Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices
Abstract
:1. Introduction
2. Design and Fabrication
3. Evaluation and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, D.H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J.A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 2010, 22, 2108–2124. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammock, M.L.; Chortos, A.; Tee, B.C.-K.; Tok, J.B.-H.; Bao, Z. 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038. [Google Scholar] [CrossRef] [PubMed]
- Rich, S.I.; Jiang, Z.; Fukuda, K.; Someya, T. Well-rounded devices: The fabrication of electronics on curved surfaces—A review. Mater. Horiz. 2021, 8, 1926. [Google Scholar] [CrossRef]
- Zhai, Z.; Wu, L.; Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 2021, 8, 041319. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Zhang, X.; Li, Z.-Y.; Li, J. Kirigami/origami: Unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding”. Light Sci. Appl. 2020, 9, 75. [Google Scholar] [CrossRef]
- Miyashita, S.; Meeker, L.; Tolley, M.T.; Wood, R.J.; Rus, D. Self-folding miniature elastic electric devices. Smart Mater. Struct. 2014, 23, 094005. [Google Scholar] [CrossRef]
- Iwata, Y.; Iwase, E. Stress-free stretchable electronic device using folding deformation. In Proceedings of the 30th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2017), Las Vegas, NV, USA, 25–26 January 2017; pp. 231–234. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Deng, Y.; Hong, W.; Yu, H. Miura-ori enabled stretchable circuit boards. NPJ Flex. Electron. 2021, 5, 3. [Google Scholar] [CrossRef]
- Fukuie, K.; Iwata, Y.; Iwase, E. Design of substrate stretchability using origami-like folding deformation for flexible thermoelectric generator. Micromachines 2018, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Akuto, M.; Iwase, E. An origami heat radiation fin for use in a stretchable thermoelectric generator. Micromachines 2020, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Hung, H.; Tu, H.; Liang, H.; Liang, M.; Song, Z.; Xu, Y.; Jiang, H.; Yu, H. Origami-enabled deformable silicon solar cells. Appl. Phys. Lett. 2014, 104, 083501. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C.K.; Yu, H.; Jiang, H. Origami lithium-ion batteries. Nat. Commun. 2014, 5, 3140. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.; Lin, L.; Guo, H.; Wang, Z.L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 2016, 10, 4652–4659. [Google Scholar] [CrossRef]
- Lamoureux, A.; Lee, K.; Shlian, M.; Forrest, S.R.; Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 2015, 6, 8092. [Google Scholar] [CrossRef]
- Green, P.W.; Syms, R.R.A.; Yeatman, E.M. Demonstration of three-dimensional microstructure self-assembly. J. Microelectromech. Syst. 1995, 4, 170–176. [Google Scholar] [CrossRef]
- Leong, T.G.; Lester, P.A.; Koh, T.L.; Call, E.K.; Gracias, D.H. Surface tension-driven self-folding polyhedra. Langmuir 2007, 23, 8747–8751. [Google Scholar] [CrossRef]
- Leong, T.G.; Benson, B.R.; Call, E.K.; Gracias, D.H. Thin film stress driven self-folding of microstructured containers. Small 2008, 4, 1605–1609. [Google Scholar] [CrossRef]
- Yi, Y.W.; Liu, C. Magnetic actuation of hinged microstructures. J. Microelectromech. Syst. 1999, 8, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Judy, J.W.; Muller, R.S. Magnetically actuated, addressable microstructures. J. Microelectromech. Syst. 1997, 6, 249–255. [Google Scholar] [CrossRef]
- Iwase, E.; Shimoyama, I. A Design method for out-of-plane structures by multi-step magnetic self-assembly. Sens. Actuators A-Phys. 2006, 127, 310–315. [Google Scholar] [CrossRef]
- Kim, Y.; Yuk, H.; Zhao, R.; Chester, S.A.; Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018, 558, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Na, J.H.; Evans, A.A.; Bae, J.; Chiappelli, M.C.; Santangelo, C.D.; Lang, R.J.; Hull, T.C.; Hayward, R.C. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 2015, 27, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; He, H.; Hansford, D.J.; Lee, L.J. Self-folding of three-dimensional hydrogel microstructures. J. Phys. Chem. B 2005, 109, 23134–23137. [Google Scholar] [CrossRef] [PubMed]
- Iwata, Y.; Miyashita, S.; Iwase, E. Self-rolling up micro 3d structures using temperature-responsive hydrogel sheet. J. Microeng. Micromech. 2017, 27, 124003. [Google Scholar] [CrossRef] [Green Version]
- Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. A method for building self-folding machines. Science 2014, 345, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Gomez, A.; Shin, M. 3D structure development using a three-layer self-folding technology. J. Mech. Sci. Technol. 2018, 32, 3107–3114. [Google Scholar] [CrossRef]
- An, B.; Miyashita, S.; Tolley, M.T.; Aukes, D.M.; Meeker, L.; Demaine, E.D.; Demaine, M.L.; Wood, R.J.; Rus, D. An end-to-end approach to making self-folded 3d surface shapes by uniform heating. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1466–1473. [Google Scholar] [CrossRef]
- Tolley, M.T.; Felton, S.M.; Miyashita, S.; Aukes, D.; Rus, D.; Wood, R.J. Self-folding origami: Shape memory composites activated by uniform heating. Smart Mater. Struct. 2014, 23, 094006. [Google Scholar] [CrossRef]
- Miyashita, S.; Guitron, S.; Ludersdorfer, M.; Sung, C.R.; Rus, D. An untethered miniature origami robot that self-folds, walks, swims, and degrades. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1490–1496. [Google Scholar] [CrossRef] [Green Version]
- Felton, S.M.; Tolley, M.T.; Onal, C.D.; Rus, D.; Wood, R.J. Robot Self-assembly by folding: A printed inchworm robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 277–282. [Google Scholar] [CrossRef]
- Felton, S.M.; Tolley, M.T.; Wood, R.J. Mechanically programmed self-folding at the millimeter scale. IEEE Int. Conf. Autom. Sci. Eng. 2014, 1232–1237. [Google Scholar] [CrossRef]
- Bassik, N.; Stern, G.M.; Gracias, D.H. Microassembly based on hands free origami with bidirectional curvature. Appl. Phys. Lett. 2009, 95, 091901. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Birla, M.; Oldham, K.R.; Filipov, E.T. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing. Adv. Funct. Mater. 2020, 30, 2003741. [Google Scholar] [CrossRef]
- Suto, K.; Adachi, A.; Tachi, T.; Yamaguchi, Y. An edge extrusion-approach to generate extruded miura-ori and its double tiling origami patterns. arXiv 2018, arXiv:1810.04625. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eda, A.; Yasuga, H.; Sato, T.; Sato, Y.; Suto, K.; Tachi, T.; Iwase, E. Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices. Micromachines 2022, 13, 907. https://doi.org/10.3390/mi13060907
Eda A, Yasuga H, Sato T, Sato Y, Suto K, Tachi T, Iwase E. Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices. Micromachines. 2022; 13(6):907. https://doi.org/10.3390/mi13060907
Chicago/Turabian StyleEda, Atsushi, Hiroki Yasuga, Takashi Sato, Yusuke Sato, Kai Suto, Tomohiro Tachi, and Eiji Iwase. 2022. "Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices" Micromachines 13, no. 6: 907. https://doi.org/10.3390/mi13060907
APA StyleEda, A., Yasuga, H., Sato, T., Sato, Y., Suto, K., Tachi, T., & Iwase, E. (2022). Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices. Micromachines, 13(6), 907. https://doi.org/10.3390/mi13060907