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Abstract: The existence of clearance causes contact-impact forces in joints, which lead to surface
wear and incessant material loss of the joint surface during the motion of mechanisms. In this work,
the wear characteristics of dry revolute clearance joints in planar mechanisms are studied using a
computational methodology. The normal contact force model and the tangential friction force model
are established to describe the contact-impact in clearance joints. Then, the dynamic wear model
based on the Archard’s wear model is established to predict the wear characteristics of clearance
joints in mechanisms. The dynamic wear depths of clearance joints are obtained in two steps. The first
step is the dynamics analysis of mechanisms to obtain the contact and sliding characteristics between
the bearing and journal in the clearance joint. The second step is the dynamic wear depth analysis of
clearance joints based on dynamic Archard’s wear model. Finally, a planar slider-crank mechanism
with two revolute clearance joints between the connecting rod and its adjacent links is used as the
implement example. Different case studies are performed to investigate the wear characteristics of
clearance joints in mechanical systems.

Keywords: clearance joint; contact and friction; wear; planar mechanism; dynamics characteristics

1. Introduction

Clearance in joints of mechanisms is unavoidable due to assemblage, manufacturing
errors and wear. Joint clearance reduces the motion accuracy, causes vibration, induces joint
wear and affects the dynamic performances of mechanical systems. In the past decades,
many works of studying the dynamic responses of mechanisms with clearances analytically
and experimentally have been implemented [1–10].

Khemili and Romdhane [11] presented an investigation on dynamics modeling and
analysis of a slider-crank mechanism considering a planar revolute clearance joint based
on ADAMS software and experimental tests. Erkaya et al. [12] presented a study on de-
creasing deviations arising from a clearance joint in planar linkage mechanisms by a neural
network-genetic algorithm procedure. Muvengei et al. [13] investigated dynamics and
motion modes of a slider-crank mechanism with two planar revolute clearance joints. Bai
and Sun [14] studied dynamic responses of a planar mechanism system including three
planar revolute clearance joints. The effects of multi-clearance joints on dynamic charac-
teristics are discussed. Wang et al. [15] presented a non-penetration approach of frictional
contact analysis for modeling revolute clearance joints of planar rigid multibody mechani-
cal systems. Tan et al. [16] investigated effects of friction on dynamic behavior of a planar
slider-crankmechanism considering revolute joints with radial clearance using the LuGre
friction model. Liu and Bai [17] investigated clearance effects on dynamic responses of a
space robot manipulator with planar revolute clearance joints between manipulator arms.
Salahshoor et al. [18] studied the effect of joint stiffness on vibration behaviors of a typical
slider-crank mechanism with a flexible component and joint clearances. Zhan et al. [19]
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presented a unified motion reliability analysis method for general planar parallel manipula-
tors of PPMs with interval clearance variables of revolute and prismatic joints. Two typical
types of PPMs are presented to perform analysis. Also, recently, researchers have been
focused on the effects of 3D revolute clearance joints [20–23]. All of the research indicated
that clearance leads to contact and impact in joints, which will lead to significant effects on
dynamic responses of mechanical systems.

Consequently, the contact and impact forces in clearance joints will lead to surface
wear and incessant material loss of joint elements during the motion of mechanisms.
Mukras [24–26] investigated the wear characteristics of clearance joints theoretically and
experimentally. The wear analysis was based on the Archard wear model using a nonlinear
finite element analysis method. The dynamic wear phenomenon of clearance joint in slider-
crank mechanisms was investigated for different clearance shapes and sizes. Zhao et al. [27]
studied the wear characteristics of revolute clearance joints in flexible multibody systems.
The contact force in the clearance joint was applied using the continuous contact force
model proposed by Lankanrani and Nikravesh, and the friction effect is considered using
the LuGre friction model. A flexible planar slider-crank mechanism demonstrates the
investigation. Lai et al. [28] studied the revolute joint clearance wear in the low-velocity
planar mechanism using computational and experimental methods. Flores [29] studied
the wear phenomena of revolute clearance joints using a computational method. The
contact force model in the clearance joint was established using the contact force model
proposed by Lankanrani and Nikravesh. The results indicated that the wear in clearance
joints is non-regular. The wear in joints enlarges the clearance size. Ordiz [30] proposed
a method to study the effect of joint clearances on the fatigue life of machines, in which
the increase in dynamic loads due to wear in clearances was considered. Results showed
that clearances may have a great impact in the service life of machines. However, most
of the previous investigations focused on clearance effects on the dynamic performance
of mechanisms. Limited works have been focused on the dynamic wear characteristics of
clearance joints in mechanisms. In fact, wear changes the clearance size of joints and affects
dynamic performance of mechanisms. Wear causes the precision of mechanism to reduce,
especially for high-accuracy and long-life mechanisms. Less research and models have
been presented to show how wear in clearance joints of mechanical systems is important.

In this work, the main objective is to study the wear phenomenon of dry revolute
clearance joints in mechanisms using a computational methodology. Case studies for
different effect factors are performed to investigate the dynamic wear characteristics of
clearance joints. The normal contact force model and the tangential friction force model are
established to describe the contact-impact forces in clearance joints. Dynamic Archard’s
wear model is established to predict the dynamic wear depth of clearance joints in mecha-
nisms. First, dynamics characteristics of mechanisms are analyzed. The contact and sliding
characteristics between the journal and bearing in clearance joints are obtained. Then, the
dynamic wear depths of clearance joints are analyzed based on the dynamic Archard’s wear
model. Finally, a planar slider-crank mechanism with two revolute clearance joints is used
as the implement example to perform the investigation. The dynamic wear characteristics
of clearance joints in mechanical systems with multi-clearance joints are presented and
discussed.

2. Contact Force Model in Revolute Clearance Joint

Figure 1 depicts a revolute joint with clearance. The radius of bearing and journal in
the revolute clearance joint are RB and RJ , respectively. The difference between their radii
is defined as the radial clearance. Thus, the radial clearance is expressed as Equation (1):

c = RB − RJ (1)
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Figure 1. Schematic of revolute joint with clearance.

Usually, there are contact-impact characteristics in a real joint with clearance in mecha-
nisms, which includes normal contact force and tangential friction force, shown in Figure 2.
When the journal and bearing are in contact, a contact force is applied perpendicular to
the plane of contact. The contact forces between the two elements of clearance joints can
be described as normal contact force, Fn, and tangential contact force, Ft. Therefore, the
constraints of clearance joint are modeled as contact force constraints, which is in line with
the real joint. The contact deformation caused by contact and impact between bearing and
journal can be represented as Equation (2):

δ = e− c (2)

where c is the clearance size and e is the eccentricity of the journal center relative to the
bearing center, as shown in Figure 2b.

Figure 2. Contact in revolute clearance joint. (a) contact forces; (b) contact deformation.

Consequently, to evaluate contact forces efficiently between the bearing and the jour-
nal for revolute joints with clearance, special attention must be paid to the numerical
description of the contact force model [31–36]. In this work, the normal contact between
the journal and bearing in a revolute clearance joint is established using the Lankarani and
Nikravesh contact force model, which is based on the Hertz model with a damping term
and it is expressed as Equation (3) [36]:

Fn = Knδn + D
.
δ (3)

where δ is the deformation,
.
δ is the relative deformation velocity. D is the nonlinear

damping coefficient. Nonlinear damping coefficient D can be expressed as Equation (4):

D = ηδn (4)
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where η is the viscous damping factor. It can be expressed as Equation (5):

η =
3Kn

(
1− c2

e
)

4
.
δ
(−) (5)

where
.
δ
(−)

is the initial relative velocity of the impact point., ce is the material recovery
coefficient.

Further, D can be expressed as Equation (6):

D =
3Kn

(
1− c2

e
)
δn

4
.
δ
(−) (6)

Consequently, the normal contact force Fn can be expressed as Equation (7):

Fn = Knδn

[
1 +

3(1− c2
e )

.
δ

4
.
δ
(−)

]
(7)

The tangential contact of clearance joints is represented using the friction force model.
The best-known friction model is Coulomb friction model. However, there will be errors in
numerical calculation when relative tangential velocity is close to zero. Here, a modified
Coulomb friction model with a dynamic friction coefficient is used for tangential contact of
clearance joints, which can avoid numerical difficulties. The expression of the modified
Coulomb friction model is shown as Equation (8) [8,33]:

Ft = −µ(vt)Fn
vt

|vt|
(8)

where vt is the relative sliding velocity in the contact point. The dynamic friction coefficient
µ(vt) is a function of tangential sliding velocity and expressed as Equation (9):

µ(vt) =


−µdsign(vt) f or |vt|> vd

−
{

µd + (µs − µd)
(
|vt |−vd
vs−vd

)2[
3− 2

(
|vt |−vd
vs−vd

)]}
sign(vt) f or vs ≤ |vt| ≤ vd

µs − 2µs

(
vt+vs

2vs

)2(
3− vt+vs

vs

)
f or |vt| < vs

(9)

where µs is the static friction coefficient. µd is the critical velocity of the maximum dynamic
friction. vs is the critical velocity of static friction. vd is the critical velocity of the maximum
dynamic friction.

3. Dynamics Equations of Mechanism Systems with Clearances

The dynamics equations of the mechanism system are established considering the
clearance model. The clearance leads to two different motion phases of bodies connected
with the clearance joint: one is where the bodies move freely in the clearance and the other is
where the bodies contact and interact. Therefore, the mechanism system with clearance be-
tween bodies is a variable topology system, which is solved using a dynamic segmentation
modeling method. Further, the dynamics equation is obtained using the Lagrange multi-
plier method and the dynamic equations are formulated as Equations (10) and (11) [8].

In the free-motion phase, the dynamics equation is presented as:

M
..
q + C

.
q + Kq + ΦT

q λ = F
Φ(q, t) = 0

(10)

where q is the generalized coordinate column matrix, M, C and K are the generalized
mass matrix, generalized damp matrix and generalized stiffness matrix, respectively. Φq
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is the Jacobin matrix of the constraint equation. F is the generalized force matrix. λ is the
Lagrange multiplier column matrix.

In the contact phase, the bodies interact and the contact forces exist in the clearance
between the bearing and journal. The dynamics equation is presented as:

M
..
q + C

.
q + Kq + ΦT

q λ = F + Fc

Φ(q, t) = 0
(11)

where Fc is the contact force relative to the q, which contains both normal contact force, Fn,
expressed as Equation (7), and tangential friction force, Ft, expressed as Equation (8).

4. Dynamic Wear Model of Revolute Clearance Joint

In a case of a revolute clearance joint in a mechanism, wear would occur when the
journal and bearing of the clearance joint contact with relative motion. In the numerical
modeling and analysis of clearance joints in a mechanism, Archard’s wear model is usually
used, which correlates the wear volume with some physical and geometrical properties of
sliding bodies, such as applied load, sliding distance and hardness. In this work, Archard’s
wear model is used to calculate the wear amount of revolute clearance joints in mechanical
systems. This model was developed and based on experimental tests and can be expressed
by [37],

V
s
= K

Fn

H
(12)

where V is the wear volume, s represents the sliding distance, K is the dimensionless
wear coefficient, Fn represents the normal contact force and H is the hardness of the softer
material.

This formula shows the relationship between the wear volume and the relative sliding
distance, normal contact force as well the hardness of softer materials. In real engineering,
the wear depth of the joint is widely used. In order to obtain the wear depth during the wear
process, assume that the actual contact area is A, Archard’s wear model of Equation (12)
can be written as Equation (13):

V
As

=
h
s
= kp (13)

where h is the wear depth; p is the contact pressure, which is expressed as p = Fn
A . k is the

linear wear coefficient and is expressed as k = K
H .

In the motion of mechanisms with clearance joints, the contact point of joints keeps
changing, and the contact force and sliding distance are different in different moments. It
means the sliding distance and contact stress between the journal and bearing changes with
time during the motion of mechanism. The wear process is considered to be a dynamic
process. Further, Archard’s wear model of Equation (13) is expressed as the following
differential form in Equation (14):

dh
ds

= kp (14)

Because the sliding distance between journal and bearing is always changing with
the motion of mechanical system, the sliding speed of the contact point which is easier to
measure is used to calculate the sliding distance. Consequently, the dynamic wear depth in
Equation (14) is expressed as Equation (15):

dh = kpvdt (15)

where v is the sliding speed.
The sliding velocity v can be obtained by the rotational speed between journal and

bearing in the clearance joints. the rotational speed of the journal relative to the bearing is
expressed as Equation (16):

ω12 = ω1 ∓ω2 (16)
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where ω1 and ω2 are the rotational speeds of bearing and journal, respectively. The sign is
positive when ω1 and ω2 are rotating in different directions and the sign is negative when
ω1 and ω2 are rotating in the same direction.

Further, the sliding speed v at contact point between journal and bearing is expressed
as Equation (17):

v = (RJ + δ)ω12 = (RJ + δ)(ω1 ∓ω2) (17)

where RJ is the diameter of the journal.
Further, for any given time t, the wear depth at contact points of revolute clearance

joints is calculated as Equation (18):

h =
∫ t

0
kpvdt (18)

5. Computational Strategy of Wear Analysis for Clearance Joints

In order to analyze the wear characteristics in clearance joints of mechanisms, two
main steps are presented, which are: dynamics analysis of mechanisms with clearances,
and wear analysis of clearance joints. Firstly, the dynamics characteristics of mechanisms
with clearances are analyzed. The contact forces of clearance joints and the sliding velocity
between the journal and bearing are obtained. Secondly, the wear depth of clearance joints
is calculated based on the dynamic wear model of Equation (18).

The detailed wear analysis process is shown as Figure 3 and performed as following:

(1) Establish the contact force models of the clearance joint, including the normal contact
force model and the tangential friction force model;

(2) Establish the dynamics model and perform the dynamic simulation of mechanical
system with joint clearances;

(3) Dynamics analysis and draw the contact force in the clearance joint as well as the
relative sliding speeds between journal and bearing of the clearance joint;

(4) Calculate the wear depth of the clearance joint based on the dynamic Archard’s
wear model.

(5) Analyze and discuss the wear characteristics of the clearance joint for mechanisms in
different case studies.

Figure 3. Computational process of clearance joint wear in mechanical systems.
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6. Numerical Example and Results
6.1. Numerical Example: Planar Slider-Crank Mechanism with Multi-Clearance Joints

In this section, a planar slider-crank mechanism with two revolute clearance joints is
used to represent the investigation. Figure 4 depicts the configuration of the planar slider-
crank mechanism, in which two revolute clearance joints exist between the connecting rod
and the slider as well as the crank. They can also be called revolute joint A and revolute
joint B. The connecting rod is considered as a flexible link, and the crank and slider are
considered as rigid bodies.

Figure 4. Slider–crank mechanism with multi-clearances.

The crank is the driving link. The length and inertia properties of the slider-crank
mechanism components are listed in Table 1 and the parameters used in the dynamic
simulations are presented in Table 2.

Table 1. Geometric and inertia properties of the slider-crank mechanism.

Component Length (mm) Mass (kg) Moment of Inertia (Kg·mm2)

Crank 75 3.8674 9.69 × 103

Connecting rod 360 0.2287 4.708 × 103

Slider - 2.3248 2.549 × 103

Table 2. Parameters used in the dynamic simulation [26,29].

Parameter Value

Coefficient of restitution 0.9
Coefficient of friction 0.1
Wear coefficient 5.05 × 10−13

Elasticity Modulus (GPa) 207
Poisson’s ratio 0.29
Crank speed (rpm) 200
Step size 0.001 s

6.2. Results of Wear Characteristics

In the dynamic simulation, the crank is the driving link and the speed of crank is
200 rpm. The initial clearance size is 0.5 mm for each clearance joint, which are revolute joint
A and revolute joint B. Here, two case studies for different numbers of revolute clearance
joints are considered in the simulation. In the first case study, there is only one clearance
joint. Revolute joint A is considered as an imperfect joint with clearance, and revolute joint
B is considered as an ideal joint without clearance. In the second case study, there are two
clearance joints. Both revolute joint A and revolute joint B are considered clearance joints.
Long-time simulations are performed and the results presented below are plotted against
two full crank rotations after a steady state has been reached.

Figure 5 presents the contact forces in revolute clearance joint A for the two case
studies. The contact forces in clearance joints are compared with the reaction forces in ideal
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joints. It clearly shows that the contact forces in clearance joints are much higher than that
in ideal joints. During the motion of mechanism, the contact and impact between journal
and bearing in clearance joints are oscillating obviously, with high frequency and peaks.
Besides, the amplitudes of contact and impact forces are very large. When two clearance
joints are considered in the mechanism, the vibration peaks of the contact forces increase
compared with contact forces from the case where one clearance joint is considered. It is
due to the two clearance joints interacting with each other. Further, the increased contact
forces in clearance joints cause more severe wear. Figure 6 shows the dynamic wear depth
of clearance joint A. It indicates that the wear depth of clearance joints is different in each
crank motion position. The wear amount is dynamically changing during the motion of
the mechanism. The wear of revolute clearance joints is not uniform, but more severe in
some regions of crank position. Also, the wear depth in revolute clearance joints shows
similar characteristics of contact forces. Additionally, it shows that the dynamic wear depth
is larger when considering two clearances compared with the wear depth when only one
clearance joint is considered in the mechanism.

Figure 5. Contact forces in revolute clearance joint A. (a) case 1: there is one clearance joint in the
mechanism; (b) Case 2: there are two clearance joints in the mechanism.

Figure 6. Dynamic wear depth in revolute clearance joint A. (a) case 1: there is one clearance joint in
the mechanism; (b) Case 2: there are two clearance joints in the mechanism.
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7. Parametric Effects on Clearance Joint Wear

In this section, the effects of different factors on clearance joint wear are analyzed.
Three factors of clearance size, contact stiffness and driving speed are presented. For each
factor, four case studies are compared and discussed, which are listed in Table 3.

Table 3. Parametric studies for different cases.

Testing Parameter Value
Case 1 Case 2 Case 3 Case 4

Clearance size 0.1 mm 0.2 mm 0.3 mm 0.4 mm
Contact stiffness 1 × 106 N/mm 5 × 106 N/mm 1 × 107 N/mm 5 × 107 N/mm
Driving speed 200 rpm 300 rpm 400 rpm 600 rpm

7.1. Effect of Clearance Size on Wear Characteristics

Clearance size is one of the key factors that affect the dynamics characteristics and
wear characteristics of clearance joints in mechanism. In this section, the effects of different
clearance sizes on dynamic wear characteristics of clearance joints in the slider-crank
mechanism are investigated. Four case studies with different clearance sizes are presented.
The clearances exist in revolute joint A connecting the crank and connecting rod, and
revolute joint B connecting the slider and the connecting rod. The sizes of each clearance
are 0.1 mm, 0.2 mm, 0.5 mm and 1 mm. The dynamic wear depths at clearance joint A for
different clearance sizes are presented in Figure 7.

Figure 7. Dynamic wear depth in revolute clearance joint A for different clearance sizes. (a) 0.1 mm;
(b) 0.2 mm; (c) 0.5 mm; (d) 1 mm.
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It can be seen from Figure 7 that the dynamic wear depths of clearance joint A are
changing with the motion of the mechanism, which indicates that the clearance joint
exhibits non-uniform wear during one motion cycle of the mechanism. Comparing the four
case studies with different clearance sizes, it clearly shows that different clearance sizes
present similar dynamic wear phenomenon, but the wear depths of clearance joints are
obviously different. When the clearance size is smaller, the wear level is weaker, and the
maximum wear depth is smaller. As the clearance size increases, the wear level is more
severe and the maximum wear depth increases. When clearance size is 1 mm, the maximum
wear depth is about 3.2 times the wear depth when clearance size is 0.2 mm. The reason is
that as the clearance size increases, the journal and bearing contact and impact severely,
causing a larger contact force in the clearance joint, as shown in Figure 8. The contact
forces in clearance joint are one of the most important factors causing wear. Therefore, the
clearance size is one important factor affecting the wear characteristics of clearance joints
in mechanisms, which cannot be ignored and must be strictly controlled in the design of
mechanisms.

Figure 8. Contact forces in revolute clearance joint A for different clearance sizes. (a) 0.1 mm;
(b) 0.2 mm; (c) 0.5 mm; (d) 1 mm.

7.2. Effect of Contact Stiffness on Wear Characteristics

When the journal and bearing in clearance joints contact and impact, the contact
stiffness of the two contact elements will be an important factor on the contact and impact
forces in clearance joints. Therefore, the contact stiffness coefficient has significant effects
on the wear characteristics of clearance joints in mechanisms. In this section, four case
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studies with different contact stiffness coefficients are presented to investigate the effects
of contact stiffness on the dynamic wear characteristics of clearance joints. Similarly,
assuming there are two clearance joints, one of them is set in revolute joint A connecting
the crank and connecting rod, and another is set in revolute joint B connecting the slider
and connecting rod. The clearance size is 0.2 mm and the driving speed of crank is 200 rpm.
Four case studies for different contact stiffness coefficients are investigated and the contact
stiffness coefficients are considered as 1 × 106 N/mm, 5 × 106 N/mm, 1 × 107 N/mm and
5 × 107 N/mm, respectively. The dynamic wear depths and the contact forces at clearance
joint A for different case studies are presented in Figures 9 and 10, respectively.

Figure 9. Dynamic wear depth in revolute clearance joint A for different cases. (a) 1 × 106 N/mm;
(b) 5 × 106 N/mm; (c) 1 × 107 N/mm; (d) 5 × 107 N/mm.

Figure 9 shows that a larger contact stiffness coefficient can effectively reduce the
wear level between contact surfaces of clearance joints. As the contact stiffness coefficient
increases, the maximum wear depth of the clearance joint decreases, as shown in Figure 9,
but the contact forces increase, as shown in Figure 10. It is due to the fact that as the contact
stiffness coefficient increases, the ability of joint elements to resist deformation is stronger,
and the contact deformation between journal and bearing decreases. Therefore, it can
effectively reduce the wear level between contact surfaces of clearance joints. When the
contact stiffness coefficient increases from 1× 106 N/mm to 5× 107 N/mm, the maximum
wear depth is reduced approximately ten times. Although the contact forces between
journal and bearing are increased as the contact stiffness coefficient increases, the maximum
wear depth of clearance joint decreases.
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Figure 10. Contact forces in revolute clearance joint A for different cases. (a) 1 × 106 N/mm;
(b) 5 × 106 N/mm; (c) 1 × 107 N/mm; (d) 5 × 107 N/mm.

7.3. Effect of Driving Speeds on Wear Characteristics

The driving speed also has a certain influence on the dynamic characteristics and
wear characteristics of mechanisms with clearance joints, especially for high-speed driving
mechanisms. In this section, the effects of driving speeds on the dynamic wear charac-
teristics of clearance joint are investigated. Four case studies are presented with different
driving speeds, which are 200 rpm, 300 rpm, 400 rpm and 600 rpm, respectively. The
clearance size in clearance joint A and revolute joint B is 0.2 mm. The dynamic wear depths
and the contact forces at clearance joint A for different driving speeds are presented in
Figures 11 and 12.

From Figures 11 and 12, it can be clearly seen that different driving speeds present
different wear levels on the dynamic wear of clearance joints. When the driving speed is
higher, the contact and wear between journal and bearing in clearance joints is more severe.
The reason behind this phenomenon is that the higher driving speed leads to higher contact
frequency and greater contact forces. Further, it causes greater wear depth of clearance
joints. When the crank speed is increased from 200 rpm to 400 rpm, and then to 600 rpm,
the maximum wear depth increases by approximately 7.1 times and 24.9 times. Therefore,
the drive speed has a significant influence on the wear characteristics of clearance joints in
mechanisms.
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Figure 11. Dynamic wear depth in revolute clearance joint A for different driving speeds. (a) 200 rpm;
(b) 300 rpm; (c) 400 rpm; (d) 600 rpm.

Figure 12. Contact forces in revolute clearance joint A for different driving speeds. (a) 200 rpm;
(b) 300 rpm; (c) 400 rpm; (d) 600 rpm.
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8. Conclusions

This work studies the dynamic wear characteristics of revolute clearance joints in
mechanisms using a computational methodology. The normal contact force model and the
tangential friction force model are established to describe the contact-impact in clearance
joints. The dynamic Archard’s wear model is established to predict the wear depth of clear-
ance joints in mechanisms. A planar slider-crank mechanism with two revolute clearance
joints is used as the implement example to perform the investigation. Different case studies
for different effect factors are performed to investigate the dynamic wear characteristics
of clearance joints based on the dynamic Archard’s wear model. The simulation results
show that:

(1) The wear depth of clearance joints is different in each crank motion position and
changes dynamically during the motion of mechanism. The wear of revolute clearance
joints is not uniform, but more severe in some regions of crank position. Also, it shows
that the dynamic wear depth is larger when considering two clearances compared
with the wear depth when only one clearance joint is considered in the mechanism;

(2) Different clearance sizes present a similar dynamic wear phenomenon, but the wear
depths of the clearance joints are obviously different. When the clearance size is
smaller, the wear level is weaker and the maximum wear depth is smaller. As the
clearance size increases, the wear level is more severe and the maximum wear depth
increases;

(3) A higher contact stiffness coefficient can effectively reduce the wear level between the
contact surfaces of the clearance joint, although the contact forces between the journal
and bearing are increased as the contact stiffness coefficient increases. The reason is
that as the contact stiffness coefficient increases, the ability of joint elements to resist
deformation is stronger, and the contact deformation between journal and bearing
decreases;

(4) Different driving speeds present different wear levels on the dynamic wear of the
clearance joint. When the driving speed is higher, the contact and wear depth are
more severe between the journal and the bearing in clearance joints. The higher
driving speed leads to higher contact frequency and greater contact forces, which
causes greater wear depth of clearance joints.

This work investigates the dynamic wear of revolute joints with clearance in mechani-
cal systems and the proposed framework can be extended to various kinds of mechanisms
with revolute clearance joints. The simulation results show that the wear in clearance joints
cannot be neglected and wear characteristics analysis is the basis for life prediction of
mechanisms with clearance joint wear.
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