Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of In2Se3 Nanosheets
2.3. Fabrication of In2Se3 Thin Films
2.4. Fabrication of In2Se3 FETs
3. Results
3.1. Synthesis and Characterizations of In2Se3 Nanosheets
3.2. LbL Assembled In2Se3 Thin Films
3.3. Performance of FETs from Electrochemically Exfoliated In2Se3 Nanosheets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y.-G.; Zhang, D.W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.H.; Sun, Y.F.; Li, X.F.; Borys, N.J.; Yuan, H.T.; Fullerton-Shirey, S.K.; et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001. [Google Scholar] [CrossRef]
- Chen, X.; Xie, Y.; Sheng, Y.; Tang, H.; Wang, Z.; Wang, Y.; Wang, Y.; Liao, F.; Ma, J.; Guo, X.; et al. Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 2021, 12, 5953. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Guo, W.; Ma, L.; Li, W.; Yu, Z.; Han, Z.; Gao, S.; Liu, L.; Fan, D.; Wang, Z.; et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X.; Wang, G.; He, C.; Xie, L.; et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–361. [Google Scholar] [CrossRef]
- Gao, X.; Bian, G.; Zhu, J. Electronics from solution-processed 2D semiconductors. J. Mater. Chem. C 2019, 7, 12835–12861. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, Y.; Duan, X. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378–388. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Adv. Funct. Mater. 2019, 29, 1902171. [Google Scholar] [CrossRef]
- Wang, N.; Mao, N.; Wang, Z.; Yang, X.; Zhou, X.; Liu, H.; Qiao, S.; Lei, X.; Wang, J.; Xu, H.; et al. Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism. Adv. Mater. 2020, 33, 2005815. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wan, Z.; Song, F.; Huang, B.; Jia, C.; Qian, Q.; Kang, J.S.; Wu, Y.; Yan, X.; Peng, L.; et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 2021, 7, 1887–1902. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Halim, U.; Ding, M.; Liu, Y.; Wang, Y.; Jia, C.; Chen, P.; Duan, X.; Wang, C.; et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, P.; Zhao, J.; Vaklinova, K.; Zhao, X.; Li, Z.; Qiu, Z.; Wang, Z.; Lin, L.; Zhao, M.; et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 2020, 20, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yin, J.; Bian, G.; Liu, H.-Y.; Wang, C.-P.; Pang, X.-X.; Zhu, J. High-mobility patternable MoS2 percolating nanofilms. Nano Res. 2021, 14, 2255–2263. [Google Scholar] [CrossRef]
- Shi, H.; Li, M.; Shaygan Nia, A.; Wang, M.; Park, S.; Zhang, Z.; Lohe, M.R.; Yang, S.; Feng, X. Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics. Adv. Mater. 2020, 32, 1907244. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X.; Kim, J.-G.; Yoo, S.J.; Uher, C.; Kotov, N.A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–64. [Google Scholar] [CrossRef]
- Wu, J.; Antaris, A.; Gong, M.; Dai, H. Top-down patterning and self-assembly for regular arrays of semiconducting single-walled carbon nanotubes. Adv. Mater. 2014, 26, 6151–6156. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Geier, M.L.; McMorrow, J.J.; Jariwala, D.; Beck, M.E.; Huang, W.; Marks, T.J.; Hersam, M.C. Layer-by-Layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv. Mater. 2016, 28, 63–68. [Google Scholar] [CrossRef]
- Zhu, J.; Kang, J.; Kang, J.; Jariwala, D.; Wood, J.D.; Seo, J.-W.T.; Chen, K.-S.; Marks, T.J.; Hersam, M.C. Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets. Nano Lett. 2015, 15, 7029–7036. [Google Scholar] [CrossRef]
- Richardson, J.J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, 2491–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; He, Q.; Halim, U.; Liu, Y.; Zhu, E.; Lin, Z.; Xiao, H.; Duan, X.; Feng, Z.; Cheng, R.; et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Yin, J.; Gao, X.; Zhao, S.; Bian, G.; Li, J.; Wang, C.-P.; Zhu, J. Scalable submicron channel fabrication by suspended nanofiber lithography for short-channel field-effect transistors. Adv. Funct. Mater. 2021, 32, 2109254. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Shu, J.; Liu, B.; Yin, J.; Guan, C.; Han, Y.; Gao, S.; Chen, Q. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 2015, 106, 103109. [Google Scholar] [CrossRef]
- Island, J.O.; Blanter, S.I.; Buscema, M.; van der Zant, H.S.J.; Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 2015, 15, 7853–7858. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Dutta, D.; Mohapatra, P.K.; Dezanashvili, L.; Ismach, A.; Koren, E. Scalable integration of coplanar heterojunction monolithic devices on two-dimensional In2Se3. ACS Nano 2020, 14, 17543–17553. [Google Scholar] [CrossRef]
- Feng, W.; Gao, F.; Hu, Y.; Dai, M.; Liu, H.; Wang, L.; Hu, P. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 27584–27588. [Google Scholar] [CrossRef]
- Feng, W.; Gao, F.; Hu, Y.; Dai, M.; Li, H.; Wang, L.; Hu, P. High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional In2Se3 nanosheets. Nanotechnology 2018, 29, 445205. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, Q.; Lv, D.; Sun, L.; Niu, L.; Fu, W.; Liu, F.; Shen, Z.; Jin, C.; Liu, Z. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 2015, 15, 6400–6405. [Google Scholar] [CrossRef]
Preparation Methods | Mobility (cm2 V−1 s−1) | On/Off Ratio | Reference |
---|---|---|---|
Mechanically exfoliated In2Se3 flake | 30 | 105 | [25] |
Mechanically exfoliated In2Se3 flake | 1.26 | 500 | [27] |
CVD-grown In2Se3 thin film | 2.51 × 10−3 | 12 | [26] |
CVD-grown In2Se3 thin film | 1 | 103 | [28] |
PVD-grown p type In2Se3 flake | 2.5 | 103 | [29] |
Spin-coated In2Se3 thin film | 0.2 | 105 | [12] |
Electrochemically exfoliated In2Se3 flake | 12.8 | 1.5 × 103 | This work |
LbL-assembled In2Se3 thin film | 0.4 | 7 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Liu, H.-Y.; Zhang, J.; Zhu, J.; Chang, J.; Hao, Y. Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets. Micromachines 2022, 13, 956. https://doi.org/10.3390/mi13060956
Gao X, Liu H-Y, Zhang J, Zhu J, Chang J, Hao Y. Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets. Micromachines. 2022; 13(6):956. https://doi.org/10.3390/mi13060956
Chicago/Turabian StyleGao, Xiangxiang, Hai-Yang Liu, Jincheng Zhang, Jian Zhu, Jingjing Chang, and Yue Hao. 2022. "Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets" Micromachines 13, no. 6: 956. https://doi.org/10.3390/mi13060956
APA StyleGao, X., Liu, H. -Y., Zhang, J., Zhu, J., Chang, J., & Hao, Y. (2022). Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets. Micromachines, 13(6), 956. https://doi.org/10.3390/mi13060956