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Abstract: A specimen observed with a transmission electron microscope (TEM) was processed
by focused ion beam (FIB) from a surface-micromachined polycrystalline silicon MEMS structure.
Electron irradiation and in situ observation were performed on a selected grain boundary in the
specimen. The grain boundary was observed and located by using lattice-oriented selective TEM
photography. An evolution progress of amorphization of small silicon grain within the grain boundary
and recrystallization of amorphous silicon were observed. A silicon grain turned into several smaller
bar grains within the grain boundary. The mechanism of grain-boundary evolution inducing a change
of conductivity of polycrystalline silicon has been revealed. The conductivity of polycrystalline silicon
influenced by electron irradiation could be attributed to the change of grain boundary.

Keywords: electron irradiation; polycrystalline silicon; grain boundary evolution

1. Introduction

Microelectromechanical systems (MEMS) technologies are well suited for the needs of
space applications due to their small size, low weight and low power consumption. One
trend of space missions is to make technology smaller, faster and cheaper [1]. Different from
traditional spacecraft, the shield is limited in low-weight spacecraft. Radiation from cosmic
sources can potentially affect the performance of MEMS devices employed on spacecraft.
Studies of the effects of radiation on MEMS devices have principally proven that there
are radiation effects on the activation of mechanical elements related to charge buildup
within dielectric insulating layers [2–4]. Displacement damage induced by radiation tends
to cause resistance and stress changes in the silicon in MEMS [5,6]. The radiation effects
on crystalline silicon were studied to understand the failure mechanisms of electronic
devices [7,8]. There is little scientific literature on the mechanism of the radiation effects
on surface-micromachined polycrystalline silicon; the radiation effects on polycrystalline
silicon are much more complex than they are on crystalline silicon considering the disor-
dered structure of grains and grain boundaries, and the field is in its infancy. The radiation
effects on the resistivity of polycrystalline silicon have been studied [9,10], but the mech-
anism of the change of resistivity has not been revealed yet. In this article, the effects of
electron irradiation on surface-micromachined polycrystalline silicon have been observed
in lattice scale via a transmission electron microscope (TEM). The phenomenon of grain-
boundary evolution of polycrystalline silicon has been observed, which is contributed to
by amorphization and recrystallization in the grain boundaries. The change of resistance
of polycrystalline silicon could be explained by this phenomenon, which may affect the
potential barrier of grain boundaries due to the change of defects.

The mechanism of radiation effects on MEMS has been extended to polycrystalline
materials using a grain-boundary evolution theory. This theory will help to estimate the
long-term life of MEMS devices in radiation environments. One of the critical factors in
the accelerated degradation experiments involving MEMS is that the failure mechanism
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should be the same. The observation of grain-boundary evolution in stress tests will help
to determine the dose rate in accelerated degradation experiments and improve the acceler-
ation factor. The theory will help to improve the fabrication processes of polycrystalline
silicon in MEMS that are applied in radiation environments. The in situ observation of
grain-boundary evolution in TEM provides a method to study the mechanism of radiation
effects on different polycrystalline materials in MEMS. In addition, the further study of
grain-boundary evolution will help construct the foundation of a numerical model of the
radiation effects on polycrystalline silicon.

2. Materials and Methods
2.1. Fabrication of Specimen
2.1.1. Surface-Micromachined Process

The specimen was fabricated in a standard MEMS fabrication process. The fabrication
process began with an n-type (100) silicon wafer. The surface of the wafer was first heavily
doped with phosphorus in a standard diffusion furnace using a phosphosilicate glass
(PSG) sacrificial layer as the dopant source, as shown in Figure 1a,b. After removal of
the PSG film by immersing the chip in a bath of 49% HF, a 600 nm low-pressure chemical
vapor deposition (LPCVD) silicon nitride layer was deposited on the wafer as an electrical
isolation layer, as shown in Figure 1c,d. The underlying layer of polysilicon (Poly 0) was
deposited at a thickness of 500 nm, as shown in Figure 1e. A 2.0 µm PSG sacrificial layer
was then deposited by LPCVD and annealed at 1050 ◦C for 1 h in argon, as shown in
Figure 1f. The sacrificial layer was lithographically patterned with the mask in a reactive
ion etch (RIE) system, as shown in Figure 1g. This step provides anchor holes that will
be filled by the polysilicon layer. After etching anchor, the structural layer of polysilicon
(Poly 1) was deposited at a thickness of 2.0 µm, as shown in Figure 1h. A thin (200 nm)
layer of PSG was deposited over the polysilicon as hard mask, and the wafer was annealed
at 1050 ◦C for 1 h, as shown in Figure 1i. The anneal dopes the polysilicon with phosphorus
from the PSG layers both above and below it. The wafer was coated with photoresist and
lithographically patterned. The PSG hard mask and polysilicon layer were etched, and the
photoresist and hard mask (PSG) were removed at the end, as shown in Figure 1j.

The scanning electron microscope (SEM) photograph of cross-section of the specimen
is shown in Figure 2. The releasing process of specimen used for further experiments has
not been performed. As polysilicon layer in surface-micromachined MEMS is the critical,
functional part, the observation is focused on the polycrystalline silicon in irradiation
environments.
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Figure 1. Fabrication process of specimen: (a) LPCVD PSG as doping source; (b) Doping via anneal-
ing; (c) Removing of PSG; (d) LPCVD SiN as isolation layer; (e) LPCVD polysilicon as underlying 
layer (Poly 0); (f) LPCVD PSG as sacrifice layer; (g) Etching of sacrifice layer; (h) LPCVD polysilicon 
as structure layer (Poly 1); (i) LPCVD PSG as doping source and hard mask of polysilicon; (j) Etching 
of polysilicon and removing of hard mask. 

 
Figure 2. The SEM photograph of cross-section of specimen. 

2.1.2. Specimen Processed by Focused Ion Beam (FIB) 
The specimen observed with TEM in situ was processed by FIB from previously fab-

ricated surface-micromachined polycrystalline silicon MEMS structure. 

Figure 1. Fabrication process of specimen: (a) LPCVD PSG as doping source; (b) Doping via annealing;
(c) Removing of PSG; (d) LPCVD SiN as isolation layer; (e) LPCVD polysilicon as underlying layer
(Poly 0); (f) LPCVD PSG as sacrifice layer; (g) Etching of sacrifice layer; (h) LPCVD polysilicon as
structure layer (Poly 1); (i) LPCVD PSG as doping source and hard mask of polysilicon; (j) Etching of
polysilicon and removing of hard mask.
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2.1.2. Specimen Processed by Focused Ion Beam (FIB)

The specimen observed with TEM in situ was processed by FIB from previously
fabricated surface-micromachined polycrystalline silicon MEMS structure.

An 8 µm (L) × 0.1 µm (W) × 0.5 µm (T) layer of platinum was deposited by electron
beam deposition on the surface of polycrystalline silicon to protect the specimen beneath.
The polycrystalline silicon beam was handled by a nano-handler and sectioned by FIB, and
the sectioned beam was further reduced to 0.1 µm by FIB while it was protected by the
platinum layer above.

A low-resolution figure of the FIB processed specimen observed by TEM is shown in
Figure 3. At low resolution, lattice of polycrystalline silicon is not obvious, but different
layers of material are shown. In this figure, from left to right, there is a substrate, one
layer of SiN, two layers of polycrystalline silicon (Poly 0 and Poly 1) and one layer of
platinum. The specimen is thin enough to obtain high-resolution photograph in following
grain-boundary observations in TEM. A thin specimen will also help to reduce the variety
of atomic arrangements in the direction of thickness and reduce the difficulty of analysis of
grain-boundary evolution.
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Figure 3. Low resolution TEM photograph of the specimen. SiN, polycrystalline silicon, and platinum
can be observed.

2.2. Experiments
2.2.1. TEM Observation

It is difficult to distinguish grains and grain boundaries of polycrystalline silicon since
grains and grain boundaries are irregular in dimension. To observe and locate every grain
and its boundaries, lattice-oriented selective TEM photography was performed, as shown
in Figure 4. In the lattice-oriented selective TEM photograph, different grains have different
luminances in the figure since they have different lattice orientations. Grain boundary is
brighter since it contains some amorphous silicon. The white lines in Figure 4 show grain
boundaries. The lines of grain boundaries draw the outline of every grain.

With the help of lattice-oriented selective TEM photography, grain boundaries are
easily found and located for further high-resolution TEM photography. Moreover, specific
grain boundary may be observed and relocated, as shown in Figure 4.
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Figure 4. Lattice-oriented selective TEM photograph. Left part is SiN, and right part is polycrystalline
silicon. Different grains have different luminances in the picture since they have different lattice
orientations.

The observation point was located in a certain grain boundary, and high-resolution
photography was performed. Lattice of polycrystalline silicon could be clearly observed in
a narrow field of view, as shown in Figure 5. And the grain boundary between grain A and
grain B could also be observed.
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Figure 5. High-resolution TEM photograph of specimen. Different grains, grains’ lattice and grain
boundary could be observed.

With the help of photography of grain boundary, the point where the followed electron
irradiation and in situ observation is performed was located. The photograph before
electron irradiation is shown in Figure 6. In the grain boundary, there is crystalline silicon
in area A and amorphous silicon in area C. Crystalline silicon and amorphous silicon are
mixed in grain boundaries.
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Figure 6. High-resolution TEM photograph in grain boundary. The zoom in area A shows the
amorphous silicon part, and the zoom in area C shows the crystalline silicon part.

The scale of crystalline silicon and amorphous silicon in the grain boundary ranges
from several atoms to hundreds of atoms. The shape of crystalline silicon in grain boundary
is usually stripe. Some of the small crystalline silicon grains in the grain boundary close to
each other have the same lattice orientation. And some of the small grains have different
lattice orientations.

2.2.2. Electron Irradiation and Observation of Grain Boundary

A grain boundary was selected for electron irradiation and in situ observation, as
shown in Figure 6. The electron irradiation was performed by using the built-in accelerated
electron source in the TEM. The energy of electron beam was set at 300 keV, and the dose
rate was set at 1 krad/s.

Two-hundred snapshots of TEM figures were photographed in the electron irradiation
experiment, and the snapshots were photographed every 2 s. Photographs at different
doses were obtained from 0 to 398 krad, and the dose increment of electron irradiation was
2 krad. The grain boundary of polycrystalline silicon was observed in the snapshots, as
shown in Figure 7. The amorphization of silicon grain and recrystallization of amorphous
silicon were observed.
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Figure 7. Grain-boundary evolution under electron irradiation at different doses: (a) zoom in area I
before electron irradiation; (b) zoom in area I at 280 krad; (c) zoom in area I at 398 krad; (d) zoom in
area II and III before electron irradiation; (e) zoom in area II and III at 280 krad; (f) zoom in area II
and III at 398 krad.

3. Results

The grain-boundary evolution of polycrystalline silicon was considered as the progress
of amorphization of small silicon grain within the grain boundary and recrystallization of
amorphous silicon.

The grain-boundary evolution is quite slow at the beginning of electron irradiation. In
the first 200 s, the change of crystalline silicon and amorphous silicon in the grain boundary
is small when the total dose of electron irradiation is limited to 200 krad. Between 200 s to
300 s, the crystalline silicon and amorphous silicon in the grain boundary start to change.
The change of grain boundary slows down again when the time reaches 400 s.

There are two typical grain-boundary evolution mechanisms shown in Figure 7. The
first mechanism is shown in area I, which is on the bottom left of the photograph. The shape
of crystalline silicon in area I is a stripe before electron irradiation, as shown in Figure 7a.
The crystalline silicon in area I starts the process of amorphization and recrystallization
at a dose of 280 krad. The left part begins amorphization in area I, and the right part
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begins recrystallization in area I, as shown in Figure 7b. The shape of crystalline silicon
in area I evolves from one stripe to several irregular stripes (A, B, C in area I) because of
amorphization and recrystallization in area I at a dose of 398 krad, as shown in Figure 7c.

The second mechanism is shown in area II and area III, which are on the bottom right
of the photograph. The shape of the amorphous silicon in area II and area III is short stripes
before electron irradiation, as shown in Figure 7d. The amorphous silicon in area II and
area III starts to expand at a dose of 280 krad, as shown in Figure 7e. The amorphous silicon
in area II and area III expands significantly to a long stripe at a dose of 398 krad, as shown
in Figure 7f.

The grain-boundary evolution is concluded as a small silicon grain turns into several
smaller grains within the grain boundary, as shown in the bottom left area I in Figure 7, or
the amorphous silicon expands due to the amorphization of small silicon grains within the
grain boundary, as shown in the bottom right area II and area III in Figure 7.

4. Discussion

As shown in Figure 7a–c, the evolution in area I tends to reshape the crystalline silicon.
For the trend of small silicon grain turning into several smaller grains within the grain
boundary, the total volume of the crystalline silicon has changed slightly; however, the
surface area of crystalline silicon increases significantly. According to the defects contained
on the surface of the crystalline silicon, the defect density within the grain boundary
increases with the increase in surface area. The interatomic spacing within the crystalline
silicon in grain boundaries has not changed due to the lattice photography.

As shown in Figure 7d–f, the evolution in area II and III tends to increase the volume
of amorphous silicon in the grain boundary. For the trend of the amorphization of small
silicon grain within the grain boundary, part of the crystalline silicon is amorphized under
electron irradiation. This electron radiation effect tends to increase the defect density in the
grain boundary due to amorphization. The position of crystalline silicon has not changed
during the amorphization of silicon grain. The density of atoms in the crystalline silicon is
higher than that in amorphous silicon. The interatomic spacing in amorphous silicon tends
to be closer due to the increased average atom density in the amorphous region.

The segregated phosphorus atoms in the amorphous region could not be observed in
the TEM photography; the interaction between phosphorus atoms and silicon atoms needs
further study.

According to the evolution of the grain boundary, two different mechanisms tend to
decrease the volume of crystalline silicon within the grain boundary on average. Addition-
ally, both mechanisms of grain-boundary evolution increase the defect density within the
grain boundary.

The conductivity of the polycrystalline silicon is mainly contributed by a thermionic
emission current other than the tunneling current due to high doping [11]. The conductivity
behavior of polycrystalline silicon relies on a potential barrier induced by the trapped charge
in the grain boundary, and the quantity of trapped charge depends on the defect density in
the grain boundary, as shown in Figure 8a. The trapped charge in the grain boundary is
considered as QB, and a depletion region with a width of W in the grain is induced by the
trapped charge in the grain boundary. A potential barrier with a height of EB in the grain
boundary is induced by the trapped charge and the charge in the depletion region.

As shown in Figure 8b, the trapped charge in the grain boundary will be increased
from QB to Q′B according to the increase in defect density induced by grain-boundary
evolution. The depletion region in the grain will be increased from W to W′ subsequently.
And the height of the potential barrier in the grain boundary will be increased from EB
to E′B.
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Figure 8. The electron radiation effect on potential barrier of grain boundary in the energy band of
polycrystalline silicon: (a) before grain boundary evolution; (b) after grain boundary evolution.

The conductivity of polycrystalline silicon is significantly influenced by the potential
barrier, since the effective mobility of carriers is figured out by the potential barrier, as
shown in Equations (1) and (2) [11–16].

σ = nqµe f f (1)

µeff = Lq
(

1
2πm ∗ kT

) 1
2
e(−

EB
kT ) (2)

The effective mobility of carriers will decrease according to the increase in potential
barriers. The conductivity of polycrystalline silicon will decrease subsequently. The
grain-boundary evolution-induced potential barrier change will decrease the mobility of
polycrystalline silicon, and it will increase resistivity. This conclusion provides a theoretical
mechanism for the results of research on the electron irradiation-induced resistivity change
of polycrystalline silicon [9].

The increase in defect density and redistribution of defects due to the grain-boundary
evolution will also affect the trap-assisted tunneling (TAT) in polycrystalline silicon [17,18].
The influence of grain-boundary evolution on TAT needs further research.

The evolution of grain boundary will influence the effective mobility of carriers in
polycrystalline silicon, which is one of key factors in the conductivity mechanism of
polycrystalline silicon. Most of the energy deposition of electron irradiation is in the surface
of the polycrystalline silicon membrane, due to the small penetration depth of the electrons.
The vertical imbalance of energy deposition should be considered when the quantitative
analysis of the conductivity of polycrystalline silicon is performed.

5. Conclusions

Lattice-oriented selective TEM photography was performed to observe and locate
the boundary for further in situ observation. Grain-boundary evolution under electron
irradiation from 0 to 398 krad was observed in 200 snapshots of TEM figures. The grain-
boundary evolution is concluded as a small silicon grain turns into several smaller grains,
or amorphous silicon expands due to the amorphization of the small silicon grain. Both
grain-boundary evolutions tend to decrease the total volume of crystalline silicon within
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the grain boundary and increase the defect density within the grain boundary. The trapped
charge in the grain boundary will increase according to the increase in defect density, and
the depletion region in the grain will increase subsequently. The height of the potential
barrier will also increase. The conductivity of polycrystalline silicon will decrease due to
the decrease in the effective mobility of carriers induced by the higher potential barrier. The
grain-boundary evolution theory will help to explain the mechanism of radiation effects
on polycrystalline silicon in MEMS. Furthermore, the temperature environment can be
introduced in the TEM observation to study the radiation effects under multi-field coupling
and improve understanding of the grain-boundary evolution theory.
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