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Abstract: A W-band slot array antenna based on a substrate integrated waveguide (SIW) for mi-
crowave power transmission (MPT) is proposed in this paper. By size optimization, the transition
from the rectifier element to the antenna is limited to a small size. It realizes a compact arrangement
of the radiating slots, which not only improves the aperture efficiency of the antenna but also makes it
easy to integrate into a large-scale array. For antenna testing, a coplanar waveguide–SIW–rectangular
waveguide transition structure is added at the end of the antenna, and an antenna with this transition
structure is processed by PCB printing technology and measured. The measured reflection coefficient
is less than −10 dB at 90–96 GHz, the aperture efficiency is greater than 60% at 93.5–94.5 GHz, the
maximum gain is 13.2 dB at 93.5 GHz, and the aperture efficiency is 79%. The test results of the
antenna show that the antenna has a good performance and can be applied to the MPT system
as a rectenna.

Keywords: antenna; W-band; substrate integrated waveguide (SIW); coplanar waveguide (CPW)

1. Introduction

Microwave power transmission (MPT) [1–3] refers to the transmission of energy
directly from the transmitter to the receiver through free space, and its transmission loss is
only caused by atmospheric loss, rain attenuation, shielding, etc. Microwave beam intensity
and direction are easy to control, a quality which has gained more and more attention. The
rectenna, as a key component of microwave energy transmission technology, has been a
research hotspot.

Currently, most of the research related to rectennas is focused on those below 10 GHz,
such as 2.45 GHz [4–6] as well as 5.8 GHz [7–9], which has been the research hotspot for
rectified antennas. For example, a recent paper [10] designed a circularly polarized rectifier
antenna operating at 2.48 GHz, which can provide 45% RF–DC conversion efficiency.
However, with the increase in antenna gain requirement and the requirement of device
miniaturization, it is inevitable that this would push the operating frequency of the antenna
from low to high frequency. Compared with the normal microwave band, antennas in the
millimeter-wave band [11,12] have the advantages of a lightweight, easy integration with
large-scale arrays, and high transmission efficiency. Most of the reports on millimeter-wave
rectennas are in Ka-band. For example, the rectenna designed in [13], at 35 GHz, has a
rectification efficiency of 35%. In [14], this rectenna has a maximum rectification efficiency
of 27.4% at 30 GHz. In [15], a fully metalized alternative to the conventional microstrip
patch rectangular antenna is proposed, and it achieves an RF–DC conversion efficiency of
68.5% at 35 GHz. A 4 × 2 microstrip patch rectenna array with a gain of 13.4 dB and an
efficiency of more than 80% is proposed in [16]. Compared with Ka-band, both 94 GHz of
the W-band and 35 GHz are microwave atmospheric windows with lower transmission loss.
For long-distance transmission, the Ka-band rectenna array will face the problem of large
array size and weight, compared with this, the miniaturization advantage of the W-band is

Micromachines 2022, 13, 986. https://doi.org/10.3390/mi13070986 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13070986
https://doi.org/10.3390/mi13070986
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-7948-4823
https://orcid.org/0000-0003-1594-6600
https://doi.org/10.3390/mi13070986
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13070986?type=check_update&version=1


Micromachines 2022, 13, 986 2 of 8

very obvious. Although the overall rectification efficiency of the W-band rectenna array is
not as good as that of the Ka-band, its small size, light weight, easy transportation, and
long transmission distance are enough to make it shine in MPT. The results of rectenna
research in the W-band are rare, and the dual-band rectifier antenna designed in [17] works
at 35/94 GHz with two atmospheric windows and rectification efficiencies of 53% and 37%.
A W-band loop on-chip rectenna proposed in [18] has an RF–DC conversion efficiency of
only 6.8%. At present, there are fewer research results concerning the W-band rectenna, so
it is necessary to study the rectenna of the W-band.

The substrate integrated waveguide (SIW) [19–21] technology has been widely used
since its invention, and its advantages of low profile, small cost, and light weight make
it valuable in the antenna field. In [12], a patch rectenna in Ka-band was designed with
the help of the SIW technique with a DC conversion efficiency of 49%. The low profile
and easy integration of SIW make it relatively easy to apply to large-scale arrays, just
like a 32 × 33 large array SIW back-cavity antenna proposed in [22], with a gain up to
32.88 dB at 93.2 GHz and aperture efficiency of 22.8%. Moreover, the above-mentioned
references are the results of the whole rectenna system, the specific performance of the
antenna used is not clear, so this paper separately studies the performance of the antenna
itself when used as a rectenna, as a supplement to the rectenna system. Thus, with the help
of SIW technology, a W-band SIW slot array antenna is proposed in this paper to realize the
transition connection between rectifier element and antenna in a small size range, which on
the one hand facilitates the miniaturization and planarization of the antenna, and on the
other hand facilitates the integration of the antenna for large-scale arrays.

2. Antenna Design

Figure 1a is a schematic diagram of the structure of the rectenna, and Figure 1b is a
schematic diagram of the connection between the coplanar waveguide at the end of the
antenna and the rectifier element, which is proposed in [23]. The coplanar waveguide
(CPW) was chosen as the connection structure to the rectifier element because the unique
G–W–G structure of the coplanar waveguide corresponds exactly to the pinout of the
rectifier element [24]. The antenna receives microwaves from free space through the four
radiation windows of the upper substrate integrated resonant cavity (SIC), transmits them
to the lower SIW through the coupling gap, then transitions to the coplanar waveguide
through the SIW–CPW transition structure, and then transmits them to the rectifier element
through the bonding line connected to the rectifier element, converting the microwaves to
DC signals and then outputting them. The size of the four parts of the coupling aperture,
CPW–SIW transition structure, CPW-rectifier element transition structure, and rectifier
element position are controlled so that the whole is less than w = 4.62 mm. Thus, the
transition of the rectifier element-antenna is realized in the small size range, and the
radiation layer of the antenna is closely arranged at the same time. This can make the
antenna easy to be integrated with the large-scale array, and also improves the aperture
efficiency of the array. Therefore, to meet the size requirement, some aperture efficiency
must be sacrificed, while also maximizing the efficiency within the constrained size.
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Figure 1. (a) Schematic of the rectenna; (b) schematic of the transition from rectifier element
to rectenna.
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To facilitate the antenna test, a mirror structure of SIW–CPW transition is made at the
end of the antenna. The microwave passes through the SIW–CPW–SIW transition structure,
and then transitions to the rectangular waveguide, WR10, through the vertical transition
structure of the SIW-rectangular waveguide, as shown in Figure 2a. The s-parameters of
this structure simulated by HFSS full-wave simulation software are given in Figure 2b. At
90–97 GHz, the reflection coefficient is less than −10 dB and the transmission loss is about
0.78 dB at 92–95 GHz.
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Figure 2. (a) Schematic of the CPW–SIW–WG transition; (b) simulation results of the S-parameter.

The overall structure of the antenna is shown in Figure 3a, the antenna is made of two
PCB boards laminated with Rogers PCB/RT Duroid5880 and Rogers PCB/RT Duroid4003
as the substrate material and the thickness is 0.508 mm and 0.3043 mm, respectively. The
transmission of this antenna from the feed port to free space is as follows: rectangular
waveguide, feed port, rectangular waveguide to SIW transition structure, SIW–CPW–SIW
transition structure, SIC coupling aperture, and finally four radiation slots on the uppermost
layer. Figure 3b shows the top view and bottom view of the antenna. For the antenna
radiation layer, the selected antenna aperture is approximately 1.5λ, through the parameter
scan, as shown in Figure 4, to determine the size range of the aperture w of 4.32–4.77 mm,
as the subsequent optimization condition, thereby pushing to the rest of the parameters.
The width of the antenna feed layer is approximately 1λ, the width w8 of the coplanar
waveguide is approximately 0.23 mm, in order to connect with the rectifier element, it
needs to control its impedance in around 50 Ω, so if both sides of the gap are 0.1 mm, the
entire coplanar waveguide width can be controlled in about 0.5 mm. This is to facilitate
the subsequent connection with the rectifier element. Finally, by the size range of the
determined parameters, the overall optimization of all important parameters is carried out
to find out the optimal size of the antenna, and the optimized parameters are shown in
Table 1. The reflection coefficient and simulated gain of the antenna are given in Figure 5a.
In the 90.5–96 GHz band, the reflection coefficient of the antenna is less than −10 dB, the
antenna gain is greater than 13 dB, and the aperture efficiency is greater than 70% by
calculation. Figure 5b gives the radiation pattern of the antenna at 94 GHz, the radiation
patterns in the E-plane and H-plane maintain good agreement, and the side lobe level is
below −11 dB, which proves the good radiation performance of the proposed antenna.
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Figure 5. Simulated result: (a) reflection coefficient and the gain; (b) radiation pattern of the antenna.
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3. Measured Results

The fabricated antenna is shown in Figure 6. Antenna tests are conducted using the
far-field test method, when the antenna is being tested, the transceiver distance should
meet the far-field conditions. The test instrument uses a spectrum meter and signal source,
the set up method is shown in Figure 7. The measured results of the antenna reflection
coefficient compared with the simulated results are shown in Figure 8. At 90–96 GHz, the
reflection coefficient is less than −10 dB.
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The simulated and measured radiation patterns of the antenna at the center frequency,
94 GHz, in the E-plane and H-plane are shown in Figure 9. The simulated and measured
results are in good agreement. The measured cross-polarization level is −26.2 dB. Figure 10
shows the measured radiation patterns at 93, 93.5, 94, 94.5, and 95 GHz for E-plane and
H-plane, respectively. The radiation patterns of the antenna are very consistent at each
frequency point.
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Figure 10. Radiation patterns of the antenna at 93, 93.5, 94, 94.5 and 95 GHz. (a) E-plane; (b) H-plane.

Figure 11 shows the measured and simulated frequency characteristics of the gain.
The dashed lines indicate the gain at aperture efficiency of 90, 80, 70, and 60%. The gain of
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the antenna is greater than 12 dB at 93.5–94.5 GHz, and the measured aperture efficiency is
higher than 60%. The maximum gain measured is 13.15 dB at 93.5 GHz, and the aperture
efficiency is 79%.
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The rectenna performance test is given in [23,25], and the rectification efficiency is
greater than 20% at 93–94 GHz, and the highest rectification efficiency is 24.3% at 94 GHz.

4. Conclusions

In summary, a W-band SIW slot array antenna that can be applied to microwave power
transmission systems is proposed in this paper. The coupling aperture, the SIW–CPW
transition structure, the CPW-rectifier element transition structure, and the rectifier element
are integrated into a small size range, thus allowing the antenna radiating structures to be
closely aligned. The close arrangement of the radiation structure improves the aperture
efficiency of the antenna, which also facilitates the planarization and miniaturization of
the antenna. At 90–96 GHz, the reflection coefficient of the antenna is less than −10 dB,
the aperture efficiency is greater than 60% at 93.5–94.5 GHz, and the maximum gain is
13.2 dB at 93.5 GHz, corresponding to the aperture efficiency is 79%. The results prove
that the antenna proposed has good performance and can be used in microwave power
transmission systems as a rectenna.
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