A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications
Abstract
:1. Introduction
2. Principle of Operation
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Synthesis of the Fluorescent Dye and Optical Fibre Probe Preparation
3.3. Fabrication of the Microfluidic Channel
3.4. Integration of Optical Fibre with Microfluidic Channel
3.5. Characterization Setup
4. Results and Discussions
4.1. Characterization of the Optical Fibre Probe in a Static Liquid Sample
4.2. Characterization of the Optical Fibre Probe in a Microfluidic Channel with Fluid Flow
4.3. Performance Comparison with Previously Reported Optical Chemical pH Sensors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Werner, J.; Belz, M.; Klein, K.F.; Sun, T.; Grattan, K.T.V. Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement. Measurement 2021, 178, 109323. [Google Scholar] [CrossRef]
- Yue, Y.; Huo, F.; Lee, S.; Yin, C.; Yoon, J. A review: The trend of progress about pH probes in cell application in recent years. Analyst 2017, 142, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.U.; Qin, Y.; Nambiar, S.; Yeow, J.T.; Howlader, M.M.; Hu, N.X.; Deen, M.J. Deen, Polymers and organic ma-terials-based pH sensors for healthcare applications. Prog. Mater. Sci. 2018, 96, 174–216. [Google Scholar] [CrossRef]
- Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130099. [Google Scholar] [CrossRef] [Green Version]
- Edgar, W.M. The Role of Saliva in the Control of pH Changes in Human Dental Plaque. Caries Res. 1976, 10, 241–254. [Google Scholar] [CrossRef]
- Carlsson, S.; Wiklund, N.P.; Engstrand, L.; Weitzberg, E.; Lundberg, J.O.N. Effects of pH, Nitrite, and Ascorbic Acid on Nonenzymatic Nitric Oxide Generation and Bacterial Growth in Urine. Nitric Oxide 2001, 5, 580–586. [Google Scholar] [CrossRef]
- Kress-Rogers, E. Solid-state pH sensors for food applications. Trends Food Sci. Technol. 1991, 2, 320–324. [Google Scholar] [CrossRef]
- Singh, H.; Fox, P.F. Heat stability of milk: pH-dependent dissociation of micellar k-casein on heating milk at ultra-high temperatures. J. Dairy Res. 1985, 52, 529–538. [Google Scholar] [CrossRef]
- Domingues, D.S.; Takahashi, H.W.; Camara, C.A.; Nixdorf, S.L. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput. Electron. Agric. 2012, 84, 53–61. [Google Scholar] [CrossRef]
- von Bültzingslöwen, C.; McEvoy, A.K.; McDonagh, C.; MacCraith, B.D.; Klimant, I.; Krause, C.; Wolfbeis, O.S. Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst 2002, 127, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Van der Schueren, L.; De Clerck, K. The use of pH-indicator dyes for pH-sensitive textile materials. Text. Res. J. 2010, 80, 590–603. [Google Scholar] [CrossRef]
- Van der Schueren, L.; De Clerck, K. Coloration and application of pH-sensitive dyes on textile materials. Color. Technol. 2012, 128, 82–90. [Google Scholar] [CrossRef]
- EPA. Parameters of Water Quality: Interpretations and Standards; Environmental Protection Agency: Wexford. Ireland, 2001. [Google Scholar]
- Yu, H.Q.; Fang, H.H.P. Acidogenesis of dairy wastewater at various pH levels. Water Sci. Technol. 2002, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T.; et al. and Richardson, A.J. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013, 3, 919–925. [Google Scholar] [CrossRef]
- Devau, N.; Le Cadre, E.; Hinsinger, P.; Jaillard, B.; Gérard, F. Gérard, Soil pH controls the environmental availability of phos-phorus: Experimental and mechanistic modelling approaches. Appl. Geochem. 2009, 24, 2163–2174. [Google Scholar] [CrossRef]
- Poma, N.; Vivaldi, F.; Bonini, A.; Carbonaro, N.; Di Rienzo, F.; Melai, B.; Kirchhain, A.; Salvo, P.; Tognetti, A.; Di Francesco, F. Remote monitoring of seawater temperature and pH by low cost sensors. Microchem. J. 2019, 148, 248–252. [Google Scholar] [CrossRef]
- Zhang, C.; van Noort, D. Cells in microfluidics. Top Curr. Chem. 2011, 304, 295–321. [Google Scholar] [PubMed]
- Manjakkal, L.; Dervin, S.; Dahiya, R. Flexible potentiometric pH sensors for wearable systems. RSC Adv. 2020, 10, 8594–8617. [Google Scholar] [CrossRef] [Green Version]
- Kraikaew, P.; Jeanneret, S.; Soda, Y.; Cherubini, T.; Bakker, E. Ultrasensitive Seawater pH Measurement by Capacitive Readout of Potentiometric Sensors. ACS Sens. 2020, 5, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Perumal, V.; Prasad, R.H.; Hashim, U. pH Measurement using in house fabricated interdigitated capacitive transducer. In Proceedings of the RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics, Langkawi, Malaysia, 25–27 September 2013; pp. 33–36. [Google Scholar] [CrossRef]
- Arefin, S.; Coskun, M.B.; Alan, T.; Neild, A.; Redoute, J.-M.; Yuce, M.R. A MEMS capacitive pH sensor for high acidic and basic solutions. In Proceedings of the Sensors, Valencia, Spain, 2–5 November 2014; pp. 1792–1794. [Google Scholar] [CrossRef]
- Wang, T.; Green, R.; Guldiken, R.; Mohapatra, S.; Mohapatra, S. Multiple-layer guided surface acoustic wave (SAW)-based pH sensing in longitudinal FiSS-tumoroid cultures. Biosens. Bioelectronic. 2019, 124, 244–252. [Google Scholar] [CrossRef]
- Oh, H.; Lee, K.J.; Baek, J.; Yang, S.S.; Lee, K. Development of a high sensitive pH sensor based on shear horizontal surface acoustic wave with ZnO nanoparticles. Microelectron. Eng. 2013, 111, 154–159. [Google Scholar] [CrossRef]
- Paul, D.; Dutta, S.; Saha, D.; Biswas, R. LSPR based Ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing. Sens. Actuators B Chem. 2017, 250, 198–207. [Google Scholar] [CrossRef]
- Saikia, R.; Buragohain, M.; Datta, P.; Nath, P.; Barua, K. Fiber-Optic pH Sensor Based on SPR of Silver Nanostructured Film. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; Volume 1147, pp. 249–255. [Google Scholar] [CrossRef]
- Toh, Y.R.; Yu, P.; Wen, X.; Tang, J.; Hsieh, T.S. Induced pH-dependent shift by local surface plasmon resonance in functionalized gold nanorods. Nanoscale Res. Lett. 2013, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Gupta, B.D. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst 2013, 138, 2640–2646. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gupta, B.D. Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel. Sens. Actuators B Chem. 2012, 173, 268–273. [Google Scholar] [CrossRef]
- Nielsen, L.J.; Eyley, S.; Thielemans, W.; Aylott, J.W. Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem. Commun. 2010, 46, 8929–8931. [Google Scholar] [CrossRef]
- Hecht, M.; Kraus, W.; Rurack, K. A highly fluorescent pH sensing membrane for the alkaline pH range incorporating a BODIPY dye. Analyst 2013, 138, 325–332. [Google Scholar] [CrossRef]
- Gou, P.; Kraut, N.D.; Feigel, I.M.; Bai, H.; Morgan, G.J.; Chen, Y.; Tang, Y.; Bocan, K.; Stachel, J.; Berger, L.; et al. Carbon Nanotube Chemiresistor for Wireless pH Sensing. Sci. Rep. 2014, 4, 4468. [Google Scholar] [CrossRef]
- Maroto, A.; Balasubramanian, K.; Burghard, M.; Kern, K. Functionalized Metallic Carbon Nanotube Devices for pH Sensing. ChemPhysChem 2007, 8, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Juang, Y.-Z.; Lin, C.-F.; Tsai, H.-H.; Liao, H.-H.; Wang, R.-L. CMOS Biomedical Sensor with In Situ Gold Reference Electrode for Urine Detection Application. Procedia Eng. 2012, 47, 1005–1008. [Google Scholar] [CrossRef] [Green Version]
- Surre, F.; Lyons, W.B.; Sun, T.; Grattan, K.T.V.; O’Keeffe, S.; Lewis, E.; Elosua, C.; Hernaez, M.; Barian, C. U-bend fibre optic pH sensors using layer-by-layer electrostatic self-assembly technique. J. Physics Conf. Ser. 2009, 178, 012046. [Google Scholar] [CrossRef]
- Sharma, N.K.; Gupta, B.D. Fabrication and characterization of pH sensor based on side polished single mode optical fiber. Opt. Commun. 2003, 216, 299–303. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Tong, S. Optical Fibre Chemical Sensors, Optical Fibre Sensors: Fundamentals for Development; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 239–288. [Google Scholar]
- Nguyen, T.H.; Venugopalan, T.; Sun, T.; Grattan, K.T.V. Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6. IEEE Sens. J. 2015, 16, 881–887. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, L.H.; Dong, X.; Yang, J.; Long, H.Y.; So, P.L.; Chan, C.C. Miniature pH Optical Fiber Sensor Based on Fabry–Perot Interferometer. IEEE J. Sel. Top. Quantum Electron. 2015, 22, 331–335. [Google Scholar] [CrossRef]
- Corres, J.M.; Matias, I.R.; del Villar, I.; Arregui, F.J. Design of pH Sensors in Long-Period Fiber Gratings Using Polymeric Nanocoatings. IEEE Sens. J. 2007, 7, 455–463. [Google Scholar] [CrossRef]
- Zubiate, P.; Zamarreño, C.R.; Del Villar, I.; Matias, I.R.; Arregui, F.J. D-shape optical fiber pH sensor based on Lossy Mode Resonances (LMRs). In Proceedings of the Sensors, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Tough, T. Available online: https://www.turtletoughsensors.com/products/liquid-analysis/ph-orp (accessed on 31 July 2021).
- Magnusson, E.B.; Halldorsson, S.; Fleming, R.M.T.; Leosson, K. Real-time optical pH measurement in a standard micro-fluidic cell culture system. Biomed. Opt. Express 2013, 4, 1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Z.; Zhang, Y.; Li, Y.; Miao, Y.; Gao, S.; Lin, F.; Deng, Y.; Geng, L. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Biosens. Bioelectron. 2019, 126, 697–706. [Google Scholar] [CrossRef]
- Moradi, V.; Akbari, M.; Wild, P. A fluorescence-based pH sensor with microfluidic mixing and fiber optic detection for wide range pH measurements. Sens. Actuators A Phys. 2019, 297, 111507. [Google Scholar] [CrossRef]
- Zamboni, R.; Zaltron, A.; Izzo, E.; Bottaro, G.; Ferraro, D.; Sada, C. Opto-Microfluidic System for Absorbance Measurements in Lithium Niobate Device Applied to pH Measurements. Sensors 2020, 20, 5366. [Google Scholar] [CrossRef]
- Pinto, V.; Araújo, C.; Sousa, P.; Gonçalves, L.; Minas, G. A low-cost lab-on-a-chip device for marine pH quantification by colorimetry. Sens. Actuators B Chem. 2019, 290, 285–292. [Google Scholar] [CrossRef]
- Budinski, V.; Donlagic, D. All Silica Micro-Fluidic Flow Injection Sensor System for Colorimetric Chemical Sensing. Sensors 2021, 21, 4082. [Google Scholar] [CrossRef]
- Elmas, S.; Pospisilova, A.; Sekulska, A.A.; Vasilev, V.; Nann, T.; Thornton, S.; Priest, C. Photometric Sensing of Active Chlorine, Total Chlorine, and pH on a Microfluidic Chip for Online Swimming Pool Monitoring. Sensors 2020, 20, 3099. [Google Scholar] [CrossRef]
- Sieben, V.J.; Floquet, C.F.A.; Ogilvie, I.R.G.; Mowlem, M.C.; Morgan, H. Microfluidic colourimetric chemical analysis system: Application to nitrite detection. Anal. Methods 2010, 2, 484. [Google Scholar] [CrossRef]
- Al-Mugahiry, B.; Al-Lawati, H.A.J. Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. TrAC Trends Anal. Chem. 2020, 124, 115802. [Google Scholar] [CrossRef]
- Tiwari, S.; Bhat, S.; Mahato, K.K. Design and Fabrication of Low-cost Microfluidic Channel for Biomedical Application. Sci. Rep. 2020, 10, 9215. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for Biomedical Analysis. Small Methods 2020, 4, 1900451. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.-G.; Hu, S.; Peng, Y. Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosens. Bioelectron. 2020, 166, 112447. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Goryll, M.; Sin, L.Y.M.; Wong, P.K.; Chae, J. Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid. Nanofluidics 2011, 10, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Mark, D.; Haeberle, S.; Roth, G.; Stetten, F.V.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. In Microfluidics Based Microsystems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 305–376. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S. Short Review on Microfluidic Lab-on-a-Chip Systems for Future Applications in Space Technology. J. Nanosci. Nanoeng. Appl. 2020, 10, 26–30. [Google Scholar]
- Okazaki, T.; Watanabe, T.; Kuramitz, H. Evanescent-Wave Fiber Optic Sensing of the Anionic Dye Uranine Based on Ion Association Extraction. Sensors 2020, 20, 2796. [Google Scholar] [CrossRef] [PubMed]
- Thangaraj, S.; Paramasivan, C.; Balusamy, R.; Arumainathan, S.; Thanigainathan, P. Evanescent wave optical fibre ammonia sensor with methylamine hydroiodide. IET Optoelectron. 2020, 14, 292–295. [Google Scholar] [CrossRef]
- Dhara, P.; Kumar, R.; Binetti, L.; Nguyen, H.T.; Alwis, L.S.; Sun, T.; Grattan, K.T.V. Optical Fiber-Based Heavy Metal Detection Using the Localized Surface Plasmon Resonance Technique. IEEE Sens. J. 2019, 19, 8720–8726. [Google Scholar] [CrossRef]
- Munkholm, C.; Parkinson, D.R.; Walt, D.R. Intramolecular fluorescence self-quenching of fluoresceinamine. J. Am. Chem. Soc. 1990, 112, 2608–2612. [Google Scholar] [CrossRef]
- Johnston, I.D.; Tracey, M.C.; Davis, J.B.; Tan, C.K.L. Micro throttle pump employing dis-placement amplification in an elastomeric substrate. J. Micromech. Microengin. 2005, 15, 1831. [Google Scholar] [CrossRef]
- Sansalvador, I.M.P.D.V.; Fay, C.; Cleary, J.; Nightingale, A.; Mowlem, M.C.; Diamond, D. Autonomous reagent-based microfluidic pH sensor platform. Sens. Actuators B Chem. 2016, 225, 369–376. [Google Scholar] [CrossRef]
- A Wallace, P.; Elliott, N.; Uttamlal, M.; Holmes-Smith, A.S.; Campbell, M. Development of a quasi-distributed optical fibre pH sensor using a covalently bound indicator. Meas. Sci. Technol. 2001, 12, 882–886. [Google Scholar] [CrossRef]
- Tang, Y.; Zhen, L.; Liu, J.; Wu, J. Rapid Antibiotic Susceptibility Testing in a Microfluidic pH Sensor. Anal. Chem. 2013, 85, 2787–2794. [Google Scholar] [CrossRef]
- PreSens pH Sensors, (n.d.). Available online: https://www.presens.de/products/detail/ph-sensor-spots-sp-hp5 (accessed on 6 March 2022).
- Ocean Insight pH Sensor Manual, (n.d.). Available online: https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/manuals--instruction-old-logo/sensors/ph-sensors-patches-probes-and-cuvettes.pdf (accessed on 6 March 2022).
- CellPhase System, (n.d.). Available online: https://www.scientificindustries.com/bioprocessing/cellphase/cellphase-system.html (accessed on 6 March 2022).
- Lu, Y.; Feng, Q.; Zhang, R.; Lu, H.; Su, J.; Cui, Y.; Zhu, L. An online pH detection system based on a microfluidic chip. Anal. Chim. Acta 2020, 1106, 71–78. [Google Scholar] [CrossRef] [PubMed]
- PreSens pH Sensors, (n.d.). Available online: https://www.presens.de/products/detail/implantable-ph-microsensor-imp-hp5 (accessed on 23 May 2022).
- Cheng, X.; Bonefacino, J.; Guan, B.-O.; Tam, H.Y. All-polymer fiber-optic pH sensor. Opt. Express 2018, 26, 14610–14616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.; Bidin, N.; Riaz, S.; Krishnan, G.; Naseem, S. Sol–gel based fiber optic pH nanosensor: Structural and sensing prop-erties. Sens. Actuators A Phys. 2016, 238, 8–18. [Google Scholar] [CrossRef]
- Aldaba, A.L.; González-Vila, Á.; Debliquy, M.; Lopez-Amo, M.; Caucheteur, C.; Lahem, D. Polyaniline-coated tilted fiber Bragg gratings for pH sensing. Sens. Actuators B Chem. 2018, 254, 1087–1093. [Google Scholar] [CrossRef]
- Khanikar, T.; Singh, V.K. PANI-PVA composite film coated optical fiber probe as a stable and highly sensitive pH sensor. Opt. Mater. 2019, 88, 244–251. [Google Scholar] [CrossRef]
Chemical Used/ Manufacturer | Detection Method | Ph Range | Key Specifications | Comments | Reference |
---|---|---|---|---|---|
Acrylamidofluorescein (AAF) dye | Intensity ratiometric method | 6.0–8.5 | Sensitivity: 0.2/pH; Response time < 6 min | Demonstrated for both static liquid as well as a microfluidic channel; does not need fluorescent liquid for detection. | This work |
Coumarine dye | Intensity Change | 0.5–6.0 | Response time = 25 s | Measurement performed in the static liquid | [39] |
Phenol red | Absorption | 7.0–8.0 | Accuracy: 4% in the working pH range Response time ≈ 10 s | Non-invasive method demonstrated for measuring pH in the microfluidics chamber but works only with liquid containing phenol red solution | [44] |
8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) | Fluorescence emission | 2.5–9 | Response time = 10 s | PMMA, Bragg grating-based device. Static mixer for effective mixing of the indicator dye and the test solution | [46] |
Bromothymol Blue | UV/visible Absorbance | 2.7–10.5 | Sensitivity = 0.04/pH Limit of detection = 1.58 ± 0.01 µM | New sensor material presented. Pre-mixed solution. Optical transmission from the waveguides is determined by absorbance. The quality of channels affects the coupling of the waveguide to the device. | [47] |
m-Cresol Purple | Absorption | 7.5–8.2 | Detection time = 8 min Resolution = 0.002 pH units | Device for seawater pH measurement. Inline mixing channel to improve the homogeneity of seawater and indicator. | [48] |
Phenol Red | Absorption | 4–10 | Response time = 15 s | Glass microcell. Pre-mixed solutions syringed to cell. | [49] |
Phenol red | Absorption | 6–8.5 | Signal stable after 2 min | Chlorine-based pH sensor. Glass-based device. A linear relationship was not observed when pH was below 6 or 8.5 | [50] |
Chitosan Hydrogel | Effective optical thickness | 6.2–7.4 | Response time = 1.5 min (microfluidic) & 13 min (microfluidic) | Measured swelling of the Chitosan layer. | [67] |
PreSens (Commercial) | Dual lifetime referencing | 5.5–8.5 | Resolution: At pH = 7.000 ± 0.001 pH Response time <2 min | Sensor patches, non-invasive. Not applied to microfluidic channels | [68] |
Ocean Insight (Commercial) | Colorimetric | 5.0–9.0 | Resolution = 0.02 pH Response time = 30 s | Sensor patches, non-intrusive measurement. Cannot be used with coloured or turbid liquids. Yellow liquids can be used if the 750 nm baseline is used. Not applied to microfluidic channels, | [69] |
Scientific Industries (Commercial) | Dual Excitation Ratiometric | 5.5–8.0 | Accuracy: 1.5% at pH 7 Response time < 15 s | Sensor patches, non-invasive measurement. Same system can also be used to measure dissolved oxygen in the liquid. Not applied to microfluidic channels. | [70] |
m-Cresol Purple | Absorption | 3.0–6.0 | Response time = 90 s | With artificial neural network (ANN) to read out pH values in real-time. pH sensing membrane onto the wall of the microfluidic chamber. | [71] |
PreSens (Commercial) | pH Microsensor | 5.5–8.5 | Response time at 25 °C ≤ 30 sec Resolution at pH = 7.00 ± 0.02 pH | pH-sensitive (swelling) coating -HP5 | [72] |
Poly (ethylene glycol) diacrylate (PEGDA) | Lateral stress inducing wavelength shift | 1.0–6.5 | Response time = 30 s Sensitivity = 0.41 nm/pH | pH-sensitive hydrogel on fibre Bragg grating | [73] |
Bromophenol blue/Cresol red/Phenol red/phenolphthalein | Evanescent wave absorption | 3.0–11.0 | Response time = 0.05 s at pH 12 & 1.8 s at pH 3 Sensitivity = 7.65 counts/pH | Silica-titania on sol-gel | [74] |
Polyaniline coating | Refractive index change | 2.0–12.0 | Maximum sensitivity = 82 pm/pH and a minimum of 30 pm/pH. Stabilisation at 6 pH = 29 s | pH-sensitive film on tilted fibre Bragg grating. Sensitivity is directly related to the film thickness | [75] |
Polyaniline (PANI)-polyvinyl alcohol (PVA) Composite layer | Light absorption | 2.0–9.0 | Sensitivity of 2.79 µW for 2–9 pH | pH-sensitive with PANI-PVA composite film as a stimuli-responsive layer. pH-responsive changes in absorption properties due to changes in molecular conformation. | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Nguyen, H.; Rente, B.; Tan, C.; Sun, T.; Grattan, K.T.V. A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications. Micromachines 2022, 13, 1224. https://doi.org/10.3390/mi13081224
Kumar R, Nguyen H, Rente B, Tan C, Sun T, Grattan KTV. A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications. Micromachines. 2022; 13(8):1224. https://doi.org/10.3390/mi13081224
Chicago/Turabian StyleKumar, Rahul, Hien Nguyen, Bruno Rente, Christabel Tan, Tong Sun, and Kenneth T. V. Grattan. 2022. "A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications" Micromachines 13, no. 8: 1224. https://doi.org/10.3390/mi13081224
APA StyleKumar, R., Nguyen, H., Rente, B., Tan, C., Sun, T., & Grattan, K. T. V. (2022). A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications. Micromachines, 13(8), 1224. https://doi.org/10.3390/mi13081224