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Abstract: With the constant need for the development of smart devices, Micro-Electro-Mechanical
Systems (MEMS) based smart sensors have been developed to detect hazard materials, micro-particles
or even toxic substances. Identifying small particles using such micro-engineering technology requires
designing sensors with high sensitivity, selectivity and ease of integration with other electronic
components. Nevertheless, the available detection mechanism designs are still juvenile and need
more innovative ideas to be even more competitive. Therefore, this work aims to introduce a
novel, smart and innovative micro-sensor design consisting of two weakly electrostatically coupled
microbeams (both serving as sensors) and electrically excited using a stationary electrode assuming
a dc/ac electric signal. The sensor design can be tuned from straight to eventually initially curved
microbeams. Such an arrangement would develop certain nonlinear phenomena, such as the snap-
through motion. This behavior would portray certain mode veering/mode crossing and ultimately
mode localization and it would certainly lead in increasing the sensitivity of the mode-localized
based sensing mechanism. These can be achieved by tracking the change in the resonance frequencies
of the two microbeams as the coupling control parameter is varied. To this extent, a nonlinear model
of the design is presented, and then a reduced-order model considering all geometric and electrical
nonlinearities is established. A Long-Time Integration (LTI) method is utilized to solve the static
and dynamics of the coupled resonators under primary lower-order and higher-order resonances,
respectively. It is shown that the system can display veering and mode coupling in the vicinity of
the primary resonances of both beams. Such detected modal interactions lead to an increase in the
sensitivity of the sensor design. In addition, the use of two different beam’s configurations in one
device uncovered a possibility of using this design in detecting two potential substances at the same
time using the two interacting resonant peaks.

Keywords: MEMS; veering; mode-localization; snap-through; crossing

1. Introduction

Micro-Electro-Mechanical Systems (MEMS) designate a smart and innovative tech-
nology integrating small devices with a combination of miniature mechanical and elec-
trical components. Most of these devices are fabricated using bulk micro-machining,
surface micro-machining and lithography processes and their assembly is based on in-
tegrating semiconductors’ circuitry processes, such as PolyMUMPs, SOIMUMPs and
PiezoMUMPs [1–4]. These tiny devices are used principally as either sensors or actu-
ators and are central to the revolution of the latest industrial technologies due to their
main advantages, such as their small size and their low cost of production. Furthermore,
these devices can provide significant improvements in terms of performances compared
to large macro-scale devices. Due to the diversity of their application fields, they are
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prominent in a variety of industries, such as medical applications, automobile industries
and RF communications.

There are different methods to excite MEMS devices, such as electrothermal, electro-
magnetic, piezoelectric and electrostatic. Among these methods, the electrostatic actuation
has been developed and utilized in a wide variety of applications due to its many inherent
advantages. For example, it offers good coupling between different energy domains in the
micro-scale, requires small current compared to other actuation methods, reduces the over-
all power consumption, produces a controllable distance and requires a simple fabrication
process [2–4]. The electrostatic output force is relatively small compared to other actuation
methods but it results in a simple design that involves only two electrodes, one of which
is fixed, called the stationary electrode, and another that is able to move toward or away
from the fixed electrode depending on the adopted actuation mechanism [5].

The electrostatic actuation has several arrangements, such as parallel electrodes (mi-
crobeams) based capacitor and even interdigitated comb-fingers, where in both, the force
can be attractive when the two electrodes are of opposite charges and repulsive when they
are carrying the same electrical charges. However, this actuation mechanism results in some
nonlinear phenomena, such as dynamic pull-in instability where the electrostatic actuating
force becomes higher than restoring mechanical force and limits the travel ranges of MEMS
devices [6–9]. This pull-in instability is a major challenge in the design of electrostatically
actuated microbeams where they exhibit only one stable equilibrium and beyond which
the micro-structure loses its structural stability [10].

To overcome this challenge and to increase the electrostatically actuated micro-structures
travel range, flexible and slightly curved beams (shallow arches) have been suggested and
then thoroughly examined [11–15]. Indeed, the slightly curved microbeams have the ability
to move from one stable equilibrium to another stable equilibrium or oscillate under the
same excitation load. The transition between two stable points is commonly referred to as
snap-through motion whereas the structure is called bistable [11,12]. Curved microbeams
can be fabricated by buckling straight beams through compressive axial loads (buckled
beams) or intentionally designed to be curved [16]. MEMS bistable structures have been
used in a variety of applications including micro-valves, electrical micro-relays, mechanical
memories, gas sensors switches and tweezers [5,17].

Due to the interaction between the geometry nonlinearity (mid-plane stretching)
and the force nonlinearity, the curved structure exhibits multiple stable equilibria, snap-
through motion and pull-in instabilities along with modal interaction [18–22]. It is well
acknowledged that there are abundant nonlinear phenomena in MEMS while extending
the micro-devices driving forces into the nonlinear regimes [23–31]. Essentially, a large exci-
tation will significantly increase the vibration amplitude and thus improve the performance
of such devices [32–34].

However, the instability usually coexists with any large nonlinear behavior, and
therefore, it is indispensable to explore how to increase the vibration amplitude without
reducing the stability of the designed micro-sensor. Nevertheless, and despite the chal-
lenging concerns coming from the nonlinear behavior, electrostatically actuated MEMS
resonators have been utilized as sensors mainly utilizing the resonance frequency shift to
measure forces, accelerations and masses [20,25]. To this extent, a new generation of MEMS
based sensors using the phenomenon of mode localization (confinement of vibration) has
emerged in the past decade, demonstrating rich and complex interesting nonlinear modal
interaction behaviors, such as mode crossing and mode veering [34]. This mainly hap-
pens when two frequencies of a system are equal in magnitude or become very close to
each other, respectively.

Indeed, some research works [35–42] have carefully analyzed the nonlinear char-
acteristics of single resonator based micro-sensors in order to depict such interesting
nonlinear modal interaction behaviors [43]. Then, a few groups attempted to design cou-
pled structures to exploit the mode coupling phenomenon and to design highly sensitive
sensors [42,44,45]. They utilized the mode localization of mechanically and/or electrostat-
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ically coupled resonators operating in a linear vibration range and where mode aliasing
represents an obstacle that limits their sensitivity improvement and therefore investigated
mode localization to enhance the performance of these micro-sensors.

In this regard, the aim of the proposed work is to suggest and examine a novel
MEMS sensor design consisting of two microbeams coupled and excited electrostatically
via one lower in-plane stationary electrode. The design has the advantage of coupling
electrostatically two microbeams serving as sensors to reduce the required input power
and the device input power and footprint compared to that driven by comb-drive fingers.
The two beams can be fabricated as straight and/or initially curved beams considering
the advantages mentioned earlier in the literature review survey. The use of two different
beam configurations in one device is beneficiary toward detecting two potential substances
at the same time. The system would be a representative design of a mode-localized based
sensor consisting of two weakly electrostatically coupled microbeams. A comprehensive
analytical model incorporating all possible nonlinear terms is presented and solved based
on the Galerkin method combined with the Long-Time Integration (LTI) method. The
dynamic characteristics of two coupled resonators are investigated around their respective
primary resonances.

2. Device Geometrical Properties and Operational Mechanism

The proposed sensor consists of two microbeams, both designed as straight or initially
curved, denoted as upper and lower beams and actuated by one sidewall electrode, as
shown in Figure 1. The two beams have a length of `b = 1000 µm and a width of b = 30 µm.
They both assume a thickness of h = 2 µm whereas the initially curved beam assumes an
initial rise of bu◦ = 2 µm. The capacitor gap between the sidewall electrode to the straight
beam is set to dl = 10 µm and from the straight beam to the initially curved beam is set to
du = 10 µm.

`b

dl

Vlac

−
+Vldc

du

bu◦

Vuac

−
+Vudc

x

y

Lower Beam
Upper Beam

wu
wu◦

Figure 1. A schematic showing the sensor and the electrical connection.

The sensor uses the phenomenon of mode localization and measures the change in the
vibration mode of coupled resonators to detect a small perturbation. Its sensitivity depends
on the ratio between the mechanical properties of the microbeams and the electrostatic
coupling force. We expect that any small perturbation in the added mass will lead to
veering and/or crossover phenomena, and therefore a change in the resonance frequency
can be measured. The sensor's sensitivity also depends on the operational mode where
there are two fundamental modes. The first one is the quasi-static mode known in the
literature as binary sensors with ON and OFF states. The second mode is based on a
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harmonic signal where the sensor can be operated as a traditional linear frequency-shift-
based sensor or bifurcation-type based sensor depending on the actuation levels. We expect
that the bifurcation-type sensors are significantly sensitive compared to the quasi-static
and linear-frequency shift sensors to changes in mass interpreted as changes in the location
of the bifurcation nodes in the nonlinear frequency responses.

The operational principle of the proposed design depends on the vibrating modes
of the microbeams, as shown in the simple lumped model of Figure 2. These eventually
correspond to the symmetric and the antisymmetric modes, respectively. This means that
by adding a small mass on the first resonator and tuning the forcing static component, the
fundamental frequency reduces, and therefore the coupled resonators sensor vibrates at
the lowest mode and vise versa for the second resonator, as portrayed in Figure 2b. Indeed,
this confirms that the fundamental resonating mode of the system becomes localized on
the first resonator for the first mode, and on the second one for) the second mode. The
sensitivity of such a sensor can be enhanced by tuning the material (stiffness coefficients
k1 and k2 in the below Figure 2a), the geometrical (sizes of the vibrating masses) and the
coupling electrostatic field.

Resonator 1 Resonator 2

m1 m2

k1

c1

k2

c2

vdc

x1 x2

(a)

frequency

am
pl

itu
de

Sweep-up

Resonator 1
Resonator 2

(b)

Figure 2. (a) A schematic showing the electrostatically coupled microbeams and (b) typical mode-
localized based sensors frequency-response curves.

3. Mathematical Modeling

The problem formulation and derivation of the equations of motion describing the
transverse motion of the above sensor have been carried out following the Newton’s
mechanics approach. The two beams are coupled electrostatically as shown in Figure 1. The
initial curvature of the upper microbeam is denoted as bu◦. The respective cross-sectional
area of the two beams is denoted by A = b ∗ h, respectively, where h is the thickness and
b is the width. Knowing that both beams are anchored and as a first step, we draw the
free-body-diagram (F.B.D) for each beam as shown in Figures 3 and 4.
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The forcing terms appearing in both two figures (N̂l , N̂u, F̂ld, F̂ud, R̂l and R̂u) are the
normal, damping and mid-plane stretching forces for the lower and upper beams, respec-
tively. F̂el is the electrostatic force that actuates the lower microbeam from the stationary
electrode. Note that the separation distance at any point along the lower beam to the
stationary electrode is denoted by (dl − ŵl).

N̂l N̂l

F̂ld

R̂l + F̂Nl F̂el

F̂ue

ŵl

Figure 3. The F.B.D for the lower microbeam under the effect of electrostatic force, damping force,
normal force and mid-pane stretching.

N̂u N̂u

F̂ud

R̂u + F̂Nu F̂eu

ŵu

Figure 4. The F.B.D for the upper microbeam under the effect of electrostatic force, damping force,
normal force and mid-pane stretching.

F̂eu is the electrostatic force applied to the upper beam and the separated distance
between two points along the beam span is (du + ŵl − ŵu). This, in fact, is where the two
microbeams are coupled through the electrostatic force. It means that the force is directly
applied to the lower beam and then the lower beam is excited the upper beam. The expres-
sions of the forcing terms appearing in the F.B.Ds are all listed in the following Table 1:

Table 1. Definition of the force expressions shown in the F.B.Ds.

Lower Microbeam Upper Microbeam

Normal Force F̂Nl = N̂l ŵ′′l F̂Nu = N̂u ŵ′′u

Damping Force F̂ld = ĉ ˆ̇wl F̂ud = ĉ ˆ̇wu

Mid-plane Stretching EA
2`b

∫ `b
0 (ŵ′′l ŵ′2l )dx EA

2`b

∫ `b
0 (ŵ′′u ŵ′2u )dx

Electrostatic Force εb(Vldc+Vlac cos(Ω̂t̂))2

2(dl−ŵl)2
εb(Vudc+Vuac cos(Ω̂t̂))2

2(du+ŵl−ŵu)2

Where ĉ is the viscous damping coefficient, E is Young’s modulus of elasticity. `b is
the length of the beam, N̂ is the axial load, ε is the dielectric constant, Vdcl and Vacl are
the applied biased and harmonic voltages in the lower beam. Vdcu and Vacu are the biased
and time-varying voltages that apply to the upper beam. The excitation frequency of the
voltage waveform is denoted by Ω̂.

3.1. Equations of Motion

Following the Newton’s second law associated with the Euler Bernoulli’s beam theory,
we derive the equations of the motion describing the transverse deflections of the two
microbeams as follows [8,10]:
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• lower microbeam

ρA ˆ̈wl + ĉ ˆ̇wl + EIŵ′′′′l =
EA
2`b

[
ŵ′′l

∫ `b

0
(ŵ′2l − 2ŵ′l)x̂

]
+

εbV2
l

2(dl − ŵl)2

− εbV2
u

2(du + ŵl + ŵu◦ − ŵu)2

(1)

where
ŵu◦ =

bu◦
2du

(1− cos(2πx))

and the associated boundary conditions are

ŵl(0, t̂) = 0 , ŵ′l(0, t̂) = 0 , ŵl(`b, t̂) = 0 , ŵ′l(`b, t̂) = 0 (2)

• upper microbeam

ρA ˆ̈wu + ĉ ˆ̇wu + EIŵ′′′′u =
EA
2`b

[
(ŵ′′u − ŵ′′u◦)

∫ `b

0
(ŵ′2u − 2ŵ′u◦ŵ

′
u)dx̂

]
+

εbV2
u

2(du + ŵl + ŵu◦ − ŵu)2

(3)

with associated boundary conditions listed as

ŵu(0, t̂) = 0 , ŵ′u(0, t̂) = 0 , ŵu(`b, t̂) = 0 , ŵ′u(`b, t̂) = 0 (4)

where ρ denotes the mass density and I symbolizes the moment of inertia, which is equal to
bh3

12 . Equation (1) shows that the two beams are electrostatically coupled through the force
term. This, in fact, confirms that as the lower beam is excited, the upper beam will respond
to it and may result in rich static and dynamic behavior depending on the excitation level.
This configuration could also lead to several excitation scenarios as will be discussed in the
following sections.

3.2. Normalization Process

In order to deal with these types of equations in the micro-scale, it is more convenient to
write them in the nondimensional form. Thus, this process can be performed by introducing
the following nondimensional variables:

wl =
ŵl
dl

, wu =
ŵu

du
, x =

x̂
`b

, t =
t̂
T

(5)

where T is a time scale parameter and is chosen to be T =
√

ρbh`4
b/EI. Substituting

Equation (5) into Equations (1)–(4) yield to the nondimensional equation of motion of

• lower microbeam

ẅl + cẇl + EIw′′′′l =α1

[
w′′l

∫ 1

0
(w′2l − 2w′l)dx

]
+

α2V2
l

(1− wl)2

− α2V2
u

( du
dl
+ wl + wu◦ − wu)2

(6)

and the associated boundary conditions are

wl(0, t) = 0 , w′l(0, t) = 0 , wl(1, t) = 0 , w′l(1, t) = 0 (7)
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• upper microbeam

ẅu + cẇu + EIw′′′′u =α1(w′′u − w′′u◦)
[ ∫ 1

0
(w′2u − 2w′u◦w

′
u)dx

]
+

α2V2
u

( du
dl
+ wl + wu◦ − wu)2

(8)

with associated boundary conditions listed as

wu(0, t) = 0 , w′u(0, t) = 0 , wu(1, t) = 0 , w′u(1, t) = 0 (9)

where the nondimensional coefficients appear in Equations (6) and (8) are defined as follows

c =
ĉ`4

b
TEI

, α1 = 6
(dl

h

)2
, α2 = 6

( ε`4
b

Eh3d3
l

)
(10)

3.3. Reduced-Order Model (ROM)

Equations (6) and (8) are discretized using the straight beam mode shapes φi(x) as
basis functions in a Galerkin expansion to obtain the reduced-order model (ROM). First
of all, we solve for the static deflection of the both two beams wls and wus as a function
of the static voltages Vldc and Vudc by eliminating the time derivatives from the equations
of motion to obtain a static equilibrium equations. This results in a static equation for the
lower microbeam as follows:

w′′′′ls = α1

[
w′′ls

∫ 1

0
(w′′ls − 2w′ls)dx

]
+

α2V2
ldc

(1− wls)2 −
α2V2

udc

( du
dl
+ wls + wu◦ − wus)2 (11)

and it is subjected to the following boundary conditions

wls(0, t) = 0 , w′ls(0, t) = 0 , wls(1, t) = 0 , w′ls(1, t) = 0 (12)

Similarly, the equation describing the static equilibria of the upper beam under the
effect of the static voltage can be written as:

w′′′′us = α1(w′′us − w′′u◦)
[ ∫ 1

0
(w′′us − 2w′u◦w

′
us)dx

]
+

α2V2
udc

( du
dl
+ wls + wu◦ − wus)2 (13)

and it is subjected to the following boundary conditions

wus(0, t) = 0 , w′us(0, t) = 0 , wus(1, t) = 0 , w′us(1, t) = 0 (14)

Then, we descretize the static deflections of the two microbeams in terms of the
Galerkin approximation as

wls =
N

∑
i=1

φi(x)qli ; i = 1, . . . , N

wus =
N

∑
i=1

φi(x)qui ; i = 1, . . . , N

(15)

where qli are modal coordinates for the lower beam and qui are modal coordinates for the
upper beam. Substituting these transformation forms into Equations (11)–(14) and then
multiplying both sides of Equation (11) by [(1− wls)

2 × ( du
dl
− wls − wu◦ − wus)2] to avoid

numerical errors in the response near the singularity yield to the following ROM for the
lower microbeam as
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(
(1−

N

∑
i=1

φiqli)
2(

du

dl
−

N

∑
i=1

φiqli − wu◦ −
N

∑
i=1

φiqui)
2
) ( N

∑
i=1

φiv
i qli

− α1(
N

∑
i=1

φ
′′
i qli)

∫ 1

0

(
(

N

∑
i=1

φ
′
iqli)

2 − 2
N

∑
i=1

φ
′
iqli

)
dx
)
+

α2V2
ldc

(1−
N
∑

i=1
φ
′′
i qli)2

−
α2V2

udc

( du
dl
+

N
∑

i=1
φ
′′
i qli + wu◦ −

N
∑

i=1
φ
′′
i qui)2

= 0

(16)

and for the upper microbeam as

(
du

dl
−

N

∑
i=1

φiqli − wu◦ −
N

∑
i=1

φiqui)
2
( N

∑
i=1

φiv
i qui − α1(

N

∑
i=1

φ
′′
i qui − w′′u◦)

∫ 1

0

(
(

N

∑
i=1

φ
′
iqui)

2

− 2w′u◦
N

∑
i=1

φ
′
iqui

)
dx
)
+

α2V2
udc

( du
dl
+

N
∑

i=1
φ
′′
i qli + wu◦ −

N
∑

i=1
φ
′′
i qui)2

= 0
(17)

Multiplying Equations (16) and (17) by the mode shapes φj and carrying out the
integration over the beam length results in N algebraic equations describing the equilibrium
position for the lower beam as

∫ 1

0
φj

[(
(1−

N

∑
i=1

φiqli)
2(

du

dl
−

N

∑
i=1

φiqli − wu◦ −
N

∑
i=1

φiqui)
2
) ( N

∑
i=1

φiv
i qli

− α1(
N

∑
i=1

φ
′′
i qli)

∫ 1

0

(
(

N

∑
i=1

φ
′
iqli)

2 − 2
N

∑
i=1

φ
′
iqli

)
dx
)
+

α2V2
ldc

(1−
N
∑

i=1
φ
′′
i qli)2

−
α2V2

udc

( du
dl
+

N
∑

i=1
φ
′′
i qli + wu◦ −

N
∑

i=1
φ
′′
i qui)2

]
= 0

(18)

and for the upper beam as

∫ 1

0
φj

[
(

du

dl
−

N

∑
i=1

φiqli − wu◦ −
N

∑
i=1

φiqui)
2
( N

∑
i=1

φiv
i qui − α1(

N

∑
i=1

φ
′′
i qui − w′′u◦)

∫ 1

0

(
(

N

∑
i=1

φ
′
iqui)

2 − 2w′u◦
N

∑
i=1

φ
′
iqui

)
dx
)
+

α2V2
udc

( du
dl
+

N
∑

i=1
φ
′′
i qli + wu◦ −

N
∑

i=1
φ
′′
i qui)2

]
= 0

(19)

These equations are then solved for qli and qui as functions of the static voltage to obtain
the static deflections of the lower and upper microbeams. The forced eigenvalue problem
describing the two microbeams oscillations around their static equilibria is obtained by
resolving each beam total deflection into a static component and a dynamic component
and then substituting this form into the equations of motion. Then, a similar procedure to
that used in the static analysis can be carried out to develop the reduced-order model of
the eigenvalue problem. The resulting equations are then evaluated to obtain the dynamic
responses of the two beams. This can be completed by integrating the equations over a
long-time period and the time histories are then evaluated over the last signal periods to
obtain the steady-state response.
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4. Results and Discussions

In this investigation, two main actuation scenarios will be considered. The first
scenario is to vary the lower beam’s actuation signal and keep it at a constant level for
the upper beam. Then, we will revert the process by applying a varying signal to the
upper beam and keep the lower beam actuation signal at a constant value. This is a
required step to study the nonlinear dynamics and modal interactions of the two beams
and how the variation in the control parameter would affect their static, eigenvalues and
dynamic responses.

4.1. Case I: Varying Excitation Signal of the Lower Beam

Here, we investigate the static and dynamic responses of the coupled beams when the
excitation signal varies along the lower beam and the upper beam Vudc voltage’s sets to 0, 20
and 40 V, respectively. First of all, the static deflections of the lower and upper microbeams
mid points wls(0.5) and wus(0.5), respectively, excited by a distributed electrostatic force
has been computed through simultaneously solving Equations (18) and (19) utilizing three
symmetric mode in the Galerkin’s expansion. Figure 5a indicates that only the lower beam
is responding to the actuation signal when the upper beam voltage is set to zero. The figure
also shows that the lower beam mid-point deflection increases as the voltage increases until
it reaches a pull-in voltage and loses its stability.

Similar behavior is also observed when the static voltage of the upper beam increases
to 20 V. However, its mid-point deflection starts changing from a new setting-point corre-
sponding to wus = 0.145 µm as shown in Figure 5b. This is expected because the upper
beam in this case is biased. On the other hand, the lower beam mid-point deflection starts
increasing its amplitude from a setting point of wls = −0.326 µm. We note that setting
the actuation dc voltage of the upper microbeam to 20 V or less is not sufficient enough to
actuate it. Indeed, we confirm there will be no modal interaction between the two beams
for this particular case.

To further validate this, we increase the upper microbeam voltage to 40 V. This leads
to a highly nonlinear static response characterized by a snap through where the stable
branches of the solution meet the unstable branches of the solution, as shown in Figure 5c.
The stable branches of solutions are marked as solid lines and the unstable branches of the
solution are marked as dashed lines. The results show also that the upper beam is now
activated and responding to the actuation signal. We believe this is due to a high electric
field with energy streaming or flowing from the lower beam to the upper beam.

Next, we explore the effect of these excitation signals on the fundamental frequencies
of both microbeams. This is performed by substituting the static results obtained above,
employing a ROM with three symmetric modes into the equation described in Section 3.3
and then solving for the corresponding eigenvalues. Because of the presence of the coupled
electrostatic forces between the two beams, we expect some nonlinear phenomena, such as
mode veering, mode crossover and eventually mode localization.

We note that the veering phenomenon may occur when one of the eigenvalues of the
two beams approach each other as the excitation signal varies. This is a similar behavior
to that presented in [21,22,34,39]. Then, they diverge away from each other as the control
parameter leaves the zone. These frequencies’ closeness could increase the sensitivity of
such a design. To confirm it, we have to track the changes in the resonance frequencies of
the two microbeams. At this stage, we are targeting the frequencies that are corresponding
to the first in-plane symmetric mode.

Figure 6 shows the variation in the first resonance frequency of the lower beam fl1,
marked with blue lines, and of the upper beam fu1, marked with orange lines, as the
lower beam static voltage varies and the upper beam’s voltage is set to 0, 20 V and 40 V,
respectively. We note that the upper beam resonance frequency does not display any
change, as shown in Figure 6a,b. This is expected because the static deflection of the upper
beam wus does not change due to the weak electrostatic coupling force. The figure also
shows that a crossover phenomenon occurs between the two frequencies.
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Increasing the upper static voltage to Vudc = 40 V, the two resonance frequencies,
fl1 and fu1, approach each other as the lower dc voltage reaches 40 V, as illustrated in
Figure 6c. At this zone, the lower beam frequency increases and the upper beam frequency
decreases. This closeness is characterized by a veering phenomenon with a minimum
difference between the two frequencies of ∆ f = 2.63 kHz and it occurs at a voltage of
Vldc = 45 V.

Furthermore, we examine the frequency-response curves of the first lower ( fl1) and
upper ( fu1) resonance frequencies in the vicinity of the veering zone shown in Figure 6c.
This is completed by subjecting the sensor to three different voltage waveforms. They
correspond to voltages before, at and after the veering zone. Utilizing different excita-
tion voltages will give further insights about the dynamic interaction between the two
microbeams and how the energy is exchanging among them. In this study, the quality
factor was set to 100, the harmonic voltage to Vlac = 0.1 V and the upper static voltage to
Vudc = 40 V.
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Figure 5. The beam mid-point deflections of the lower beam wls(0.5) and of the upper beam wus(0.5)
as a function of the lower static voltage using three-symmetric modes ROM and an upper voltage sets
to: (a) Vudc = 0, (b) Vudc = 20 V and (c) Vudc = 40 V. The stable static equilibria of the lower beam are
marked with blue lines, the stable static equilibria of the upper beam are marked with orange lines
whereas the unstable static equilibria are marked with dashed black lines.
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Figure 6. The variation in the first resonance frequency of the lower beam fl1 and of the upper beam
fu1 as a function of the lower static voltage using three-symmetric modes ROM and an upper voltage
sets to: (a) Vudc = 0, (b) Vudc = 20 V and (c) Vudc = 40 V. The lower beam results are marked with
blue lines and the upper beam results are marked with orange lines.

Just before the veering zone, the frequency-response curves of the two beams show
linear responses with a mild softening behavior when the lower static voltage sets to
Vldc = 40 V, as shown in Figure 7a. The frequency gap between the two resonances is
approximately found to be ∆ f = 4.55 kHz. We note that the dynamic oscillations of
the lower beam are much higher than that of the upper beam and thus it becomes more
sensitive. This, in fact, is due to the effect of the electrostatic force, which is localized at
the lower mode compared to that at the higher mode. The figure also shows a modal
interaction characterized by two small peaks appearing at each resonance. This means
the two microbeams start to exchange energy as they move forward and closer to the
veering zone.

To further examine the modal interaction, we increase the lower static voltage to
Vldc = 45 V. This value is even closer to the veering zone. Figure 7b indicates that the two
resonances become close to each other with a frequency gap of ∆ f = 2.63 kHz. As the
excitation frequency is swept up, two additional peaks appear at the lower and the upper
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microbeams’ resonances, respectively. This confirms that the two beams are electrostatically
coupled and the energy is equally distributed across each mode. This behavior is suitable for
mass sensing applications because of the presence of two microbeams that allow detecting
two different objects at the same time while being excited by a single force.
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Figure 7. The frequency-response curves of the lower beam resonance frequency fl1 and of the upper
beam resonance frequency fu1 with an upper voltage sets to Vudc = 40 V and lower voltage sets to:
(a) Vldc = 40 V, (b) Vldc = 45 V and (c) Vldc = 50 V. The lower harmonic voltage Vlac is set to 0.1 V.
The lower beam results are marked with blue lines and the upper beam results are marked with
orange lines.

On the other hand, Figure 7c shows that the two modes veer away from each other as
the lower static voltage increases to Vldc = 50 V with a frequency gap of ∆ f = 3.11 kHz.
This confirms that the two modes are leaving the veering zone with no sign of crossing. We
note that the energy is localized at the upper beam. However, the lower mode dominates
the dynamic oscillation in the neighborhood of the upper mode.

We can conclude that before the veering zone, each mode is stronger in its region with
a weak electrostatic coupling force. This is not the case as they move toward the veering
zone where both of them are equally contributing to the overall dynamic response, after
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which the energy is localized at the vicinity of the upper beam with a high contribution
coming from the lower mode.

4.2. Case II: Varying Excitation Signal of the Upper Beam

In the subsequent simulations, we apply a varying excitation waveform along the
upper beam and set the lower beam to constant values corresponding to 0, 20 and 40 V.
Figure 8 shows the variation in the mid-point static deflection of the lower wls(0.5) and of
the upper beam wus(0.5) as a function the upper beam excitation voltage. In all cases, two
branches of stable equilibria marked as solid lines and two branches of unstable equilibria
marked as dashed black lines were observed.
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Figure 8. The beam mid-point deflections of the lower beam wls(0.5) and of the upper beam wus(0.5)
as a function of the upper static voltage using three-symmetric modes ROM and a lower voltage sets
to: (a) Vldc = 0, (b) Vldc = 20 V and (c) Vldc = 40 V. The stable static equilibria of the lower beam are
marked with blue lines, the stable static equilibria of the upper beam are marked with orange lines
whereas the unstable static equilibria are marked with dashed black lines.

Varying the upper beam voltage only shows that the mid-point deflection of the lower
beam decreases as the upper voltage increases along the first branch of stable equilibria,
corresponding to the beam initial curvature. Similarly, the upper beam deflection increases
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until Vudc voltage reaches 39.33 V, where the two beams jump to a second equilibrium
corresponding to the initial counter-curvature at point marked as ST. This jump is a basic
characteristic of the snap-through process. At this point, the stable branches of equilibria
meet the first branch of unstable equilibria in a saddle-node bifurcation as shown in
Figure 8a. Under this actuation level, we note that the two beams start deflecting from a
zero position as clearly shown in the figure.

On the other hand, increasing the upper static voltage beyond the snap-through
threshold increases the counter deflection of the upper mid point and decreases the counter
deflection of the lower mid point along the second stable branch until it reaches another
saddle-node bifurcation denoting the “pull-in instability” at a Vudc voltage of 42.67 V. At
this point, the second branches of stable equilibria meet the second branches of unstable
equilibria and lose their stability by going into contact with the stationary electrode. Indeed,
there are no physical stable equilibria beyond this point.

Additionally, decreasing the upper voltage after the two beams snap toward the second
equilibria decreases the counter curvature of the upper beam mid point and increases the
counter curvature of the lower beam mid point along the second stable branches until the
beams snap back (SB) and jump at V = 38.27 V to the first branches of stable equilibria as
illustrated in Figure 8a. At this point, the second stable branches of equilibria meet the first
unstable branches in another saddle-node bifurcation.

A similar behavior is also observed when the lower voltage sets to Vldc = 20 V, as
shown in Figure 8b. However, the lower beam starts deflecting from a biased position
corresponding to wls = 0.42 µm. This, in fact, is due to the effect of the static voltage that
applies directly to the lower beam before the upper voltage is activated. The results show
that the deflections of the two beams are equal in magnitude as the upper voltage reaches
Vudc = 19.36 V. Repeating the similar procedure described above and further increasing the
lower static voltage to Vldc = 40 V lead to a similar response, as shown in Figure 8c.

We note that, under this actuation scheme, the lower beam starts its deflection from a
new biased position corresponding to wls = 1.49 µm and its first stable branch of solution
crosses the upper first stable branch of solution at a voltage of Vldc = 38.29 V. This is closer
to the snap-through region and confirms that the more the lower voltage increases the more
the crossing point shifts to the right.

Moreover, the variation of the fundamental frequencies of the both microbeams under
excitation waveforms similar to that used in the static analysis has been studied. This
will give more insight as to whether the modes are veering or crossing each other under
these excitation conditions. Setting the lower static voltage to Vldc = 0 and varying the
upper static voltage lead to continuous increases in the lower beam fundamental frequency,
marked with a blue line, before it drops along the first stable branch of equilibria until it
reaches zero at the snap-through voltage Vudc = 39.33 V, as shown Figure 9a.

Then, it increases as the upper voltage further increases along the second branch of
equilibria, corresponding to the initial counter curvature, until it reaches a maximum value
of 14.88 kHz. After that, it suddenly drops and reaches zero at the pull-in instability voltage
of V = 42.67 V. We note that the first drop indicates that the geometric nonlinearities
dominate the electrostatic force nonlinearities. However, after the beam snaps, the beam
becomes closer to the stationary electrode, and therefore the electrostatic force nonlinearities
dominate the geometric nonlinearities and overcome its restoring force.

On the other hand, the upper beam fundamental frequency continuously drops along
the first stable equilibria, marked with orange line, as the voltage increases until it reaches
a zone where its value become closer to the lower beam fundamental frequency. This is
a classical behavior of the veering phenomenon where two modes are approaching each
other and then veer away as the control parameters change. In the neighborhood of veering
zone, we have found that the minimum frequency gap between the two frequencies is
approximately ∆ f = 2.53 kHz and occurs at a voltage of Vudc = 31.3 V.

Figure 9a illustrates that the upper beam frequency increases as it leaves the veering
zone until it reaches the snap-through threshold. We note that the mode does not evince a
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discontinuity as the equilibrium position jumps from the first to the second stable branches
of the solution at the snap-through point. However, it jumps to higher values after the snap
through and does not reach zero neither at the snap through nor at the pull-in points due
to their strong geometric nonlinearities as compared to the forcing nonlinearities.
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Figure 9. The variation in the first resonance frequency of the lower beam fl1 and of the upper beam
fu1 as a function of the upper static voltage using three-symmetric modes ROM and a lower voltage
sets to: (a) Vldc = 0, (b) Vldc = 20 V and (c) Vldc = 40 V. The lower beam results are marked with blue
lines and the upper beam results are marked with orange lines.

A similar behavior is also observed when the lower static voltage increases to Vldc = 20 V.
However, the two modes are approaching each other to a zone closer to the snap-through
threshold compared to that when it sets to 0 V. The minimum gap between the two fre-
quencies was found to be around 2.5 kHz, as shown in Figure 9b. Alternatively, the veering
phenomenon disappears as the lower static voltage further increases to Vldc = 40 V, as
clearly shown in Figure 9c. It confirms that not all coupled resonators would generate a veer-
ing zone. It totally depends on the design parameters as well as the excitation condition.

The dynamic response under this excitation scenario has been investigated by subject-
ing the two beams to a frequency sweep test in the vicinity of the veering zone, as described
in Figure 9. In this analysis, the signal frequency was swept up in a frequency range of
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10–30 kHz and the lower beam forcing signal was set to 0 and the upper beam forcing
signal was set to three levels: before, at and after veering zone.

The variation of the two beam mid-point velocities obtained under a voltage waveform
with Vldc = 0 V, Vudc = 20 V and Vuac = 0.1 V, corresponding to a voltage signal before the
veering zone shown in Figure 9a, and a frequency swept up in the range of 10–30 kHz is
shown in Figure 10a. It shows that as the signal frequency increases, the response increases
until it hits the primary resonance of the lower beam marked with a blue line. Then, the
response decreases as the frequency further increases until it reaches the vicinity of the
upper beam primary resonance, marked with an orange line. Small peaks appear at each
primary resonance due to the effect of the electrostatic coupling force between the two
modes. We observed that the two resonances are far away from each other with a frequency
gap of ∆ f = 7.3 kHz.
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Figure 10. The frequency-response curves of the lower beam resonance frequency fl1 and of the
upper beam resonance frequency fu1 with a lower voltage set to Vldc = 0 V and an upper voltage set
to: (a) Vudc = 20 V, (b) Vudc = 25 V, (c) Vudc = 30 V and (d) Vudc = 32 V. The upper harmonic voltage
Vuac is set to 0.1 V. The lower beam results are marked with blue lines and the upper beam results are
marked with orange lines.
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Further increasing the upper static voltage leads to a fast attraction toward the veering
zone with frequency gap starting to decrease, as shown in Figure 10b–d. During this
examination, we found that the small peak appears in the vicinity of the lower beam
and primary resonance grows dramatically as the forcing level increases. This confirms
that as the two modes are penetrating, the veering zone with the upper beam resonance
frequency dominates the lower resonance frequency. However, the two modes are not
completely merged and produce a single peak because there is still a frequency gap, as
shown in Figure 10d.

As the excitation force leaves the veering zone, the two modes start growing with
energy showing a mode localization like in the vicinity of the lower beam primary resonance
due to its shortcoming as shown in Figure 11a,b. It shows that the contribution of the
upper beam is more dominant than that corresponding to the lower one. In addition, the
frequency gap starts increasing, confirming that the two modes are moving away from each
other. We also note that when the lower voltage sets to zero, the two frequency-response
curves show softening behavior.
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Figure 11. The frequency-response curves of the lower beam resonance frequency fl1 and of the
upper beam resonance frequency fu1 with a lower voltage sets to Vldc = 0 V and a upper voltage sets
to: (a) Vudc = 33 V and (b) Vudc = 34 V. The upper harmonic voltage Vuac is set to 0.1 V. The lower
beam results are marked with blue lines and the upper beam results are marked with orange lines.

Replication of the above analysis with the lower voltage set to Vldc = 20 V results
in a similar behavior. However, a hardening response was observed in the frequency-
response curve of the lower beam whereas a softening response was observed for the upper
beam before the veering zone, as shown in Figure 12. Both frequency-response curves
have a discontinuity due to cyclic-fold bifurcation where the amplitude jumps from the
lower oscillation to the upper oscillation regime. In fact, these mixed nonlinear responses
switch to linear as the two resonances approach the veering zone. Finally, both resonances
become softer as they leave the veering zone and move away from each other, as illustrated
in Figure 13.
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Figure 12. The frequency-response curves of the lower beam resonance frequency fl1 and of the
upper beam resonance frequency fu1 with a lower voltage sets to Vldc = 20 V and a upper voltage
sets to: (a) Vudc = 32 V, (b) Vudc = 33 V, (c) Vudc = 34 V and (d) Vudc = 35 V. The upper harmonic
voltage Vuac is set to 0.1 V. The lower beam results are marked with blue lines and the upper beam
results are marked with orange lines.
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Figure 13. The frequency-response curves of the lower beam resonance frequency fl1 and of the
upper beam resonance frequency fu1 with a lower voltage set to Vldc = 20 V and an upper voltage set
to: (a) Vudc = 35.5 V and (b) Vudc = 36 V. The upper harmonic voltage Vuac is set to 0.1 V. The lower
beam results are marked with blue lines and the upper beam results are marked with orange lines.

5. Conclusions

This investigation has explored the vibration of weakly electrostatically coupled
clamped-clamped straight and initially curved microbeams. Linear (veering and crossing)
and nonlinear (localization) modal interactions under primary resonance were examined for
potential use of the design as a mode-localized based sensor. A comprehensive analytical
model incorporating all nonlinearities was established and then numerically solved based
on the Galerkin modal expansion method superimposed to a long-time integration tech-
nique. The dynamic characteristics of the two coupled resonators under primary resonance
were generated, and the contributions of their respective primary resonances in the overall
response were analyzed accordingly. The static results under dc voltages only showed
possibilities of having a mix of one-stable and even two-stables operating conditions, both
adjustable through slightly perturbing the assumed lower stationary electrode dc voltage.
Subsequently, this control parameter showed as well, throughout an eigenvalue problem
analysis, that for the coupled resonators, mode veering can occur, offering potentials of
nonlinear modal interaction, such as mode localization. Then, a dynamic analysis was
carried out and showed that under the same excitation conditions and around the system
primary resonance, linear and even softening behaviors can be obtained by adjusting the
overall actuating dc and/or ac voltage amplitudes. In addition, when assuming a dc volt-
age at the lower electrode that triggers possible modes veering, it was noticed that as this
excitation force drives the coupled system in the neighborhood of such a veering zone, the
two primary resonant modes are at maximum amplitudes, showing a non-trivial frequency
gap. They start varying and show a mode localization like in the vicinity of the upper
and/or lower beam primary resonance. This confirmed that as the two resonant peaks are
penetrating the veering zone, the upper and lower microbeams’ respective frequencies gap
reduces and they sort of exchange the peak-like dominance accordingly. Such interesting
modal interactions could lead to an increase in the sensitivity of such a sensing mechanism
and the computed results showed that this can be achieved by just varying a simple control
dc voltage parameter. The use of two different beam configurations in one device showed
the possibility of detecting two potential substances at the same time with two interacting
distinct resonant peaks.
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