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Abstract: The problem of drift in the electronic nose (E-nose) is an important factor in the distortion
of data. The existing active learning methods do not take into account the misalignment of the
data feature distribution between different domains due to drift when selecting samples. For this,
we proposed a cross-domain active learning (CDAL) method based on the Hellinger distance (HD)
and maximum mean difference (MMD). In this framework, we weighted the HD with the MMD
as a criterion for sample selection, which can reflect as much drift information as possible with
as few labeled samples as possible. Overall, the CDAL framework has the following advantages:
(1) CDAL combines active learning and domain adaptation to better assess the interdomain distribu-
tion differences and the amount of information contained in the selected samples. (2) The introduction
of a Gaussian kernel function mapping aligns the data distribution between domains as closely as
possible. (3) The combination of active learning and domain adaptation can significantly suppress the
effects of time drift caused by sensor ageing, thus improving the detection accuracy of the electronic
nose system for data collected at different times. The results showed that the proposed CDAL method
has a better drift compensation effect compared with several recent methodological frameworks.

Keywords: electronic nose; active learning; cross-domain learning; drift compensation

1. Introduction

Electronic noses (E-noses) are sensor intelligence systems in the field of artificial
olfaction that mimic the olfactory system of mammals to identify or measure gas samples.
A complete E-nose system typically consists of three components: a gas sensor array, a data
pre-processing unit, and a pattern recognition algorithm module. An E-nose has sensitivity
to complex gas mixtures/compounds as well as analytical capabilities, thus allowing it
to accurately identify complex gas samples. With the development of artificial olfaction,
E-noses are also becoming increasingly important in fields such as [1], environmental
monitoring [2], biomedical detection [3], and medical diagnostics [4]. However, drift with
the sensor aging, which occurs over time, is still unavoidable due to the sensitivity change
in the manufacturing and use process of gas sensors [5,6]. Although the drift of the E-nose
sensors is progressively larger over time, this drift is nonlinear, irregular, and unpredictable
and is not directly measurable through time variation. In addition, the effect of sensor
aging on different types of gases is also different, which leads to the difference of sensitivity
change of the sensors to different gases, and consequently results in the situation that the
E-nose data do not have consistent drift trend. As mentioned above, sensor drift in the
E-nose system is very complex and difficult to measure directly. It can significantly reduce
the recognition accuracy of gas sensors and cause many problems in practical applications.
Therefore, a suitable and effective method of drift compensation for E-noses is required to
address this common problem in the field of artificial olfaction.
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Due to drift, it will lead to an inconsistent distribution of source and target domain
samples, so the model trained with source domain samples will not obtain good classifica-
tion performance for target domain samples. Modelling by continuously acquiring a large
number of calibration samples with known labels at different times is a time-consuming
and laborious task. In fact, a small number of labeled target domain samples contain
knowledge of the target domain sample distribution. Joint modelling with a large number
of labeled source domain samples and a small number of labeled target domain samples can
discern information about the differences in the distribution of target and source domain
data due to sensor drift, thus greatly improving the classification accuracy of the model
for the target domain samples. Therefore, acquiring some of the labeled target domain
samples at a small additional cost, thereby greatly improving the prediction accuracy of a
large amount of unlabeled target domain data, is an acceptable low-cost method to address
electronic nose drift.

In this study, we aimed to mitigate the effects of distorted data distribution and de-
graded performance of the E-nose due to sensor drift. We sought to combine an active
learning approach and domain adaptation to complementarily enhance the sensor’s perfor-
mance in the identification of drifting gases. Specifically, we designed a semi-supervised
cross-domain active learning (CDAL) model for drift compensation of the E-nose. As
shown in Figure 1, for the CDAL method, we used the AL paradigm based on the query
by committee (QBC) model to calculate the Hellinger distance (HD) of the distribution of
predicted outcomes for each target domain sample committee member, which was used
to measure the ease of differentiation of the selected samples. Additionally, we measured
the interdomain distribution difference of the data by calculating the maximum mean
difference (MMD) of each target domain sample with respect to the source domain center.
Finally, we weighted the HD and MMD as the final sample selection criterion, by which
the drift compensation samples are selected for the update of the classification model. The
new CDAL method considers both the information content of the selected samples and
the migration differences and improves the drift compensation performance of the sensor
through a combination of domain adaptation and active learning. The method was able
to reflect the maximum amount of drift information with a minimum number of labeled
samples. To the best of our knowledge, the combination of active learning and domain
adaptation has not been used for drift compensation of E-nose sensors.

The advantages of CDAL over other methods can be summarized as follows:

(1) The framework consists of a combination of active learning and domain adaptation,
which makes full use of the distribution differences in migration distributions of
samples between different domains while considering the degree of disagreement
among committee members on the classification results of the sample.

(2) HD is used as a measure of the divergence of the enquiry committee’s output and is
more appropriate for sample selection than the usual discrete judgement criteria.

(3) The MMD is able to measure the distributional variability between the source and
target domains, greatly facilitating the selection of more representative samples for
modification of the classification model in active learning.

(4) The mapping of Gaussian functions allows us to represent the distance between
distributions by the inner product of points, which can be used to assess the impact of
differences in the distribution of data due to drift.

(5) Experiments show that CDAL is significantly effective in both drift suppression and
pattern recognition.
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Figure 1. Schematic diagram of the CDAL framework. The cross-domain active learning method
using weighted HD and MMD selects samples to update the classification model, which enables
more representative labeled samples.

The paper is divided into the following sections: Section 2 reviews related work on
active learning. Section 3 introduces the method proposed in this paper, including formula
derivation and the optimization process. Section 4 describes the experimental setup, the
experimental results, and the sensitivity analysis of the parameters. Finally, Section 5
contains the conclusion of the full text.

2. Related Work
2.1. Review of Drift Compensation of E-Nose

Due to the influence of the external environment or the ageing of the sensor itself,
poisoning and other generated E-nose drift can produce irregular interference with the
response of the gas sensor, thus reducing the recognition accuracy of the E-nose system.
In recent years, much work has been done to solve the drift problem of E-nose sensors.
These methods are roughly divided into three main types: component correction strategies,
domain correction strategies, and classifier strategies.

The component correction strategies aim to identify drift components in the original
signal and then remove them before training the final discriminative classifier. This approach
is primarily based on feature or component removal from sample data. Haugen et al. [7]
proposed a mathematical drift compensation algorithm based on corrected samples that
maintains the true characteristics of the data and removes sensor drift from the measure-
ment sequence. Regarding drift calibration, most of the current studies in the literature
use direct standardization (DS) methods to map the signals from the slave device to the
space of the master device to convert the data from the slave device to match the data
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from the master device [8,9]. Kermit and Tomic [10] proposed a correction model called
Independent Component Analysis (ICA), which used higher order statistical methods to
analyze gas sensor system data, eliminating the relative components with drift charac-
teristics. Among others, the composition correction method using principal component
analysis (CCPCA) attempts to reconstruct the sensor response of a pure gas without drift
effects [11]. Ziyatdinov et al. [12] proposed a general PCA method that calculated the drift
directions of all classes. In addition to component correction methods, Padilla et al. [13]
used orthogonal signal correction (OSC) to find drift elements orthogonal to the label space.
As the sensor drift of the E-nose system is nonlinear, irregular, and unpredictable because
of the inherent uncontrollability in the sensor manufacturing and use process, we cannot
find the exact direction of drift change or there is no fixed direction of drift change at all.
Thus, the performances of component correction methods are not satisfactory.

The domain correction strategy is a model that learns from the source domain data
distribution and yields good performance on different (but related) target domain data
distributions and is well suited for use as drift compensation for the E-nose. Since E-nose
drift is nonlinear and unstable, Tao et al. [14] proposed a kernel transformation method to
perform domain correction operations, which improves the consistency of the distribution
between the source and target domains. Zhang et al. [5] proposed a domain regularized
component analysis (DRCA) method to project the source domain data and the target
domain drift data, compensating for the drift by making the distributions of the two
projected subspaces similar. Zhang et al. also proposed a cross-domain discriminative
subspace learning (CDSL) method that achieves drift compensation while ensuring data in-
tegrity [15]. Tian et al. [16] proposed the local manifold embedding cross-domain subspace
learning (LME-CDSL) algorithm, which is a unified subspace learning model combined
with manifold learning and domain adaptation. Wang et al. [17] proposed an extreme
learning machine (ELM) with discriminative domain reconstruction, which can improve
the classification efficiency of the E-nose by differentiating each domain data and learning a
domain-invariant space to minimize the distribution differences between different domains.
Yi et al. proposed a unified two-layer drift compensation framework to solve the sensor
drift problem considering the distribution alignment of different domains in the feature and
decision layers [18]. Yan et al. proposed subspace alignment based on an ELM (SAELM)
for E-nose drift compensation, which achieves domain alignment by constructing a uniform
feature representation space under multiple criteria [19]. For a combination of convolutional
neural networks, Zhang et al. proposed a target-domain-free domain adaptation convolu-
tional neural network (TDACNN), which integrates the use of different levels of embedding
features, using intermediate features between the two domains for drift compensation [20].
However, domain correction methods usually require finding a common domain invariant
subspace. This is an extremely complex design and requires researchers to develop various
indexes for domain alignment, which is not easy to implement.

The aim of classifier strategies is to design robust classifiers to achieve a better discrim-
inative output in E-nose drift compensation. In turn, classifier methods are divided into
single classifier methods and classifier integration methods. The single classifier approach
is a drift compensation model with a specific method using a single classifier as the discrim-
inant model. Zhang et al. [21] proposed a method based on a domain adaptation extreme
learning machine (DAELM), in which a labeled sample of a part of the target domain
similar to active learning was used as a reference. Ma et al. [22] proposed a weighted
domain transfer extreme learning machine which uses clustering of samples as a criterion
to select suitably labeled samples and calculates a sensitivity matrix by weighting them
to achieve drift compensation using fewer labeled samples. Tian et al. [23] proposed a
Gaussian deep belief classification network (GDBCN) for use as E-nose drift compensation,
which compensates for sensor drift at the decision level by cascading a DBN-SoftMax
classifier layer based on Gaussian–Bernoulli restricted Boltzmann machines. The integrated
approach combines the advantages of multiple single classifiers so that the final integrated
classifier outperforms any single component classifier and can greatly improve recognition
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accuracy. Vergara et al. [24] innovatively proposed a weighted ensemble approach for the
base classifier support vector machine (SVM) that solves the gas sensor drift problem over
long periods of time while achieving high accuracy. Magna et al. [25] proposed an adaptive
classifier integration method to improve the performance of fault and drift sensors for
prediction by majority voting decisions. Liu et al. [26] proposed a fitting-based dynamic
classifier approach for metal oxide gas sensor integration using a dynamic weighted com-
bination of SVM classifiers trained from datasets collected over different time periods to
obtain better classification results. A regularized ensemble of classifiers for sensors was
proposed by Verma et al. [27] to apply regularization to the weighted integration of classi-
fiers used as drift compensation. Zhao et al. [28] proposed an integrated model of multiple
classifiers based on an improved LSTM and SVM, which improved the performance of the
classifier to a greater extent. Rehman et al. [29] proposed a multiclassifier tree model with
transient features, where each node uses a different classifier group for integrated classifi-
cation. Compared with the feature level, it is much more difficult to achieve cross-domain
adaptation at the decision level, because the design of a robust classifier itself is an arduous
task, which often needs to use labeled target domain samples to implement a domain
adaptation classifier for drift compensation. However, if the labeled target domain samples
are blindly selected, the correct distribution knowledge of the target domain cannot be
obtained, resulting in the failure of the design of the cross-domain classifier.

2.2. Review of Active Learning

The AL process is a closed loop consisting of two sample data sets L and U, which
is shown in Figure 2. U denotes unlabeled target domain data (sample query set) for
drift compensation sample selection, while L indicates the drift compensation set (drift
compensation samples with labels) for “machine learning model” C updating. The “selected
samples” L are selected from the “query set” U, which is full of target domain drifting
instances, and the “labels” of the “selected samples” are sent to the “expert” S query. The
“labels” of the “selected samples” are labeled by “expert” queries. The most critical of
these is the “instance selection strategy” Q, which requires a suitable rule to select the most
representative instances from the data pool for retraining the “machine learning model” C.
Finally, the “machine learning model” C is updated with the selected instances and labels
for the next recognition. Therefore, the AL framework is a distinct closed-loop structure
that updates the “machine learning model” C with “selected instances” L and their “labels”,
thus improving the model’s recognition accuracy.
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In recent years, active learning methods with finite labeled samples have also started
to be applied to the drift compensation of E-nose sensors. The core of the AL approach
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is its “instance selection strategy” Q, which aims to reflect the maximum information
with the minimum number of samples. Liu et al. proposed an active learning method
based on dynamic clustering to balance the labels of different categories of labeled samples
by dynamic clustering [30]. Liu et al. also proposed a hybrid kernel-based adaptive
active learning approach by designing a hybrid sample evaluation kernel to perform a
comprehensive evaluation of the labeled samples [31]. More recently, Li et al. [32] proposed
a method combining classifier integration and active learning to reduce the cost of model
training by reducing the number of labeled samples and to better suppress the drift of
gas sensors. Considering the class-imbalance problem of sample selection, a new metric
“classifier state” and an associated sample evaluation procedure are proposed to be used as
drift compensation for the E-nose, which successfully reduces the negative impact of the
class imbalance problem by using a classifier state sampling strategy [33]. Considering the
problem of noisy labeling in active learning, Cao et al. proposed a label evaluation method
based on the active learning framework to evaluate and correct noisy labels and improve
active learning labeling efficiency [34].

However, AL methods are still in their infancy, and most of the AL frameworks proposed
only consider the amount of information contained in the samples while ignoring the effect
of misaligned sample data distribution between domains due to drift. In this regard, we
proposed the CDAL framework based on the HD and MMD for E-nose drift compensation.

3. Methodology
3.1. Notations

Suppose XS =
[

x1
S, . . . . . . , xNS

S

]
∈ <D×NS denotes the dataset of source domain.

D represents the number of features and Ns denotes the number of samples in source
domain. Suppose CS =

[
c1

S, . . . . . . , cNS
S

]
∈ <D×NS denotes the label set of the source

domain. Similarly, suppose XT =
[

x1
T , . . . . . . , xNT

T

]
∈ <D×NT denotes the source do-

main dataset. NT represents the number of samples in the target domain. Suppose
CT =

[
c1

T , . . . . . . , cNS
T

]
∈ <D×NT denotes the label set of the target domain. ‖·‖ denotes

the L2-norm.

3.2. Cross-Domain Active Learning Approach

Unlike the traditional pool-based AL method, the CDAL method requires the calcula-
tion of the information value of the sample and the distribution difference from the source
domain from two separate perspectives.

First, we calculated the HD to measure the divergence of the selected samples. For
two discrete probability distributions P = {pi, i = 1, . . . . . . , n}, Q = {qi, i = 1, . . . . . . , n},
the HD between them is defined as Equation (1).

H(p, q) =
1√
2

√
n

∑
i=1

(
√

pi −
√

qi)
2 , (1)

For computational purposes, we can also think of this as the Euclidean distance
between two vectors of square roots of probability distributions as Equation (2).

H(p, q) =
1√
2
‖
√

P−
√

Q‖2 , (2)

By definition, the HD is a metric satisfying triangle inequality. The
√

2 in the definition
ensures that H(p, q) ∈ [0, 1] for all probability distributions. Considering that we used the
QBC method in our framework, we need to calculate the sum of the HD between each
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pair of committee members as the ultimate disagreement. In this regard, we can obtain a
H
(

xj
T

)
for each target domain sample xj

T as Equation (3).

H
(

xj
T

)
=

1√
2

K

∑
j=1

K

∑
h=j
‖
√

Pj −
√

Qh‖2, (3)

where K denotes the number of committee members, and Pj and Qh denote the probability

distribution of the j-th and h-th committee members for target domain sample xj
T . As

shown in Equation (4), the total number of pairs in the probability distribution is related to
the value of K.

NK =
K(K− 1)

2
, (4)

where NK denotes the total number of pairs in the probability distribution. To highlight the
variability of the sample when selecting later, we used the sum of the HD obtained by the
committee members directly for the calculation. H

(
xj

T

)
∈ [0, NK].

We used HD to measure the information value of the selected samples, and next we
introduce the MMD to solve the problem of interdomain data distribution differences when
selecting samples.

Since we need to calculate the migration distance MMD between each target domain
sample and the center of the source domain, the formula for calculating the MMD in this
paper is defined as Equation (5).

MMD
(

XS, xj
T

)2
=‖ 1

NS

NS

∑
i=1

ϕ
(

xi
S

)
− ϕ

(
xj

T

)
‖2

2, (5)

where ϕ(·) denotes the mapping function.
The key to calculating the MMD is to find a suitable mapping function ϕ(·) that can

map the sample space to a higher dimensional feature space. For this, we first expand
Equation (5) to Equation (6).

MMD
(

XS, xj
T

)2
=

1
Ns2

Ns

∑
i=1

Ns

∑
i′=1

ϕ
(

xi
S

)
ϕ
(

xi′
S

)T
− 2

NS

NS

∑
i=1

ϕ
(

xi
S

)
ϕ
(

xj
T

)T
+ ϕ

(
xj

T

)
ϕ
(

xj
T

)T
, (6)

where ϕ(·)Trepresents the transpose after vector mapping.
According to kernel function theory, the inner product of two vectors in a high-

dimensional eigenspace can be found from the kernel function in the original space without
knowing the mapping function ϕ(x)ϕ(y). Therefore, using the kernel function k(x, y),
Equation (6) can be transformed into Equation (7).

MMD
(

XS, xj
T

)
=

[
1

Ns2

Ns

∑
i=1

Ns

∑
i′=1

k
(

xi
S, xi′

S

)
− 2

NS

Ns

∑
i=1

k
(

xi
S, xj

T

)
+ k
(

xj
T , xj

T

)] 1
2

, (7)

where k(x, y) denotes the kernel function, which refers specifically to the Gaussian kernel
function in this paper.

Considering the mapping space dimensionality of the data distribution, we use the
Gaussian kernel function as the kernel function for the MMD calculation:

k(x, y) = e−
‖x−y‖2

2δ2 , (8)

where δ is an adjustable parameter in the Gaussian kernel function.
The larger MMD between the target domain samples and the center of the source

domain indicates the larger difference between the two-domain sample distributions. In
other words, the larger the MMD is, the more difficult it is to distinguish. Therefore, we
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need to calculate the MMD between each target domain sample and the source domain to
select the instance with the largest MMD for labeling.

The MMD represents the difference in data distribution between the sample and
the source domain, and the HD represents the ease of sample differentiation. A larger
HD means that the sample is more difficult to classify correctly, which means that the
sample drifts more and reflects the target domain information. A larger MMD indicates a
greater degree of migration between the target domain data and the center of the source
domain. Therefore, we need to consider the impact of HD and MMD on sample selection in
combination. We used an adjustable parameter ω1 to compromise between HD and MMD.
The weighted sum Scorej of the two terms shown as Equation (9) was used as the final
criterion for sample selection.

Scorej = ω1MMD
(

XS, xj
T

)
+ (1−ω1)H

(
xj

T

)
. (9)

Since we needed to maximize both HD and MMD, we aimed to obtain the samples
with larger Scorej as the drift compensation set. Therefore, we picked the target domain
samples with the first N maximum weighted sums for labeling based on the pool-based
approach and added them to the training set. Then, we removed them from the target
domains. This cross-domain active learning mode can select the most representative
samples and greatly improve the recognition accuracy of the classifier.

For a more intuitive representation of our model, we summarized and reorganized
CDAL in Algorithm 1.

Algorithm 1 Proposed CDAL Algorithm

Input: sample query set U, training set {XS, CS}, test set {XT , CT}.
n: number of samples in each query set U.
N: number of selected samples.
Output: updated training set

{
XS1 , CS1

}
,updated test set {XT1 , CT1}.

1: Initialize U = XT .
2: for i = 1:N do
3: Calculate the HD H

(
xj

T

)
for each sample in U by the probability distribution of the committee

members’ predictions through Equation (3).
4: Calculate the MMD between each sample in the query set U and the entire training set XS
through Equation (5).
5: Calculate the weighted sum Scorej of HD and MMD with optimized weight
parameter ω1 through Equation (9).
6: end for
7: Select N samples with the largest Scorej from U as the selected sample set XN .
8: Label XN with category CN by experts.
9: Update XS, CS: XSnew←XS ∪ XN , CSnew ← CS ∪ CN .
10: Update XT , CT : XTnew←XT/XN , CTnew ← CT/CN .
11: Return training set

{
XSnew , CSnew

}
, test set {XTnew , CTnew}.

4. Experiments and Results
4.1. Dataset

We used a public benchmark dataset of the time drift of the gas sensor array from
UCSD [24] for the experimental test, which is widely used by researchers in the field of
E-noses for drift compensation study. This comprehensive and rich sensor drift dataset was
collected over a period of 36 months on a gas delivery platform. The data were recorded by
the E-nose system, which contains 16 MOS sensor arrays (four commercial series TGS2600,
TGS2602, TGS2610, and TGS2620), recording a total of 13,910 data samples from exposure
to six different gas concentrations, including ammonia, acetaldehyde, acetone, ethylene,
ethanol, and toluene. Eight features were extracted from each sensor, and accordingly, each
observation was a 128-dimensional (16 × 8) vector. The dataset was then divided into
10 batches according to the month based on the time series collected. Detailed information
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about the datasets is shown in Table 1. Readers interested in the experimental details of
obtaining the dataset can refer to Ref. [24] for further details.

Table 1. Brief of drift dataset.

Batch ID Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene Total

Batch 1 1–2 90 98 445 30 70 74 445
Batch 2 3–10 164 334 1244 109 532 5 1244
Batch 3 11–13 365 490 1586 240 275 0 586
Batch 4 14–15 64 43 161 30 12 0 161
Batch 5 16 28 40 197 46 63 0 197
Batch 6 17–20 514 574 2300 29 606 467 2300
Batch 7 21 649 662 3613 744 630 568 3613
Batch 8 22–23 30 30 294 33 143 18 294
Batch 9 24,30 61 55 470 75 78 101 470

Batch 10 36 600 600 600 600 600 600 3600

To visualize the data drift, we performed principal component analysis on 10 batches
of data, mapped the data into a two-dimensional principal into molecular space and plotted
the corresponding scatter plots. The PCA for each batch is shown in Figure 3. It is clear that
the distribution of the scatter plots plotted from each batch varies considerably, and the
reason for this lies in the irregular and time-varying nature of the sensor drift. Therefore, it
is reasonable and necessary to compensate for drift from a pattern recognition perspective.
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4.2. Experimental Setup

To test the compensation effect of our method on sensor drift with the dataset, we took
the following two experimental setups:

Setting 1: For the long-term drift of the sensor, we used batch 1 data as drift-free
training data, and each remaining batch as drift data for testing.

Setting 2: For the short-term drift of the sensor, we took batch k (k = 1, 2, . . . , 9) as the
training data without drift and batch k + 1 as the test data with drift.

To validate the effectiveness of our CDAL method, we used the QBC method as the
active learning query method. For the classifiers, we used the SVM with good classification
performance as the chair and the SoftMax classifiers, which can output probabilities, as
committee members to evaluate the information of samples. Considering the recognition
accuracy, we used the Gaussian kernel for the SVM classifier and performed a grid search
for the two parameters c and γ. The range of search for parameter c was [100,1015], and the
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range of search for parameter γ was [10−10, 105], both set to a step size of 101. We initialized
the selected sample number N to 30. We set the parameter δ in the Gaussian kernel mapping
function to 8, which is calculated by δ =

√
D/2 based on previous experience. Additionally,

we optimized the weighted parameter ω1 in the interval [0.01,0.99] with a step size of 0.01.

4.3. Experimental Results under Setting 1

In Setting 1, we used 12 of the latest drift compensation methods for comparison. First,
two single classifiers, SVM and ELM, were used to demonstrate the performance of the
classifiers without drift compensation. Note that we used SVM as the baseline classifier
for other drift compensation methods. Next, four component correction models, DS [8,9],
CCPCA [11], OSC [13], and a generalized least squares weighting (GLSW) [35] method; two
typical migration learning methods, DRCA [5] and CDSL [15]; and three methods for picking
samples, AL-KLD, AL-JSD, and AL-HD, were compared. The results are shown in Table 2,
and the optimal parameters corresponding to the CDAL methods are shown in Table 3.

Table 2. Comparison of recognition accuracy in long-term drift (%).

Method 1–2 1–3 1–4 1–5 1–6 1–7 1–8 1–9 1–10 Average

SVM 47.99 57.57 65.22 32.99 45.09 35.57 24.83 40.21 31.19 42.30
ELM 69.13 46.22 32.30 46.19 44.91 35.37 25.51 33.19 37.19 41.11

CCPCA 77.65 67.91 65.84 69.54 72.04 54.58 65.31 65.11 37.14 63.90
OSC 79.74 35.25 48.45 52.28 34.30 43.84 49.66 45.32 22.83 45.74
LDA 70.90 73.58 63.35 59.90 63.57 55.58 67.69 47.23 43.22 60.56
DS 42.77 30.90 39.13 48.22 26.35 19.96 48.64 23.19 27.94 34.12

GLSW 72.67 42.37 70.19 52.79 49.78 43.18 57.48 41.91 37.47 51.98
DRCA 64.31 83.35 80.75 74.62 55.04 42.37 48.64 40.00 39.39 58.72
CDSL 79.18 82.85 80.75 76.14 71.78 56.10 74.49 64.68 40.31 69.59

AL-KLD 83.63 74.40 62.75 85.63 71.45 53.80 71.78 32.61 54.62 65.63
AL-JSD 75.82 74.42 62.10 83.60 69.82 52.00 72.50 45.00 51.83 65.23
AL-HD 87.16 71.61 62.60 85.18 68.32 50.08 70.88 45.45 47.62 65.43
CDAL 88.63 87.34 89.31 91.62 81.06 63.77 78.41 62.05 54.68 77.43

Table 3. Long-term drift parameter optimization.

Parameters Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10

Long-
term
drift

c 100 103 103 1010 1015 103 106 106 100

γ 10−1 10−1 10−3 10−6 10−8 10−1 10−5 10−7 10−2

ω1 0.92 0.98 0.88 0.96 0.86 0.16 0.78 0.13 0.71

To make the results more visible, we marked in bold the best results for each batch.
Based on the data in Table 2, we can conclude that:

(1) Our CDAL method has the best recognition results among all the compared methods
under the same experimental conditions, and the average recognition accuracy is
almost 10% higher than all the other methods.

(2) The direct use of SVM and ELM classification was the worst. Among them, the migra-
tion learning methods CDSL and DRCA were able to achieve recognition accuracy of
69.59% and 58.72%, which was slightly better than that of the baseline methods. This
indicates that the introduction of domain adaptation considering the interdomain
distribution problem can improve the E-nose drift compensation effect.

(3) The recognition accuracy of the AL-KLD, AL-JSD, AL-HD, and CDAL methods that
used sample selection methods were all above 65%, which was significantly better
than the other methods. This also shows that using a small amount of target domain
data for labeling can greatly improve the classification accuracy, which is worthwhile
and effective.
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We also optimized the SVM parameters c and γ and the weighted parameters ω1
involved in Setting 1, and the results are shown in Table 3.

4.4. Experimental Results under Setting 2

For the short-term drift pattern of the E-nose (Setting 2), we used the same 13 methods
as for Setting 1 as a comparison. From the results in Table 4, we can conclude that:

(1) The CDAL method we used still has the best results in dealing with short-term drift,
and with a selected sample of 30, the average recognition accuracy can reach over
82%, which far exceeds the other methods. This indicated that our CDAL method
has better identification and robustness than other methods and was very effective in
dealing with the short-term drift of the E-nose.

(2) AL-KLD, AL-HD, AL-JSD, and CDAL, as the methods using sample selection, achieved
an average recognition accuracy of over 70%, which indicates that selecting an appro-
priate sample selection criterion for E-nose drift compensation can greatly improve
recognition performance. This also shows that the method of obtaining a very small
number of target domain labels is worthwhile and effective.

(3) The recognition accuracy of CDSL as a migration learning method can also reach
75.58%, which indicates that in the process of drift compensation of the E-nose system,
the difference in data distribution caused by drift needs to be solved, which also
provides a reference for our CDAL model.

Table 4. Comparison of recognition accuracy in short-term drift (%).

Method 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Average

SVM 47.99 60.03 71.4 58.38 54.69 57.82 69.73 27.02 33.56 53.40
ELM 69.13 63.68 63.98 59.90 47.13 56.02 69.39 26.81 28.69 53.86

CCPCA 77.65 67.15 57.14 55.33 53.26 55.47 75.51 77.45 26.14 60.57
OSC 79.94 73.64 70.19 51.78 56.22 53.67 48.64 61.28 28.89 58.23
LDA 70.90 46.78 82.61 69.04 73.09 56.35 85.71 77.23 16.67 64.26
DS 42.77 43.69 47.83 21.32 28.91 27.35 48.64 16.60 35.58 34.74

GLSW 72.67 66.08 43.48 23.35 27.52 33.63 48.64 68.94 30.58 46.10
DRCA 64.31 66.27 95.03 47.21 54.96 68.92 84.69 72.55 25.25 64.35
CDSL 79.18 77.24 97.52 65.99 74.13 86.44 89.46 77.02 34.11 75.58

AL-KLD 83.63 87.68 93.74 70.06 77.43 85.34 75.76 27.02 50.26 72.33
AL-JSD 88.96 93.70 91.60 68.86 71.01 82.19 70.45 74.77 45.52 76.34
AL-HD 86.05 87.52 88.17 70.66 59.52 83.02 73.86 70.57 36.15 72.84
CDAL 88.63 96.34 98.47 72.46 89.96 87.52 79.92 81.36 51.99 82.96

For short-term drift, we still optimized the SVM parameters c and γ and the weight
parameter ω1. The specific optimized values are shown in Table 5.

Table 5. Short-term drift parameter optimization.

Parameters Batch2 Batch3 Batch4 Batch5 Batch6 Batch7 Batch8 Batch9 Batch10

Short-
term
drift

c 100 108 106 106 102 1010 109 109 107

γ 10−1 10−7 10−8 10−5 10−2 10−7 10−7 10−7 10−7

ω1 0.92 0.98 0.98 0.40 0.10 0.98 0.97 0.62 0.30

4.5. Parameter Sensitivity Analysis

CDAL requires a weighting rule based on MMD and HD to select samples from the
target domain for labeling, so the size of the number of labeled samples, N, can have an
impact on the recognition results. It is necessary to observe the effect of the value of N
on the effectiveness of the CDAL method. To prevent the effects of overfitting or a small
number of markers, we varied the setting of N to {5, 10, 20, 30, 40, 50}. Figure 4 and Table 6
show the effect of the value of N on the long-term drift identification results, and Figure 5
and Table 7 show the effect of the value of N on the short-term drift results.
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Table 7. Classification accuracy with different values of N on Setting 2.

N 5 10 20 30 40 50

Batch 2 82.57 86.55 87.01 88.63 90.78 91.71
Batch 3 87.56 90.42 92.46 96.34 98.90 98.89
Batch 4 90.38 94.04 95.74 98.47 99.17 98.20
Batch 5 65.63 64.71 68.36 72.46 70.70 68.71
Batch 6 59.30 72.40 86.01 89.96 91.50 93.56
Batch 7 84.10 84.07 84.02 87.52 91.02 94.44
Batch 8 69.20 74.65 76.28 79.92 85.83 92.62
Batch 9 68.17 73.48 78.44 81.36 86.98 94.76
Batch 10 40.11 42.76 48.49 51.99 55.14 58.17
Average 71.89 75.90 79.65 82.96 85.56 87.90

Based on the data in Table 6 and the visual reflection in Figure 4, we can see that as the
number of tagged samples N increases, the long-term drift identification accuracy shows
an increasing trend. After the number of picks N reaches 30, due to the small number of
samples in some batches, any further increase in the number of markers at this point may
cause an overfitting phenomenon, resulting in an insignificant increase in accuracy. Based
on Table 7 and Figure 5, we can similarly conclude that the short-term drift compensation
effect also becomes significantly better as N increases. Again, due to the small number of
samples in some batches, the increase in accuracy is not significant when N reaches 30.

5. Conclusions

In this study, we used an approach based on active learning and domain adaptation
to solve the sensor drift problem in the E-nose. We proposed a new cross-domain active
learning framework based on HD and MMD, called CDAL. We discriminated the amount of
information contained in the selected samples by using HD and measured the interdomain
distribution differences of the selected samples by using MMD. Finally, we maximized
the weighted sum of the two as the selection criterion for the target domain samples and
used a pool-based QBC method to obtain the most representative labeled samples. The
proposed CDAL method inherits the advantages of active learning, which can greatly
improve the classification accuracy by consuming a small labeling cost; additionally, it is
the first time that active learning has been combined with domain adaptation, which was
also the focus of this study. The ability to introduce the domain adaptation framework into
active learning, balancing the impact of interdomain distribution differences on labeled
samples, is an important contribution, providing new ideas for future active learning and
domain adaptation.
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