.5–40.2 GHz | 3.3–3.8 | 16.1 dBi | >15 | 83% | LTCC |
[69] | 16 × 16 | 150 × 75 × 8 | 15.7 × 16 × 0.8 | Orthogonal Polarization | 71–86 GHz | 3.4–3.6 | 32.9 dBi | >17 | 86.60% | Diffusion Bonding |
[70] | 4 × 4 | 145 × 75 × 6 | 5.3 × 5.3 × 1.1 | No | 29.6–30.7 GHz | 3.4–3.6 | 22.4 dBi | >15 | 99% | Machining |
[71] | 4 × 4 | 150 × 75 × 7 | 3.5 × 3.4 × 0.3 | No | 28.8–34 GHz | 3.4–3.6 | 21.2 dBi | >12.7 | 70% | PCB |
[72] | 4 × 8 | 150 × 75 × 7 | 11.8 × 11.4 × 2.2 | Neutralization Line | 86.7–102.2 GHz | 3.4–3.6 | 23 dBi | >11.5 | N/A% | PCB + Machining |
[58] | 8 × 8 | 140 × 70 × 1 | 5.4 × 5.4 × 0.6 | No | 26.05–31.15 GHz | 3.4–3.6 | 25 dBi | >11.2 | 85% | |
3.4–3.8 | >15.5 |
References Antennas | Antenna Size (λ0 × λ0) | Number of Pin Diodes | Single Band | Multi Band | Wide Band | Bandwidth (%) |
---|---|---|---|---|---|---|
[75] | 1.00 × 0.41 | 2 | 4 | 4 | 8 | 26.4%, 37.4% |
[76] | 0.62 × 0.41 | 1 | 4 | 4 | 8 | 13.5%, 35.72%, 9.94% |
[77] | 0.36 × 0.33 | 6 | 4 | 8 | 4 | 123.5%, 28.5% |
[78] | 0.60 × 0.28 | 2 | 4 | 8 | 4 | 44.89%, 10.55% |
[79] | 0.55 × 0.59 | 4 | 8 | 4 | 4 | 74%, 8.2%, 9.79%, 15.4% |
[33] | 150 × 0.16 | 2 | 4 | 4 | 4 | 64.40%, 24%, 25.5% |
Switching Types | Supremacy/ Advantages | Weaknesses/ Disadvantages |
---|---|---|
PIN Diode | Extremely reliable Very low in cost Most probable choice for reconfiguration | Power handling capability is high The tuning speed is very high High DC biasing capability in ON state |
MEMS | Feasible for small flow of current continuous tuning Integration is easy | A nonlinear source Lower range dynamically Biasing circuitry is complex |
Varacters | Linear impedance bandwidth with high isolation Comparatively less noise figure and low power losses | Voltage control level is high. The switching speed is slow Limited life cycle is limited compared with other components. |
Reference Antennas | Performance Enhancement Techniques | Advantages | Disadvantages |
---|---|---|---|
[90] | Neutralization Lines | This technique is mostly used in compact-size antenna to decouple the closed interelement coupling. | Complexities in structure |
[91,92] | Dielectric Resonator Antenna | Bandwidth Gain and Efficiency Enhancement. | Complexities in structure |
[93,94] | Neutralization Lines | This technique is mostly used in compact-size antenna to decouple the closed interelement coupling. | Complexities in structure |
[95,96] | Frequency Reconfigurable Antenna | It provides feasibility for antenna to be in compact size and excellent provision for compactness dimensionally. | External component provision is not an easy task. |
[97,98,99,100] | Slot or Parasitic element Metamaterials Decoupling Network | Diversity gain, bandwidth, and efficiency could excellently be improved. Enhancement in the diversity gain, bandwidth and envelop correlation coefficient (ECC) Diversity gain and impedance matching could be improved effectively. | Designing and decision about position is difficult and a time-consuming activity. Decisions about position and designing are not an easy job. Complexity in design as well as low in gain |
Reference Antennas | Geometry | Decoupling Techniques | Effective Bandwidth (GHz) | Isolation(dB) | Channel Capacity Loss | ECC |
---|---|---|---|---|---|---|
[101] | Non Planar | Decoupling based on FSS | 3–11 | 20 | <0.20 | <0.20 |
[102] | Non Planar | Parasitic structure for decoupling | 3.1–10.6 | 20 | <0.70 | <0.1 |
[103] | Non Planar | Configuration based on 3D element distance | 3–11 | 20 | - | <0.5 |
[104] | Planar | Decoupling structure based on grounded slits | 2–11 | 15 | - | <0.2 |
[89] | Planar | Orthogonal polarization | 2.5–2.7 | 12 | - | <0.12 |
[105] | Planar | Decoupling structure of ENG-NZI metamaterial | 3.4–3.6, 4.8–5.0 | 12 | <0.08 | <0.15 |
[106] | Planar | DN (secoupling network) | 3.4–3.6 | 14 | - | <0.2 |
[107] | Planar | Element positioning + geometrical slotting | 3.27–5.92 | 14.5 | - | <0.1 |
[108] | Planar | Port distance plus positioning of elements | 3.2–6.1 | 18 | - | <0.21 |
[109] | Planar | Parasitic structure for decoupling | 3–11 | 20 | <0.35 | <0.0025 |
[110] | Planar | Decoupling structure of ENG-NZI metamaterial | 3–11 | 28 | <0.30 | <0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Tan, W.; Ali, Q.; Sun, H. Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology, a Comprehensive Study. Micromachines 2022, 13, 717. https://doi.org/10.3390/mi13050717
Ahmad I, Tan W, Ali Q, Sun H. Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology, a Comprehensive Study. Micromachines. 2022; 13(5):717. https://doi.org/10.3390/mi13050717
Chicago/Turabian StyleAhmad, Iftikhar, Wenhao Tan, Qasim Ali, and Houjun Sun. 2022. "Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology, a Comprehensive Study" Micromachines 13, no. 5: 717. https://doi.org/10.3390/mi13050717
APA StyleAhmad, I., Tan, W., Ali, Q., & Sun, H. (2022). Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology, a Comprehensive Study. Micromachines, 13(5), 717. https://doi.org/10.3390/mi13050717