The Thickness and Structure of Dip-Coated Polymer Films in the Liquid and Solid States
Abstract
:1. Introduction
2. Experimental Methods
2.1. Solution Preparation
2.2. Rheological Properties
2.3. Measurements of the Thickness of Liquid Films
2.4. Measurements of the Thickness of the Dried Films and Their Morphology
3. Results and Discussion
3.1. Density, Surface Tension, and Viscosity
3.2. Relaxation Time
3.3. Effect of Solution Viscoelasticity on the Coating Thickness
3.4. Dynamic Contact Angle
3.5. Coating Thickness of Solid vs. Liquid Films
3.6. Coating Thickness vs. Coating Roughness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Kausar, A. Polymer coating technology for high performance applications: Fundamentals and advances. J. Macromol. Sci. Part A 2018, 55, 440–448. [Google Scholar] [CrossRef]
- Zanurin, A.; Johari, N.A.; Alias, J.; Ayu, H.M.; Redzuan, N.; Izman, S. Research progress of sol-gel ceramic coating: A review. Mater. Today Proc. 2022, 48, 1849–1854. [Google Scholar] [CrossRef]
- Barroso, G.; Li, Q.; Bordia, R.K.; Motz, G. Polymeric and ceramic silicon-based coatings—A review. J. Mater. Chem. A 2019, 7, 1936–1963. [Google Scholar] [CrossRef]
- Mehta, A.; Vasudev, H.; Singh, S. Recent developments in the designing of deposition of thermal barrier coatings—A review. Mater. Today Proc. 2020, 26, 1336–1342. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, G.; Zhang, R.; Dai, J.; He, L.; Mu, R. Thermal property and failure behavior of LaSmZrO thermal barrier coatings by EB-PVD. iScience 2022, 25, 104106. [Google Scholar] [CrossRef]
- Grosso, D. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038. [Google Scholar] [CrossRef]
- Yimsiri, P.; Mackley, M.R. Spin and dip coating of light-emitting polymer solutions: Matching experiment with modelling. Chem. Eng. Sci. 2006, 61, 3496–3505. [Google Scholar] [CrossRef]
- Justus, T.; Gonçalves, P.; Seifert, M.; Leite, M.L.; Probst, S.M.; Binder, C.; Motz, G.; Klein, A.N. Oxidation Resistance and Microstructure Evaluation of a Polymer Derived Ceramic (PDC) Composite Coating Applied onto Sintered Steel. Materials 2019, 12, 914. [Google Scholar] [CrossRef] [Green Version]
- Kelso, M.V.; Mahenderkar, N.K.; Chen, Q.; Tubbesing, J.Z.; Switzer, J.A. Spin coating epitaxial films. Science 2019, 364, 166–169. [Google Scholar] [CrossRef]
- Kistler, S.E.; Schweizer, P.M. Liquid Film Coating. Scientific Principles and Their Technological Implications; Chapman & Hall: Glasgow, UK, 1997. [Google Scholar]
- Derjaguin, B.V. Thickness of the liquid film adhering to a moving thread. Dokl. Akad. Nauk Sssr 1943, 39, 11. [Google Scholar]
- Landau, L.D.; Levich, V.G. Dragging of a liquid by a moving plate. Acta Physicochim. URSS 1942, 17, 42. [Google Scholar]
- Ruschak, K.J. Coating flows. Ann. Rev. Fluid Mech. 1985, 17, 65–89. [Google Scholar] [CrossRef]
- Weinstein, S.J.; Ruschak, K.J. Coating flows. Ann. Rev. Fluid Mech. 2004, 36, 29–53. [Google Scholar] [CrossRef]
- Michels, J.J.; Zhang, K.; Wucher, P.; Beaujuge, P.M.; Pisula, W.; Marszalek, T. Predictive modelling of structure formation in semiconductor films produced by meniscus-guided coating. Nat. Mater. 2021, 20, 68–75. [Google Scholar] [CrossRef]
- Palma, S.; Lhuissier, H. Dip-coating with a particulate suspension. J. Fluid Mech. 2019, 869, R3. [Google Scholar] [CrossRef] [Green Version]
- Sathyanath, R.; Aarthi, A.; Kalpathy, S.K. Liquid film entrainment during dip coating on a saturated porous substrate. Chem. Eng. Sci. 2020, 218, 115552. [Google Scholar] [CrossRef]
- Shaw, L.; Diao, Y.; Martin-Noble, G.C.; Yan, H.; Hayoz, P.; Weitz, T.; Kaelblein, D.; Toney, M.F.; Bao, Z. Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. Mrs Bull. 2021, 46, 380–393. [Google Scholar] [CrossRef]
- Wedershoven, H.M.J.M.; Zeegers, J.C.H.; Darhuber, A.A. Polymer film deposition from a receding solution meniscus: The effect of laminar forced air convection. Chem. Eng. Sci. 2018, 181, 92–100. [Google Scholar] [CrossRef]
- Quere, D. Fluid coating on a fiber. Ann. Rev. Fluid Mech. 1999, 31, 347–384. (In English) [Google Scholar] [CrossRef]
- Rio, E.; Boulogne, F. Withdrawing a solid from a bath: How much liquid is coated? Adv. Colloid Interface Sci. 2017, 247, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Salamatin, A.; Peng, F.; Kornev, K.G. Dip coating of cylinders with Newtonian fluids. J. Colloid Interface Sci 2021, 607, 502–513. [Google Scholar] [CrossRef]
- Obregón, S.; Rodríguez-González, V. Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: A brief review. J. Sol-Gel Sci. Technol. 2021, 102, 125–141. [Google Scholar] [CrossRef]
- Chen, S.; Deng, Y.; Xiao, X.; Xu, S.; Rudd, P.N.; Huang, J. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustain. 2021, 4, 636–643. [Google Scholar] [CrossRef]
- Jaafar, A.; Hecker, C.; Arki, P.; Joseph, Y. Sol-Gel Derived Hydroxyapatite Coatings for Titanium Implants: A Review. Bioengineering 2020, 7, 127. [Google Scholar] [CrossRef]
- Boukhari, A.; Deghfel, B.; Mahroug, A.; Amari, R.; Selmi, N.; Kheawhom, S.; Mohamad, A.A. Thickness effect on the properties of Mn-doped ZnO thin films synthesis by sol-gel and comparison to first-principles calculations. Ceram. Int. 2021, 47, 17276–17285. [Google Scholar] [CrossRef]
- Jiménez, M.; Samie, A.; Gadow, R.; Kern, F.; Bill, J. Siloxane Precursor-Based Protective Coatings for High Modulus Carbon Fibers in Ceramic Matrix Composites. Ceramics 2018, 1, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Reifler, F.A.; Sanchez, F.A.L.; Clemens, F.J.; Varga, K.; Hufenus, R. Flexible ceramic-reinforced polyurethane composite coatings on synthetic fibres: Process of continuous liquid film coating and its influence on the coating thickness. Compos. Sci. Technol. 2010, 70, 1207–1213. [Google Scholar] [CrossRef]
- Kornev, K.G.; Neimark, A.V. Hydrodynamic instability of liquid films on moving fibers. J. Colloid Interface Sci. 1999, 215, 381–396. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Chen, Z.X.; Borodinov, N.; Luzinov, I.; Peng, F.; Kornev, K.G. Kinetics of Evaporation and Gel Formation in Thin Films of Ceramic Precursors. Langmuir 2014, 30, 14638–14647. [Google Scholar] [CrossRef]
- Gans, A.; Dressaire, E.; Colnet, B.; Saingier, G.; Bazant, M.Z.; Sauret, A. Dip-coating of suspensions. Soft Matter 2019, 15, 252–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berteloot, G.; Daerr, A.; Lequeux, F.; Limat, L. Dip coating with colloids and evaporation. Chem. Eng. Process.-Process Intensif. 2013, 15, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.M.; Suszynski, W.J.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Contact line dynamics in curtain coating of non-Newtonian liquids. Phys. Fluids 2021, 33, 103103. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Soraru, G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soci. 2010, 93, 1805–1837. (In English) [Google Scholar] [CrossRef]
- Wang, K.S.; Bordia, R.K.; Brush, L.N. A semi-empirical power-law model for the dip-coating of a substrate into a particle-containing, non-Newtonian, complex fluid system. Ceram. Int. 2019, 45, 6655–6664. (In English) [Google Scholar] [CrossRef]
- Faustini, M.; Louis, B.; Albouy, P.A.; Kuemmel, M.; Grosso, D. Preparation of Sol-Gel Films by Dip-Coating in Extreme Conditions. J. Phys. Chem. C 2010, 114, 7637–7645. (In English) [Google Scholar] [CrossRef]
- Maeng, W.Y.; Yoon, J.H.; Kim, D.J. Effect of process conditions (withdrawal rate and coating repetition) on morphological characteristics of sol-gel TiO2 film during dip coating. J. Coat. Technol. Res. 2020, 17, 1171–1193. [Google Scholar] [CrossRef]
- Berteloot, G.; Pham, C.T.; Daerr, A.; Lequeux, F.; Limat, L. Evaporation-induced flow near a contact line: Consequences on coating and contact angle. Epl (Europhys. Lett.) 2008, 83, 14003. [Google Scholar] [CrossRef]
- Brewer, D.D.; Shibuta, T.; Francis, L.; Kumar, S.; Tsapatsis, M. Coating Process Regimes in Particulate Film Production by Forced-Convection-Assisted Drag-Out. Langmuir 2011, 27, 11660–11670. [Google Scholar] [CrossRef]
- de Ryck, A.; Quere, D. Fluid coating from a polymer solution. Langmuir 1998, 14, 1911–1914. (In English) [Google Scholar] [CrossRef] [Green Version]
- Ro, J.S.; Homsy, G.M. Viscoelastic Free-Surface Flows—Thin-Film Hydrodynamics of Hele-Shaw And Dip Coating Flows. J. Non-Newton. Fluid Mech. 1995, 57, 203–225. (In English) [Google Scholar] [CrossRef]
- Abedijaberi, A.; Bhatara, G.; Shaqfeh, E.S.G.; Khomami, B. A computational study of the influence of viscoelasticity on the interfacial dynamics of dip coating flow. J. Non-Newton. Fluid Mech. 2011, 166, 614–627. (In English) [Google Scholar] [CrossRef]
- Balzarotti, R.; Cristiani, C.; Francis, L.F. Combined dip-coating/spin-coating depositions on ceramic honeycomb monoliths for structured catalysts preparation. Catal. Today 2019, 334, 90–95. [Google Scholar] [CrossRef]
- Lade, R.K.; Jochem, K.S.; Macosko, C.W.; Francis, L.F. Capillary Coatings: Flow and Drying Dynamics in Open Microchannels. Langmuir 2018, 34, 7624–7639. [Google Scholar] [CrossRef] [PubMed]
- Baraka, R. Thickness dependence of electrical and optical properties of sol gel ZnO coatings. Asian J. Chem. 2003, 15, 1729–1734. [Google Scholar]
- Nishioka, T.; Amemiya, N.; Jiang, Z.; Iijima, Y.; Saitoh, T.; Yamada, M.; Shiohara, Y. Influence of silver layer thickness on magnetization loss of YBCO coated conductors in transverse magnetic field with various orientations. Phys. C-Supercond. Its Appl. 2004, 412, 992–998. [Google Scholar] [CrossRef]
- Dai, H.; Zhong, X.H.; Li, H.Y.; Zhang, Y.F.; Meng, J.; Cao, X.Q. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 433, 1–7. [Google Scholar] [CrossRef]
- Huang, L.M.; Liu, R.J.; Zhang, C.R.; Wang, Y.F.; Cao, Y.B. Si/SiC optical coatings for C/SiC composites via gel-casting and gas silicon infiltration: Effects of carbon black content. J. Alloys Compd. 2017, 711, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Solomon, O.F.; Ciut, I.Z. Determination de la Viscosite Intrinseque de Solutions de Polymeres par une Simple Determination de la Viscosite. J. Appl. Polym. Sci. 1962, 6, 683–686. [Google Scholar] [CrossRef]
- Bazilevskii, A.V.; Entov, V.M.; Rozhkov, A.N. Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym. Sci. Ser. A 2001, 43, 716–726. [Google Scholar]
- Liang, R.F.; Mackley, M.R. Rheological characterization of the time and strain dependence for polyisobutylene solutions. J. Non-Newton. Fluid Mech. 1994, 52, 387–405. (In English) [Google Scholar] [CrossRef]
- Montanero, J.M.; Ponce-Torres, A. Review on the Dynamics of Isothermal Liquid Bridges. Appl. Mech. Rev. 2020, 72, 010803. [Google Scholar] [CrossRef]
- Rodd, L.E.; Scott, T.P.; Cooper-White, J.J.; McKinley, G.H. Capillary break-up rheometry of low-viscosity elastic fluids. Appl. Rheol. 2005, 15, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Brenner, M.P.; Lister, J.R.; Stone, H.A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 1996, 8, 2827–2836. (In English) [Google Scholar] [CrossRef]
- Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 1997, 69, 865–929. (In English) [Google Scholar] [CrossRef] [Green Version]
- Bousfield, D.W.; Keunings, R.; Marrucci, G.; Denn, M.M. Nonlinear-analysis of the surface-tension driven breakup of viscoelastic filaments. J. Non-Newton. Fluid Mech. 1986, 21, 79–97. (In English) [Google Scholar] [CrossRef]
- Huh, C.; Scriven, L.E. Shapes of axisymmetric fluid interfaces of unbounded extent. J. Colloid Interface Sci. 1969, 30, 323–337. [Google Scholar] [CrossRef]
- Wei, Y.; Seevaratnam, G.K.; Garoff, S.; Rame, E.; Walker, L.M. Dynamic wetting of Boger fluids. J. Colloid Interface Sci. 2007, 313, 274–280. [Google Scholar] [CrossRef]
- Alimov, M.M.; Kornev, K.G. Meniscus on a shaped fibre: Singularities and hodograph formulation. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2014, 470, 20140113. [Google Scholar] [CrossRef] [Green Version]
- Rossum, J.J.V. Viscous lifting and drainage of liquids. Appl. Sci. Res. 1958, 7, 121–144. [Google Scholar] [CrossRef]
- Jeffreys, H. The Draining of a Vertical Plate. In Mathematical Proceedings the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1930; Volume 26. [Google Scholar]
- Voinov, O.V. Hydrodynamics of wetting. Fluid Dyn. 1977, 11, 714–721. [Google Scholar] [CrossRef]
- Rame, E.; Garoff, S. Microscopic and macroscopic dynamic interface shapes and the interpretation of dynamic contact angles. J. Colloid Interface Sci. 1996, 177, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Rame, E.; Garoff, S.; Willson, K.R. Characterizing the microscopic physics near moving contact lines using dynamic contact angle data. Phys. Rev. E 2004, 70, 031608. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.; Bodiguel, H.; Doumenc, F.; Sultan, E.; Guerrier, B. Drying of Colloidal Suspensions and Polymer Solutions near the Contact Line: Deposit Thickness at Low Capillary Number. Langmuir 2010, 26, 2288–2293. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T.; Noh, S.H. Effect of thickness of the PPO membranes on the surface morphology. J. Membr. Sci. 1998, 145, 243–251. [Google Scholar] [CrossRef]
- Scriven, L.E.; Sternling, C.V. On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity. J. Fluid Mech. 1930, 19, 321–340. [Google Scholar] [CrossRef]
B72 Concentration (g/dL) | 0 | 0.25 | 0.5 | 1 |
---|---|---|---|---|
Density (g/cm3) | 1.04 | 1.04 | 1.04 | 1.04 |
Surface tension (mN/m) | 37.5 | 37.3 | 37.7 | 37.6 |
Capillary length (mm) | 1.918 | 1.913 | 1.923 | 1.920 |
B98 Concentration (g/dL) | 0 | 0.25 | 0.5 | 1 |
---|---|---|---|---|
Density (g/cm3) | 1.04 | 1.04 | 1.04 | 1.04 |
Surface tension (mN/m) | 37.5 | 37.5 | 37.4 | 37.6 |
Capillary length (mm) | 1.918 | 1.918 | 1.915 | 1.920 |
[B-72] (g/dL) | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 1 |
---|---|---|---|---|---|---|---|---|---|---|
Viscosity (cP) | 5.74 | 6.40 | 7.82 | 8.9 | 10.1 | 11.2 | 13.2 | 14.7 | 17.2 | 21.0 |
[B-98] (g/dL) | 0 | 0.25 | 0.5 | 1 | 1.2 | 1.5 | 1.75 | 2 | 2.5 | 3 |
---|---|---|---|---|---|---|---|---|---|---|
Viscosity (cP) | 5.74 | 6.9 | 7.2 | 10.8 | 13.7 | 15.1 | 16.5 | 18.5 | 28.8 | 32.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Peng, F.; Kornev, K.G. The Thickness and Structure of Dip-Coated Polymer Films in the Liquid and Solid States. Micromachines 2022, 13, 982. https://doi.org/10.3390/mi13070982
Zhang Z, Peng F, Kornev KG. The Thickness and Structure of Dip-Coated Polymer Films in the Liquid and Solid States. Micromachines. 2022; 13(7):982. https://doi.org/10.3390/mi13070982
Chicago/Turabian StyleZhang, Zhao, Fei Peng, and Konstantin G. Kornev. 2022. "The Thickness and Structure of Dip-Coated Polymer Films in the Liquid and Solid States" Micromachines 13, no. 7: 982. https://doi.org/10.3390/mi13070982
APA StyleZhang, Z., Peng, F., & Kornev, K. G. (2022). The Thickness and Structure of Dip-Coated Polymer Films in the Liquid and Solid States. Micromachines, 13(7), 982. https://doi.org/10.3390/mi13070982