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Abstract: An easy, fast, inexpensive, and simple method utilizing a microshaper with a very small
knife nose is used to fabricate microconvex aspherical lenses. The microshaper is mounted on a
computer numerical control (CNC) machine. To achieve an accurately designed profile of the lens
surface, a cutter-path planning algorithm with compensation for knife interference is developed.
Exerting this algorithm in CNC machining, the microconvex aspheric surface is precisely scraped. To
verify the precise machining of the cutter path planning algorithm, three aspheric surfaces of conic
sections (ellipsoid, paraboloid, and hyperboloid) are successfully fabricated. The profiles scraped by
the microshaper agree well and precisely with the designed theoretical conic section curve. Using a
simple polishing method to make the machined surface smoother, the roughness is reduced from 143
and 346 nm to 52 and 44 nm for the path line direction and its transverse direction, respectively. The
micro-aspherical lenses have moderate machining properties using a simple polishing method. The
results show that the designed profiles of micro-aspheric convex lenses can be machined precisely
and efficiently by the microshaper with the cutter-path planning algorithm developed in this work.
From the image comparison formed by the aspherical and spherical microlenses, the aspherical
lenses provide a better image. It is feasible that the designed profile of the micro-aspherical lenses
with specific functions could be machined using the cutter-path planning algorithm developed
in this work.

Keywords: microsurface scraping; cutter-path planning; aspherical lenses; microshaper

1. Introduction

For the fast-growing and developing applications in sensing, communication, detec-
tion, etc., micro-optoelectromechanical systems (MOEMSs) [1,2] have become an important
category of micro-electromechanical systems (MEMS). For their physical characteristics of
tracking, collimating, and coupling lights [3–5], microlenses have become essential and
important components used in MOEMSs. They are utilized in imaging devices such as
cameras [6], confocal microscopes [7], and displays [8,9] due to their light focusing and col-
limation ability. Microlenses have also developed more specific and novel applications. The
microlenses are important components used in Mirau interferometers [10], scanners [11,12],
integrated photonic platform [13], vertical-cavity surface-emitting laser beam shaping [14],
telecommunications [15], data storage [16], biodetection [17], etc. Due to their important
role in MOEMSs, microlenses have recently been more widely discussed.

To fabricate microlenses, silicon-based micromachining is often used for its compati-
bility with integrated circuits (IC) and other components of MEMS. Based on silicon-based
micromachining, several techniques are developed. To fabricate microlenses, their surfaces
can be made by lithography with LIGA-like processes using excimer laser micromachin-
ing [18], combining reactive-ion etching (RIE) with modified parameters [19] and the reflow
method, solidification of injecting droplets [20], heating photoresist to liquid phase and
becoming curved by its capillary force [21], and using a cross-linked network of photoac-
tive polymers [22]. Among such fabricating methods, reflow techniques have become an
important process in the fabrication of microlenses. Therefore, reflow is widely used and
well-developed in microlenses’ fabrication using silicon-based micromachining. Through
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the reflow of different materials (photoresist [23], silicon dioxide [24], etc.) combined
with other silicon-based micromachining processes, microleneses and micro-optical and
communicating devices can be fabricated. For example, microlenses can be fabricated by
combining the dose-modulated lithography and reflow process [25]. Microleneses used
in the antenna-integrated heterodyne array with high frequency (THz) can be made by
reflow with RIE [26,27]. The microlenses can also be fabricated by reflow with nanoim-
print [28,29] or reflow combined with ultraviolet nanoimprint lithography and replica mold
processes [30], etc. For the afore-mentioned silicon-based micromachining methods, they
focus on the applications of microlenses. Although the lenses with quasi-spherical shapes
can be fabricated according to physical characteristics, by using these methods it is hard to
control the precise profile of the lenses. In addition, non-silicon-based micromachining can
be used to fabricate microlenses. Using a microshaper mounted on a three-axis computer
numerical control (CNC) machine, the spherical profiles of the microlenses can be ma-
chined [31]. The results show that the microlenses have precise profiles and focal lengths.
Traditionally, convex lenses often have spherical surfaces for their easily fabricating and
high yield. Therefore, the microlenses are also often made of spherical or quasi-spherical
profiles. However, spherical lenses have aberration problems and could cause blurry im-
ages. Instead of spherical lenses, the aspherical lenses can compensate for aberration for
better images. To fabricate micro-aspherical lenses using silicon-based micromachining,
the methods include electro-wetting [32–37], stamping [37,38], molding and hot form-
ing [39,40], hydraulic control [41], and electrostatic-force-modulation [42–44]. It is known
that silicon-based micromachining has its advantages in batch fabrication, mass produc-
tion, and integration with electronic components. The afore-mentioned works presented
aspherical lenses that can be fabricated using silicon-based micromachining. However,
their aspherical profiles are formed by using fabrication parameters and applying voltages.
They have no designed functions for the lens profiles. Therefore, the reported methods to
fabricate aspherical microlenses cannot control the precise shape and profile of the lenses. It
is hard to precisely fabricate design profiles with a specific function of the micro-aspherical
lens using silicon-based micromachining. However, microshapers mounted on CNC ma-
chines with cutter-path planning can scrape precise spherical profiles [31]. Furthermore,
this simple, easy, inexpensive, and quick non-silicon-based micromachining method can
make prototypes that need to be cyclically modified without preparing photomasks for
lithography and some processes need a vacuum environment. This method can save
fabricating time and costs for cyclic modifications and can help prototypes be tested and
designed. In this study, the microshaper mounted on a CNC machine is used to fabricate
micro-aspherical lenses. For machining the precisely designed profiles of micro-aspherical
lenses, the algorithm of cutter-path planning is significant. In this work, the cutter-path
planning algorithm is developed. The compensation algorithm to avoid knife interference
is also derived. With the cutter-path planning algorithm, the aspherical microlenses of conic
surfaces are precisely and successfully fabricated to verify the feasibility of the algorithm.
The machined profiles by microscraping agree well with the design profile equations. More-
over, the roughness, which is important for optical properties, can be diminished using
simple polishing [31]. In this work, the micro-aspherical lenses have moderate roughness
of 52 and 44 nm for path line direction and path line transverse direction, respectively. Fur-
thermore, the micro aspherical lenses have a better image. Therefore, precisely machining
a profile with a specific function using the algorithm of cutter-path planning developed in
this work is feasible.

2. Materials and Methods

In recent decades, machining using CNC machines has been well-developed. The
small or tiny components with micrometer dimensions can be fabricated using CNC
precision machining [1]. It is known that the most significant advantage of CNC machining
is its ability to manufacture complex curved surfaces. To manufacture three-dimensional
curved surfaces on a CNC machine, ball-end milling is an often-used method. It can
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efficiently machine complex profiles. The complex, curved three-dimensional structures
can be executed by the synchronous multi-axis movement of the ball-end milling of the CNC
machines [45–47]. However, some synchronous multi-axis CNC machines are expensive.
For easy and inexpensive machining, the three-axis CNC machine is chosen to fabricate
microlenses. Precisely machining complex curved surfaces could be achieved by cutter-
path planning [48–57]. For cutter-path planning methods, free-form surfaces machined by
CNC milling are well-investigated and have good performance [58]. It is chosen in this
work as the cutter-path-planning method. However, due to the limit of the knife radius in
ball-end milling, fabricating profiles of microcurved surfaces is a challenge for traditional
CNC milling. Therefore, in order to make microcurved surfaces on a CNC machine, finding
a specific knife is important. In this work, a microshaper is used to fabricate a microsurface.
The microshaper has a small knife nose. Due to the small nose size, the microshapers can
remove tiny material volumes and manufacture microcurved surfaces. This microshaper
has a small nose radius of 85 µm as shown in Figure 1. The material of this microshaper
is tungsten steel (tungsten carbide), which has adequate hardness, stiffness, and wear
resistance [59,60]. Therefore, ductile materials such as metal, polymer, plastic, etc., can
be scraped by this microshaper. Furthermore, if coating a diamond layer on the nose of
the knife tip, this knife could machine some brittle and hard materials [61]. In this work,
the machined material is polymethyl methacrylate (PMMA), used for its moderate optical
properties.
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Figure 1. The microshaper mounted on the CNC machine has a small nose radius on the knife edge.
(a) Photo of the microshaper. (b) SEM of the knife tip of microshaper. The tip of knife has diameter of
170 µm (radius of 85 µm).

Cutter-path planning has the most significant effect on machining proper surface
profiles. In traditional mechanical milling machining, the machining direction of the knife-
edge and machining path is orthogonal when removing or cutting materials. However,
for scraping materials using a microshaper, the machining path and machining direction
of the knife-edge are the same. Therefore, a cutter-path planning algorithm used for
microscraping needs to be developed. For cutter-path planning, the machined surfaces
would be considered parametric or nonparametric surfaces. Due to the cutting behaviors of
scraping being different from milling, a nonparametric surface is more suitable for the path
planning used in scraping using the microshaper [47]. In nonparametric path-planning, iso-
plane, iso-level, iso-scallop, and iso-parametric methods are developed [56]. Due to using a
three-axis CNC machine, the iso-plane cutter-path planning method is chosen for this work.
This method is also suitable for the specific cutting characteristics of the microshapers.

For the goal of a simple, easy, inexpensive, and quick machining method, the mi-
croshaper is mounted on an inexpensive three-axis CNC machine. As mentioned above,
the algorithm of cutter-path planning is significant for achieving precise machining profiles.
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To derive the algorithm of cutter-path planning, the model is expressed in Figure 2. The
feed direction is defined as x-coordinate. When the knife moves in the x-direction, the knife
also changes the scraping height (z-direction) synchronously. Therefore, the curve in each
path of the surface is machined. After machining in this path is finished, the knife is raised
and moved to the next adjacent path transversely along the y-direction. When the knife
is located at the beginning of the cutter path, the CNC machine will change the height of
the knife in the z-direction to a specific position calculated using the cutter-path planning
algorithm to execute the subsequentmachining. Furthermore, due to the mechanism of
the CNC machine, the assigned movements are called step size in the transverse (or path
interval) direction ∆y and step size in the cutter-path direction ∆x, respectively. The step
sizes are determined geometrically by line segments that are used to match curves, tip the
radius of the knife nose, and the surface curvatures and slopes, etc. Due to the iso-plane
method being used for path planning in this work, the cutting surface will be expressed
mathematically as:

z = z(x, y) (1)
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It is known that each path on the surface is a curve. However, the machining trajectory
of the knife is a line segment. This curve is combined with several line segments. Therefore,
the geometric relationship between the designed curve of machined surface profiles and
the knife dimensions is very important in cutter-path planning. Due to the curve being
machined using the knife with line segment trajectory, the cutter will move following a
series of steps that are composed of line segments. Therefore, the step sizes in cutter-path
planning must be expressed mathematically by the geometric relationship between the
dimensions of the knife and the designed machine profile. The step size ∆ (∆x or ∆y) can
be mathematically derived as shown in Figure 3. As shown in Figure 3, the relationship
between line segment and radius of curvature of the machined curve profile is

l = 2ρ sin
α

2
(2)
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in y-z plane. Where, ρ is the radius of

the curvature of the designed curved surface in x-z or y-z plane, α is the central angle be-
tween two steps, l is the line segments which compose the curved profiles of the machining
surface, and Si is the contact point of the knife and machined material in the ith step. The
step size can be expressed as:

∆ = l cos θ = l cos
(

tan−1
(

dz
dx

))
in x−z plane

= l cos
(

tan−1
(

dz
dy

))
in y−z plane

(3)

Furthermore, due to the dimensions of the knife, there will be interference between the
knife and the design surface, as shown in Figure 4. Therefore, it is necessary to compensate
for knife height (z-direction) in cutter-path planning. The compensation of knife height can
be executed by the cutter offset as shown in Figure 5. As shown in Figure 5, the designed
cutting point is S due to calculating from step size ∆. However, interference could happen.
Therefore, the cutting point in the microshaper must be point C. Moreover, the knife must
be raised until the tip of the knife’s nose reaches point L. From Figure 5, the cutter offset
needed to avoid interference is calculated:

δ = δ1 + δ2 (4)

where, δ1 = r( 1
cos θ − 1), δ2 = ρ

cos θ (
1

cos α − 1), θ = tan−1
(

dz
dx

)
in x-z plane, θ = tan−1

(
dz
dy

)
in y-z plane, and from Equation (2) α = tan−1

(
r
ρ tan θ

)
.
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Interference is not only happening in the profile of the curved surface (x-z and y-z
plane) but also in the boundary of the surface (x-y plane). As shown in Figure 6, if the
designed boundary of the curved surface is a circle with radius R0 (black curve in the
figure), the cutter path needs offsetting to compensate for the cutter interference. Therefore,
the practical boundary must become the boundary with cutter offsetting (the red curve in
this figure). As shown in Figure 6, the compensation of path direction (x-direction) δx,i is:

δx,i =
δ∗x
dz
dx

where δ∗x =

√
(R0 + r)2 − y2(i)−

√
R2

0 − y2(i) and y(i) = ∑ ∆y(i) (5)
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Moreover, the compensation in path interval direction (y-direction) happening in
path 0 and is denoted as δy,0:

δy,0 =
δ∗y
dz
dy

where δ∗y = r(1− cos θ) (6)
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In traditional CNC machining with path planning, the complex surfaces could be ma-
chined. For different surfaces, conic section surfaces are significant due to their mathematic
properties and wide applications. There are many applications in the macro world using
conic surfaces. For example, elliptic surfaces can be used in aspheric lenses. Parabolic
surfaces can be used to reflect the LED light. Furthermore, hyperbolic surfaces are used in
the heat dissipation of cooling towers. Therefore, the revolution of conic section profiles is
chosen as the curved surface of aspherical lenses to verify the feasibility of the algorithm. If
the surface is a revolution surface conic profile, the implicit surface can be expressed as:

z =
sq2

R +
√

R2 − (1 + k)q2
+ a1q2 + · · ·+ anq2n + · · · (7)

where, q =
√

x2 + y2 is the distance measured from the central axis, R is the radius of
curvature at the tip point of this revolution surface, k is the conic constant, and a1, . . . , and
an are the coefficients. If s = +1, this surface is concave. If s = −1, this surface is convex. The
types of conic sections are determined by the conic constant k. Figure 7 shows different
conic sections related to the values of k of Equation (7). From Figure 7, if k = −1, the surface
is a paraboloid. If k < −1, the surface is a hyperboloid. If k > −1, the surface is ellipsoid.
For micromachining of the conic section profiles, the high-order terms of Equation (7) are
small enough to be neglected. Equation (7) can be expressed as:

z =
sq2

R +
√

R2 − (1 + k)q2
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3. Results

For fabricating the micro-aspherical lenses, the microshaper is assembled on a three-
axis vertical milling machine (YEONG CHIN CNC-50, Taichung, Taiwan). A 1 mm-thick
PMMA substrate was used to manufacture the curved surfaces of the micro-aspherical
lenses on this substrate. Figure 8 illustrates the cross-sections of the micro-aspherical lenses
with different convex conic sections manufactured by the microshaper. Figure 8a illustrates
the cross-section of the oblate ellipsoid microlens. Its conic constant k is 10 and the radius
of the curvature at the tip point is R = 3 mm. Figure 8b displays the cross-section of the
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paraboloid microlens with R of 1 mm and k of−1. Figure 8c is the hyperboloid cross-section
microlens with R = 1 mm and k = −20.
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(R = 1 mm, k = −20).

The profiles of the conic sections are measured on the microscope with a scale grid on
the eyepiece. Figure 9 shows the image of the conic section observed on the microscope
with a scale grid on the eyepiece. We add a hyperboloid to compare the profile of the
machined convex surface. It shows that the profile of the microsurface is well-enveloped
by the hyperboloid.
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4. Discussion

Figure 10 shows the profile of the machined surface compared with the theoretical
profile calculated from Equation (8). The profile of the machined surface is measured
in the image saved from the microscope with a scale grid on the eyepiece, as shown in
Figure 9. Figure 10a shows the machined oblate elliptic curve compared to the theoretical
profile with R = 3 mm and k = 10. Figure 10b,c illustrate the comparison of the machined
parabolic curves of R = 1 mm and k = −1 and hyperbolic curves of R = 1 mm and k = −20
with theoretical curves, respectively. From the results, it is demonstrated that the profiles
of the three conic sections (oblate ellipsoid, paraboloid, and hyperboloid) machined by
the microshaper agree well with the theoretical profiles. The microscraping method with
cutter-path planning can machine precisely curved profiles. Therefore, it is proven that
the aspherical lenses with specific profiles can be successfully fabricated and have good
machined properties. It is noticed that the radius of the knife nose used in this work is larger
than the reference [31]. However, the results show that the machining profiles precisely
match the designed profiles. The significance of the cutter-path planning algorithm used in
micro-aspherical lens manufacturing is verified.
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Roughness is another important parameter that will affect the preciseness of machined
profiles. Due to the characteristics of CNC machining, there should be scallop-inducing
rough surfaces. Therefore, the machined surface needs further polishing. A surface
roughness (TR-200D, Beijing TIME High Technology Ltd., Beijing, China) measurement
instrument was used to measure the roughness of the machined surface. The roughness
in the y-direction is larger than in the x-direction. The average roughness Ra without
polishing in x-direction and y-direction are 143 and 346 nm, respectively. It is noticed that
the roughness magnitude in the y-direction is three times that of the value in the x-direction.
The anisotropic roughness is due to the larger scallop happening in the y-direction during
surface machining as shown in Figure 2. This magnitude of roughness could be a little large
for the requirements of optical devices. Therefore, further polishing is needed to reduce
the roughness. For PMMA, it can be polished using a simple method. Only by spreading
toothpaste on a soft cloth and polishing the surfaces, will the roughness reduce to 44 nm
and 52 nm in x- and y-direction, respectively. It is also noticed that these magnitudes of
roughness are much smaller, and the roughness becomes isotropic. Figure 11 shows the
profiles of the lens before and after polishing with toothpaste. It shows that before polishing,
the profile has some scallops and that after polishing the profile becomes smoother.
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It is known that aspherical lenses can compensate for aberration to obtain better
images [44]. The image comparison between aspherical and spherical microlenses is
discussed. Figure 12 shows the setup to observe image formation. The results are illustrated
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in Figure 13. Figure 13a is the sample image without a lens observed on the microscope.
Figure 13b illustrates the image formed by the microspherical lens (R = 4 mm, k = 0) on
the microscope. Figure 13c is the image formed by the micro-ellipsoid lens (R = 4 mm,
k = −0.5) on the microscope. Figure 13d is the image formed by the micro-paraboloid lens
(R = 4 mm, k = −1) on the microscope. It shows that the aspherical microlenses have better
images than the spherical microlenses. Particularly on the edges of the lenses where the
aberration would happen, the images formed by the aspherical microlenses have smaller
distortions than the images formed by the spherical microlenses (as indicated by the red
circle in Figure 13b).

Micromachines 2022, 13, x FOR PEER REVIEW 12 of 16 
 

 

It is known that aspherical lenses can compensate for aberration to obtain better images 
[44]. The image comparison between aspherical and spherical microlenses is discussed. 
Figure 12 shows the setup to observe image formation. The results are illustrated in Fig-
ure 13. Figure 13a is the sample image without a lens observed on the microscope. Fig-
ure 13b illustrates the image formed by the microspherical lens (R = 4 mm, k = 0) on the 
microscope. Figure 13c is the image formed by the micro-ellipsoid lens (R = 4 mm, k = 
−0.5) on the microscope. Figure 13d is the image formed by the micro-paraboloid lens (R 
= 4 mm, k = −1) on the microscope. It shows that the aspherical microlenses have better 
images than the spherical microlenses. Particularly on the edges of the lenses where the 
aberration would happen, the images formed by the aspherical microlenses have smaller 
distortions than the images formed by the spherical microlenses (as indicated by the red 
circle in Figure 13b). 

 
Figure 12. Setup of observing image formation by the microlens. 

  
(a) (b) 

  
© (d) 

Figure 13. Image comparison. (a) Sample image observed on the microscope without a lens, (b) 
image formed by the microspherical lens (R = 4 mm, k = 0) on the microscope, (c) image formed by 
the micro-aspherical lens (R = 4 mm, k = −0.5) on the microscope, (d) image formed by the micro-
spherical lens (R = 4 mm, k = −1) on the microscope. 

Figure 12. Setup of observing image formation by the microlens.

Micromachines 2022, 13, x FOR PEER REVIEW 12 of 16 
 

 

It is known that aspherical lenses can compensate for aberration to obtain better images 
[44]. The image comparison between aspherical and spherical microlenses is discussed. 
Figure 12 shows the setup to observe image formation. The results are illustrated in Fig-
ure 13. Figure 13a is the sample image without a lens observed on the microscope. Fig-
ure 13b illustrates the image formed by the microspherical lens (R = 4 mm, k = 0) on the 
microscope. Figure 13c is the image formed by the micro-ellipsoid lens (R = 4 mm, k = 
−0.5) on the microscope. Figure 13d is the image formed by the micro-paraboloid lens (R 
= 4 mm, k = −1) on the microscope. It shows that the aspherical microlenses have better 
images than the spherical microlenses. Particularly on the edges of the lenses where the 
aberration would happen, the images formed by the aspherical microlenses have smaller 
distortions than the images formed by the spherical microlenses (as indicated by the red 
circle in Figure 13b). 

 
Figure 12. Setup of observing image formation by the microlens. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Image comparison. (a) Sample image observed on the microscope without a lens, (b) 
image formed by the microspherical lens (R = 4 mm, k = 0) on the microscope, (c) image formed by 
the micro-aspherical lens (R = 4 mm, k = −0.5) on the microscope, (d) image formed by the micro-
spherical lens (R = 4 mm, k = −1) on the microscope. 

Figure 13. Image comparison. (a) Sample image observed on the microscope without a lens,
(b) image formed by the microspherical lens (R = 4 mm, k = 0) on the microscope, (c) image formed
by the micro-aspherical lens (R = 4 mm, k = −0.5) on the microscope, (d) image formed by the
microspherical lens (R = 4 mm, k = −1) on the microscope.
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5. Conclusions

A microshaper mounted on a CNC machine is used to fabricate microconvex aspherical
lenses. For precisely scraping convex aspheric surfaces, cutter-path planning is exerted.
The cutter-path planning algorithm with interference compensation is developed. Three
convex aspherical microlenses with conic section (ellipsoid, paraboloid, and hyperboloid)
surfaces are successfully fabricated. The machined profiles of the aspherical microlenses
by the microshaper agree well and precisely with the designed theoretical conic section
curves. The machined roughness can quietly diminish by using a simple polishing method.
The roughness could reduce from 143 and 346 nm before polishing to 52 and 44 nm in
path line direction and path interval direction, respectively. The image results show that
the micro-aspherical lenses have better image formation than the microspherical lenses.
The feasibility of precisely machining a designed profile with a specific function using the
cutter-path planning algorithm developed in this work has been proven.
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Appendix A

Substituting the implicit function of conic section profiles expressed in Equation (A8)
into Equations (A2) and (A3), some derivatives can be expressed as

dz
dx

=
2sqQ− (1+k)sq3

Q

Q2
x√

x2 + y2
(A1)

dz
dy

=
2sqQ− (1+k)sq3

Q

Q2
y√

x2 + y2
(A2)

d2z
dx2 =
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Q4

x√
x2 + y2

+
2SqQ− (1+k)sq3
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where Q = R +
√

R2 − (1 + k)q2 and A = [2sQ3 − 5(1 + k)sq2Q + (1+k)2sq4

Q ] − 2[2sqQ−
(1+k)sq3

Q ](1 + k)q. Therefore, the radius of curvature r can be expressed as in an x-z plane.
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The step size is

∆x = l cos θ = l cos

tan−1

2sqQ− (1+k)sq3

Q

Q2
x√

x2 + y2

 (A6)

in y-z plane
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The step size is ∆y = l cos θ = l cos

tan−1

2sqQ− (1+k)sq3
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y√

x2 + y2

 (A8)
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