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Abstract: To investigate the relationship between the specifications degradation of a low-noise
amplifier (LNA) and temperature, we experimentally investigated the degradation characteristics
of the specifications of the LNA at different temperatures. The small-signal gain (S21) of the LNA
decreases with increasing temperature. This paper discusses and analyzes the experimental results
in detail, and the reasons for the degradation of LNA specifications with temperature changes are
known. Finally, we have tried to use the structure already available in the literature for the PA
temperature compensation circuit for the temperature compensation of the LNA. The results show
that the existing circuit structure for PA temperature compensation in the literature can also effectively
compensate for the S21 and NF degradation of the LNA due to the temperature increase.

Keywords: CMOS; specification degradation; temperature; LNA

1. Introduction

A low-noise amplifier (LNA) is used in the first stage of a radio frequency (RF)
transceiver to amplify a signal with low noise [1]. At the same time, the specification of the
LNA will change with the change in temperature because the parameters of semiconductors
are very sensitive to the change in temperature [2,3]. Therefore, their system will fail when
the specifications of LNAs decrease with the temperature change; thus, they cannot meet
the minimum requirements required for the system’s normal operation.

Current research on LNAs focuses on the optimization of performance specifications,
such as bandwidth [4–6], linearity [7–9], gain [10,11], noise figure [12,13], and power
consumption [14–16]. For example, in 2016, G. Nikandish et al. [4] proposed a feedback
amplifier circuit to increase the bandwidth of the LNA. In 2016, Sunhwan Jang et al. from the
United States published a paper entitled “A High-Gain Power-Efficient Wideband V-Band
LNA in 0.18 µm SiGe Bipolar Complementary Metal-Oxide Semiconductor (BiCMOS)”, in
which Sunhwan Jang et al. used an effective wideband gain shaping method to improve the
gain of LNAs at low power consumption [11]. Furthermore, at the 2018 18th Mediterranean
Microwave Symposium, O. Memioglu et al., scholars from Middle East Technical University,
presented a cascaded topology with excellent noise figures consisting of cascaded topology
with inductive source degradation of co-sourced devices [7]. In 2020, Yuito Sawayama
et al. from Okayama Prefectural University in Japan achieved a low-noise figure LNA by
replacing the primary inductor with an external inductor in the input matching circuit [13].
In 2021, Roman Yu. Musenov, an academic from Russia, et al. proposed a single-ended low-
power LNA based on 90 nm CMOS technology, which achieves low power consumption by
employing current reuse techniques [15]. These studies focus on improving the bandwidth,
linearity, and gain of LNAs, and reducing the noise figure and power consumption.

In this paper, we investigate the relationship and law of degradation of LNA specifi-
cations with temperature changes, taking 50 MHz–450 MHz CMOS LNAs as an example.
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The reasons for the degradation of LNA specifications, such as gain and noise figure with
increasing temperature, are discussed and analyzed. Based on this, we also designed a
circuit for compensating the temperature characteristics of this LNA, which consists of
a diode and two resistors. The simulation results show that this compensation circuit
can effectively compensate for the degradation of S21 and NF due to temperature. The
results can provide a theoretical reference for the design of the temperature compensation
circuit of LNA. On the other hand, it can provide effective guidance for optimizing the
system design.

2. Structure and Experimental Setup of LNA
2.1. The Structure of LNA

The schematic diagram of the LNA and the chip micrograph are shown in Figures 1 and 2,
respectively.
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Figure 1. The schematic diagram of the LNA [17].

As shown in Figure 1, the LNA is manufactured using a 0.18 um CMOS process [17].
In this LNA, a shunt feedback structure is used in the matching stage to reduce the noise
factor of the LNA [17]. The load of the matching stage uses a PMOS (positive channel metal
oxide semiconductor) current source in parallel with a resistor, mainly to relax voltage
headroom and achieve adequate performance in process corners [17,18].

Figure 2 shows a micrograph of the chip of the LNA, which was gold wire bonded to
a PCB (printed circuit boards) board to facilitate temperature characterization experiments
in an environmental chamber. The left and right ends of the PCB are the input and output,
respectively, which are connected to the test system via a 50-ohm matched subminiature
version A (SMA). In addition, external inductors and resistors are used at the input and
output of the PCB to achieve better matching. Two supply voltages are used for this LNA,
1.8 V and 3.3 V, respectively.
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2.2. Experimental Environment and Setup

As shown in Figure 3, the experiments were conducted in a chamber (SC3 1000)
that can support conducting high- and low-temperature experiments from −40 ◦C to
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125 ◦C. However, due to the constraints of the experimental cable, only the temperature
characteristics of the LNA from −40 ◦C to 90 ◦C are investigated.

Micromachines 2022, 13, x 3 of 10 
 

 

2.2. Experimental Environment and Setup 

As shown in Figure 3, the experiments were conducted in a chamber (SC3 1000) that 

can support conducting high- and low-temperature experiments from −40 °C to 125 °C. 

However, due to the constraints of the experimental cable, only the temperature charac-

teristics of the LNA from −40 °C to 90 °C are investigated. 

 

Figure 3. Measurement environment and setup: (a) a schematic diagram of the S-parameter meas-

urement; (b) a schematic diagram of the NF measurement; (c) a physical diagram of the measure-

ment environment. 

In the experimental process, we focused on the temperature characteristics of the 

gain and noise figure. The gain and noise figures were measured with a vector network 

analyzer (VNA) (AV3672B) and a noise figure analyzer (N8975A). In addition, a Rohde & 

Schwarz power supply (NGMO2) was used for the power supply required in the ex-

periments. 

3. Results and Discussions 

3.1. The S21 

The temperature characteristics of the LNA gain are shown in Figure 4. From the 

figure, we can see that S21 is not only a function of temperature, but also a function of 

frequency. As the temperature increases, the S21 of the LNA gradually decreases. S21 

decreases with increasing frequency, only differing at individual points. This may be 

caused by jitter in the measurement system during the measurement process. 

Figure 3. Measurement environment and setup: (a) a schematic diagram of the S-parameter
measurement; (b) a schematic diagram of the NF measurement; (c) a physical diagram of the
measurement environment.

In the experimental process, we focused on the temperature characteristics of the gain
and noise figure. The gain and noise figures were measured with a vector network analyzer
(VNA) (AV3672B) and a noise figure analyzer (N8975A). In addition, a Rohde & Schwarz
power supply (NGMO2) was used for the power supply required in the experiments.

3. Results and Discussions
3.1. The S21

The temperature characteristics of the LNA gain are shown in Figure 4. From the
figure, we can see that S21 is not only a function of temperature, but also a function of
frequency. As the temperature increases, the S21 of the LNA gradually decreases. S21
decreases with increasing frequency, only differing at individual points. This may be caused
by jitter in the measurement system during the measurement process.

The specific causes of the degradation of the gain of the LNA with increasing tempera-
ture are discussed below.

The expressions for IDS in the linear and nonlinear regions, respectively, are [19,20]

IDS−linear =
WµnCox

2L

[
2(VGS − VTH)VDS − VDS

2
]

(1)

IDS−nonlinear =
WµnCox

2L
(VGS − VTH)

2 (2)

where W is the gate width, µn is the carrier mobility, Cox is the gate oxide capacitance per
unit area, L is the gate length, VGS is the gate voltage, VTH is the threshold voltage, and
VDS is the drain voltage.
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The specific causes of the degradation of the gain of the LNA with increasing tem-

perature are discussed below.  

The expressions for IDS in the linear and nonlinear regions, respectively, are [19,20] 

22( )
2

n ox

DS linear GS TH DS DS

W C
I V V V V

L


−

 = − −   (1) 

2( )
2

n ox

DS nonlinear GS TH

W C
I V V

L


− = −  (2) 
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According to Equations (1) and (2), the transduction in the linear and nonlinear regions
is [19,20]

gm−linear =

√
2µn

WCox

L
IDS−linear (3)

gm−nonlinear =

√
2µn

WCox

L
IDS−nonlinear (4)

where the expression for the carrier mobility is [21]

µn(T) = µn(T0)(
T
T0

)
−m

(5)

where T0 = 300 K, m = 1.5~2.
According to Equation (5), the µn degrades with increasing temperature. And ac-

cording to Equations (3) and (4), it is known that the transconductance of both linear and
nonlinear regions is positively related to carrier mobility. Therefore, the transconductance
of both linear and nonlinear regions will degrade with increasing temperature. In addition,
the transconductance is the gain [19,20]; thus, the LNA’s gain is also degraded as the tem-
perature increases. Therefore, the decrease in S21 with increasing temperature decreases
carrier mobility with increasing temperature.

We already know that the S21 degrades as the temperature rises. Figure 4 shows that
when the temperature change range is the same, the S21 changes at different frequencies
are also different. For example, Figure 5 shows the evolution of S21 in the temperature
range of −40 ◦C to 90 ◦C.

As shown in Figure 5, S21 decreases by 3.54 dB, 3.2 dB, and 3.02 dB for 70 MHz,
230 MHz, and 450 MHz, respectively, when the temperature increases by 130 ◦C. This
indicates that the µn is temperature-dependent and frequency-dependent.
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3.2. The Noise Figure (NF)

The noise figure of the LNA as a function of temperature is shown in Figure 6. As
shown in Figure 6, the noise coefficient of the LNA increases with temperature; this means
that the noise performance of the LNA degrades with increasing temperature. In addition,
the noise figure of the LNA varies with frequency rather than monotonically. That is, the
noise figure of the LNA increases or decreases with increasing frequency. This indicates
that the noise figure of the LNA is not only a function of temperature, but also a function
of frequency.
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The following is a specific discussion of the causes of the increase in the noise co-
efficient of the LNA with increasing temperature. The expression of the NFmin of LNA
is [22]

NFmin = 1 + 2πK(Cgs + Cgd)

√
Rs + Rd

gm
(6)
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where K is the Fukui constant, Cgs and Cgd are the gate-source and gate-drain capacitance,
Rs and Rd are the source and drain resistance, and gm is the transconductance.

The transconductance degrades with increasing temperature. In addition, the source/drain
resistance also increases with temperature. Therefore, according to Equation (6), the
increase in source/drain resistance and the degradation of the transconductance will
increase the NFmin of the LNA as the temperature increases. Consequently, there is an
increase in the LNA noise figure with the temperature rise. This indicates that the increase
in source/drain resistance and the transconductance degradation are the two main reasons
for the rise in the noise figure with increasing temperature.

It is already known from Figure 6 that the noise figure of the LNA increases with
temperature. This is because the NF changes differently for different frequencies in the
same temperature variation range. For example, Figure 7 shows the variation of the noise
figure to varying frequencies in the field of −40 ◦C to 90 ◦C. As shown in Figure 7, the
noise figure at 50 MHz, 270 MHz, and 450 MHz increases by 1.22 dB, 0.74 dB, and 1.02 dB,
respectively, when the temperature increases from −40 ◦C to 90 ◦C. This also shows that
the µn is not only temperature-dependent but also frequency-dependent.
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4. On-Chip Temperature Compensation for LNAs

A circuit structure for multistage PA temperature compensation was proposed in the
literature [23]; based on this structure, we propose a temperature compensation circuit for
stacked PAs [24]. Considering the simple structure of this compensation circuit and our
existing research base, in this subsection, we try to use the temperature compensation circuit
structure for the multistage PA proposed in the literature [23] for the compensation of S21
and NF of the LNA. Furthermore, we explore whether the compensation circuit structure
presented in [23] can be used for the temperature compensation of other microwave/RF
circuits such as LNAs in addition to multistage PAs. The structure of the circuit used
for LNA temperature compensation in this subsection is the same as that used for the
multistage PA temperature compensation circuit in the literature [23], as shown in Figure 8.
As shown in Figure 8, this compensation circuit consists of a diode (D1) and two resistors
(R and R1).
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Since the circuit structure used is the same as that of the literature [23], the temperature
compensation principle of this temperature compensation circuit for the LNA is also the
same as that of the literature [23]. Therefore, to avoid repetition, it is not presented again.

According to the literature [23], when the temperature increases from TL to TH,
Equations (1) and (2) can be expressed, respectively, as

IDS−linear =
WµnCox

2L

[
2((VGS + ∆Vg1)− VTH)VDS − VDS

2
]

(7)

IDS−nonlinear =
WµnCox

2L
((VGS + ∆Vg1)− VTH)

2 (8)

where ∆Vg1 is the variation of Vg1 between two temperatures (TH and TL).
According to Equations (7) and (8), the IDS will increase with the increase of ∆Vg1.

Furthermore, from Equations (3) and (4), the transconductance is proportional to the drain
current; i.e., it increases with the increase of the IDS. This means that the temperature
compensation circuit increases the transconductance with the rise in the ∆Vg1; thus, the
temperature compensation of the transconductance is realized. That is, the compensation
of S21 is realized.

Figure 9 gives the simulation results of S21 with and without compensation, from
which when the temperature increases from −40 ◦C to 90 ◦C, S21 changes by 0.4 dB with
compensation, while S21 changes by 3.5 dB without compensation; this indicates that the
compensation circuit is effective in compensating S21 with a temperature change.
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From Equation (6), NF will decrease with the increase of the transconductance. There-
fore, under the temperature compensation circuit, NF will reduce with the rise of the ∆Vg1;
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thus, this will achieve the temperature compensation of NF. The simulation results for the
NF with and without compensation are shown in Figure 10. It can be seen from this that
the NF with temperature compensation varies less with temperature, while the NF without
temperature compensation increases with temperature. Specifically, when the temperature
increases from −40 ◦C to 90 ◦C, the NF changes by 0.02 dB with temperature compensation,
while the NF changes by 0.3 dB without temperature compensation. This indicates that
the temperature compensation circuit effectively compensates for the NF degradation with
temperature increase.
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The above is the working principle of the temperature compensation circuit proposed
in this subsection, mainly to increase the transconductance by increasing the gate voltage to
achieve the compensation of S21 and NF with temperature change. The simulation results
in Figures 9 and 10 show that the temperature compensation circuit structure proposed in
the literature [23] applies not only to the temperature compensation of PA, but also to the
temperature compensation of LNA.

5. Conclusions

This paper investigates the key specifications of LNAs, such as gain and noise
figures, from an experimental point of view at different temperatures using a CMOS
50 MHz–450 MHz LNA as an example. The S21 decreases with temperature increase
while the noise figure increases. Furthermore, it is found that one of the leading causes of
the degradation of the gain and noise characteristics is the degradation of the transconduc-
tance. The results can guide temperature-compensated circuit design to complement the
degradation of the specification. On the other hand, it is also proved that the temperature
compensation circuit structure proposed in the literature [23] applies to the temperature
compensation of PAs and can be used for the temperature compensation of LNAs.

The specification degradation of the LNA is not only related to temperature, but also
to humidity, high- and low-temperature shock, and time. Therefore, future work in this
paper will consider the relationship between the specification degradation of the LNA with
humidity, the number of high- and low-temperature shocks, and time.
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