Memristive Cluster Based Compact High-Density Nonvolatile Memory Design and Application for Image Storage
Abstract
:1. Introduction
2. DSAM Model
3. A Memristive Cluster Based 4-Bit Crossbar Array Memory
3.1. Memristive Cluster
3.2. 1T4M Nonvolatile Memory Cell
3.2.1. Write Operation
3.2.2. Read Operation
3.3. Memristor Crossbar Array Design
4. Memristor Crossbar Array in Image Storage
5. Simulation
5.1. Write Simulation
5.2. Read Simulation
5.3. Energy Consumption Simulation
5.4. Image Storage Simulation
5.5. Sneak Path Current Analysis
5.6. Density
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
the minimum resistance of the memristor | |
the maximum resistance of the memristor | |
of the ith memristor in the memory cell | |
of the ith memristor in the memory cell | |
the resistance of the ith memristor | |
the resistance of the previous state | |
the ith memristor in the memory cell | |
the total resistance of the memory cell | |
write operation voltage | |
threshold voltage of the ith memristor |
References
- Leon, C. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Wang, C.; Sun, Y.; Zhou, C.; Lin, H. Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations. Appl. Math. Comput. 2020, 386, 125483. [Google Scholar] [CrossRef]
- Hong, Q.; Yan, R.; Wang, C.; Sun, J. Memristive circuit implementation of biological nonassociative learning mechanism and its applications. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1036–1050. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, L.; Sun, J.; Yao, W. Memristor-based neural networks with weight simultaneous perturbation training. Nonlinear Dyn. 2019, 95, 2893–2906. [Google Scholar] [CrossRef]
- Parastesh, F.; Jafari, S.; Azarnoush, H.; Hatef, B.; Namazi, H.; Dudkowski, D. Chimera in a network of memristor-based Hopfield neural network. Eur. Phys. J. Spec. Top. 2019, 228, 2023–2033. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Hong, Q.; Sun, Y. A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3472–3476. [Google Scholar] [CrossRef]
- Xu, C.; Wang, C.; Jiang, J.; Sun, J.; Lin, H. Memristive Circuit Implementation of Context-Dependent Emotional Learning Network and Its Application in Multi-Task. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2021. [Google Scholar] [CrossRef]
- Rohani, S.G.; Taherinejad, N.; Radakovits, D. A semiparallel full-adder in imply logic. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 297–301. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-based material implication (IMPLY) logic: Design principles and methodologies. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 2054–2066. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Chen, C.; Sun, Y.; Zhou, C.; Xu, C.; Hong, Q. Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 68, 3397–3410. [Google Scholar] [CrossRef]
- Xu, C.; Wang, C.; Sun, Y.; Hong, Q.; Deng, Q.; Chen, H. Memristor-based neural network circuit with weighted sum simultaneous perturbation training and its applications. Neurocomputing 2021, 462, 581–590. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Belousov, D.; Liman, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. MAGIC—Memristor-aided logic. IEEE Trans. Circuits Syst. II Express Briefs Express Briefs 2014, 61, 895–899. [Google Scholar] [CrossRef]
- Guckert, L.; Swartzlander, E.E. Optimized memristor-based multipliers. IEEE Trans. Circuits Syst. II Regul. Pap. 2017, 64, 373–385. [Google Scholar] [CrossRef]
- Hong, Q.; Shi, Z.; Sun, J.; Du, S. Memristive self-learning logic circuit with application to encoder and decoder. Neural Comput. Appl. 2020, 33, 4901–4913. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, G.; Bao, H. Bursting oscillations and coexisting attractors in a simple memristor-capacitor-based chaotic circuit. Nonlinear Dyn. 2019, 97, 1477–1494. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, C.; Zhang, X. A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013141. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Yu, F.; Xu, C.; Hong, Q.; Yao, W.; Sun, Y. An Extremely Simple Multiwing Chaotic System: Dynamics Analysis, Encryption Application, and Hardware Implementation. IEEE Trans. Ind. Electron. 2021, 68, 12708–12719. [Google Scholar] [CrossRef]
- Wenli, X.; Chunhua, W.; Hairong, L. A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 2021, 104, 4523–4541. [Google Scholar]
- Lin, H.; Wang, C.; Deng, Q.; Xu, C.; Deng, Z.; Zhou, C. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 2021, 106, 959–973. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, M.; Wang, C.; Wang, S.; Xu, C. Image segmentation encryption algorithm with chaotic sequence generation participated by cipher and multi-feedback loops. Multimed. Tools Appl. 2021, 80, 13821–13840. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, C.; Xu, C. A novel hyper-chaotic image encryption scheme based on quantum genetic algorithm and compressive sensing. Multimed. Tools Appl. 2020, 79, 29243–29263. [Google Scholar] [CrossRef]
- Minjun, Z.; Chunhua, W. A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal Process. 2020, 171, 107484. [Google Scholar]
- Zhou, L.; Wang, C.; Zhou, L. A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor. Int. J. Circuit Theory Appl. 2018, 46, 84–98. [Google Scholar] [CrossRef]
- Ling, Z.; Chunhua, W.; Lili, Z. Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. 2016, 85, 2653–2663. [Google Scholar]
- Zhang, X.; Wang, C. A novel multi-attractor period multi-scroll chaotic integrated circuit based on CMOS wide adjustable CCCII. IEEE Access 2019, 7, 16336–16350. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, L.; Wu, R. The design and realization of a hyper-chaotic circuit based on a flux-controlled memristor with linear memductance. J. Circuits Syst. Comput. 2018, 27, 1850038. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Gao, Z.; Xue, Y.; Dou, G.; Li, Y. Dynamics of a physical SBT memristor-based Wien-bridge circuit. Nonlinear Dyn. 2018, 93, 1681–1693. [Google Scholar] [CrossRef]
- Xue, W.; Li, Y.; Liu, G.; Wang, Z.; Xiao, W.; Jiang, K.; Zhong, Z.; Gao, S.; Ding, J.; Miao, X. Controllable and stable quantized conductance states in a Pt/HfOx/ITO memristor. Adv. Electron. Mater. 2020, 6, 1901055. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. TEAM: ThrEshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 211–221. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 786–790. [Google Scholar] [CrossRef]
- Fu, H.; Hong, Q.; Wang, C.; Sun, J.; Li, Y. Solving Non-Homogeneous Linear Ordinary Differential Equations Using Memristor-Capacitor Circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4495–4507. [Google Scholar] [CrossRef]
- Kim, H.; Sah, M.P.; Yang, C.; Chua, L.O. Memristor-based multilevel memory. In Proceedings of the 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010), Berkeley, CA, USA, 3–5 February 2010; pp. 1–6. [Google Scholar]
- Sakib, M.N.; Hassan, R.; Biswas, S.N.; Das, S.R. Memristor-based high-speed memory cell with stable successive read operation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 1037–1049. [Google Scholar] [CrossRef]
- Zangeneh, M.; Joshi, A. Design and optimization of nonvolatile multibit 1T1R resistive RAM. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 1815–1828. [Google Scholar] [CrossRef]
- Lehtonen, E.; Poikonen, J.H.; Laiho, M.; Kanerva, P. Large-scale memristive associative memories. IEEE Trans. Very Large Scale Integr. Syst. 2013, 22, 562–574. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Liu, H.; Zeng, Z. A compact scheme of reading and writing for memristor-based multivalued memory. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 1505–1509. [Google Scholar] [CrossRef]
- Sun, J.; Li, M.; Kang, K.; Zhu, P.; Sun, Y. Design of Heterogeneous Memristor Based 1T2M Multi-value Memory Crossbar Array. J. Electron. Inf. Tech Nology 2021, 43, 1533–1540. [Google Scholar]
- Teimoori, M.; Amirsoleimani, A.; Ahmadi, A.; Ahmadi, M. A 2M1M crossbar architecture: Memory. IEEE Trans. Very Large Scale Integr. Syst. 2018, 26, 2608–2618. [Google Scholar] [CrossRef]
- Sun, J.; Kang, K.; Sun, Y.; Hong, Q.; Wang, C. A Multi-Value 3D Crossbar Array Nonvolatile Memory Based on Pure Memristors. Eur. Phys. J. Spec. Top. 2022. [Google Scholar] [CrossRef]
M1 | M2 | M3 | M4 | Logic Value |
---|---|---|---|---|
0000 | ||||
0001 | ||||
0010 | ||||
0011 | ||||
0100 | ||||
0101 | ||||
0110 | ||||
0111 | ||||
1000 | ||||
1001 | ||||
1010 | ||||
1011 | ||||
1100 | ||||
1101 | ||||
1110 | ||||
1111 |
Logic Value | G | I | ||||
---|---|---|---|---|---|---|
0000 | ||||||
0001 | ||||||
0010 | ||||||
0011 | ||||||
0100 | ||||||
0101 | ||||||
0110 | ||||||
0111 | ||||||
1000 | ||||||
1001 | ||||||
1010 | ||||||
1011 | ||||||
1100 | ||||||
1101 | ||||||
1110 | ||||||
1111 |
a | p | (KΩ) | (MΩ) | |||||
---|---|---|---|---|---|---|---|---|
M1 | 2.1 | 1.8 | 8000 | 5000 | 10 | 20 | 1 | −1 |
M2 | 2.1 | 1.8 | 8000 | 5000 | 20 | 20 | 2 | −2 |
M3 | 2.1 | 1.8 | 8000 | 5000 | 40 | 20 | 4 | −4 |
M4 | 2.1 | 1.8 | 8000 | 5000 | 80 | 20 | 8 | −8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Jiang, M.; Zhou, Q.; Wang, C.; Sun, Y. Memristive Cluster Based Compact High-Density Nonvolatile Memory Design and Application for Image Storage. Micromachines 2022, 13, 844. https://doi.org/10.3390/mi13060844
Sun J, Jiang M, Zhou Q, Wang C, Sun Y. Memristive Cluster Based Compact High-Density Nonvolatile Memory Design and Application for Image Storage. Micromachines. 2022; 13(6):844. https://doi.org/10.3390/mi13060844
Chicago/Turabian StyleSun, Jingru, Meiqi Jiang, Qi Zhou, Chunhua Wang, and Yichuang Sun. 2022. "Memristive Cluster Based Compact High-Density Nonvolatile Memory Design and Application for Image Storage" Micromachines 13, no. 6: 844. https://doi.org/10.3390/mi13060844
APA StyleSun, J., Jiang, M., Zhou, Q., Wang, C., & Sun, Y. (2022). Memristive Cluster Based Compact High-Density Nonvolatile Memory Design and Application for Image Storage. Micromachines, 13(6), 844. https://doi.org/10.3390/mi13060844