Recent Advances of Optical Sensors for Copper Ion Detection
Abstract
:1. Introduction
2. Optical Sensors
2.1. Colorimetric Sensors
2.2. Fluorescence Sensors
2.3. Luminescence, Chemiluminescence, and Photoluminescence Sensors
2.4. Surface Plasmon Resonance
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karakuş, E. A rhodamine based fluorescent chemodosimeter for the selective and sensitive detection of copper (II) ions in aqueous media and living cells. J. Mol. Struct. 2021, 1224, 129037. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Zhao, M.; Ding, Y.; Li, Z.; Ma, Y.; Li, H.; Cui, H. Fabrication of the Ni-based composite wires for electrochemical detection of copper (II) ions. Anal. Chim. Acta 2021, 1143, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jou, M.J.; Lee, H.; Kou, S.; Lim, J.; Nam, S.W.; Park, S.; Kim, K.M.; Yoon, J. New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+. Sens. Actuators B Chem. 2009, 137, 597–602. [Google Scholar] [CrossRef]
- Kumar, V.; Kalita, J.; Bora, H.K.; Misra, U.K. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol. Appl. Pharmacol. 2016, 293, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zu, M.; Yang, S.; Zhang, S.; Zhou, W.; Mai, Z.; Ge, C.; Xu, Y.; Fang, Y.; Zhang, S. Visible-light-driven photoelectrochemical determination of Cu2+ based on CdS sensitized hydrogenated TiO2 nanorod arrays. Sens. Actuators B Chem. 2018, 270, 270–276. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Khajeh, M.; Hashemi, S.H. Magnetic molecularly imprinted polymer nanoparticles for selective extraction of copper from aqueous solutions prior to its flame atomic absorption determination. J. Anal. Chem. 2015, 70, 1325–1329. [Google Scholar] [CrossRef]
- Duan, J.X.; Li, X.; Zhang, C.C. The synthesis and adsorption performance of polyamine Cu2+ imprinted polymer for selective removal of Cu2+. Polym. Bull. 2017, 74, 3487–3504. [Google Scholar] [CrossRef]
- Sakunkaewkasem, S.; Petdum, A.; Panchan, W.; Sirirak, J.; Charoenpanich, A.; Sooksimuang, T.; Wanichacheva, N. Dual-analyte fluorescent sensor based on [5]helicene derivative with super large stokes shift for the selective determinations of Cu2+ or Zn2+ in buffer solutions and its application in a living cell. ACS Sens. 2018, 3, 1016–1023. [Google Scholar] [CrossRef]
- Abu-Dalo, M.A.; Salam, A.A.; Nassory, N.S. Ion imprinted polymer based electrochemical sensor for environmental monitoring of copper (II). Int. J. Electrochem. Sci. 2015, 10, 6780–6793. [Google Scholar]
- Tarnowska, M.; Krawczyk, T. Click chemistry as a tool in biosensing systems for sensitive copper detection. Biosens. Bioelectron. 2020, 169, 112614. [Google Scholar] [CrossRef] [PubMed]
- Nadimetla, D.N.; Bhosale, S.V. Tetraphenylethylene AIEgen bearing thiophenylbipyridine receptor for selective detection of copper (II) ion. N. J. Chem. 2021, 45, 7614–7621. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, C.; Wang, S.; Li, M.; Guo, W. MOF-derived porous ZnO-Co3O4 nanocages as peroxidase mimics for colorimetric detection of copper(II) ions in serum. Analyst 2021, 146, 605–611. [Google Scholar] [CrossRef]
- Kuras, M.J.; Więckowska, E. Synthesis and characterization of a new copper (II) ion-imprinted polymer. Polym. Bull. 2015, 72, 3227–3240. [Google Scholar] [CrossRef]
- Shen, Y.J.; Zhang, K. A bifunctional optical probe based on ESIPT-triggered disalicylaldehyde with ratiometric detection of iron and copper ions. Polyhedron 2021, 193, 114883. [Google Scholar] [CrossRef]
- Bagheri, N.; Mazzaracchio, V.; Cinti, S.; Colozza, N.; Di Natale, C.; Netti, P.A.; Saraji, M.; Roggero, S.; Moscone, D.; Arduini, F. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum. Anal. Chem. 2021, 93, 5225–5233. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yu, G.; Wei, X.; Zhan, C.; Jeon, J.W.; Wang, X.; Jeffryes, C.; Guo, Z.; Wei, S.; Wujcik, E.K. Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv. Compos. Mater. 2019, 2, 711–719. [Google Scholar] [CrossRef]
- Odetola, L.; Sills, S.; Morrison, S. A pilot study on the feasibility of testing residential tap water in North Carolina: Implications for environmental justice and health. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 972–978. [Google Scholar] [CrossRef]
- Jung, H.S.; Know, P.S.; Lee, J.W.; Kim, J.I.; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T.; et al. Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 2009, 131, 2008–2012. [Google Scholar] [CrossRef]
- Frag, E.Y.Z.; Mohamed, M.E.; Ali, A.E.; Mohamed, G.G. Potentiometric sensors selective for Cu (II) determination in real water samples and biological fluids based on graphene and multi-walled carbon nanotubes modified graphite electrodes. NISCAIR-CSIR 2020, 59A, 162–173. [Google Scholar]
- Kirk, K.A.; Andreescu, S. Easy-to-use sensors for field monitoring of copper contamination in water and pesticide-sprayed plants. Anal. Chem. 2019, 91, 13892–13899. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency Office of Pesticide Programs; Copper Facts; EPA.gov: New York, NY, USA, 2008.
- Chereddy, N.R.; Janakipriya, S.; Korrapati, P.S.; Thennarasu, S.; Mandal, A.B. Solvent-assisted selective detection of sub-micromolar levels of Cu2+ ions in aqueous samples and live-cells. Analyst 2013, 138, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Normaya, E.; Baharu, N.A.; Ahmad, M.N. Synthesis of thiosemicarbazone-based colorimetric chemosensor for Cu2+ ions recognition in aqueous medium: Experimental and theoretical studies. J. Mol. Struct. 2020, 1212, 128094. [Google Scholar] [CrossRef]
- Yuan, Z.; Cai, N.; Du, Y.; He, Y.; Yeung, E.S. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem 2014, 86, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Liu, J.; Liu, X.; Liu, J.; Xiang, J.; Wu, Y. A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem. 2016, 213, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.A.N.; Reddy, K.J.; Duk, L.K.; Reddy, A.V. Evaluation of 2,6-diacetylpyridinebis-4-phenyl-3-thiosemicarbazone as complexing reagent for zinc in food and environmental samples. J. Saudi Chem. Soc. 2016, 20, S271–S279. [Google Scholar] [CrossRef]
- Wannapob, R.; Kanatharana, P.; Limbut, W.; Numnuam, A.; Asawatreratanakul, P.; Thammakhet, C.; Thavarungkul, P. Affinity sensor using 3-aminophenylboronic acid for bacteria detection. Biosens. Bioelectron. 2010, 26, 357–364. [Google Scholar] [CrossRef]
- Kong, T.; Liu, G.W.; Li, X.B.; Wang, Z.; Zhang, Z.G.; Xie, G.H.; Zhang, Y.; Sun, J.; Xu, C. Synthesis and identification of artificial antigens for cadmium and copper. Food Chem. 2010, 123, 1204–1209. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Rahman, M.M.; Asiri, A.M. Novel composite material for selective copper(II) detection and removal from aqueous media. J. Mol. Liq. 2019, 283, 772–780. [Google Scholar] [CrossRef]
- Losev, V.N.; Buyko, O.V.; Trofimchuk, A.K.; Zuy, O.N. Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP–OES determination of metals in natural waters. Microchem. J. 2015, 123, 84–89. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Zhang, H.; Ma, L.; Wang, Z. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper (II) ions. Biosens. Bioelectron. 2017, 91, 306–312. [Google Scholar] [CrossRef]
- Feng, H.; Fu, Q.; Du, W.; Zhu, R.; Ge, X.; Wang, C.; Li, Q.; Su, L.; Yang, H.; Song, J. Quantitative assessment of copper (II) in Wilson’s disease based on photoacoustic imaging and ratiometric surface-enhanced raman scattering. ACS Nano 2021, 15, 3402–3414. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Deng, P.; Li, J.; Tang, S. Fluorescent ion-imprinted sensor for selective and sensitive detection of copper (II) ions. Sens. Actuators B Chem. 2018, 255, 2095–2104. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Wen, T.; Qu, F.; Li, N.B.; Luo, H.Q. A facile, sensitive, and rapid spectrophotometric method for copper (II) ion detection in aqueous media using polyethyleneimine. Arab. J. Chem. 2017, 10, S1680–S1685. [Google Scholar] [CrossRef]
- Derin, E.; Inci, F. Advances in biosensor technologies for acute kidney injury. ACS Sens. 2022, 7, 358–385. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Liu, X.; Li, P.; Wu, W. Nanocellulose as a promising substrate for advanced sensors and their applications. Int. J. Biol. Macromol. 2022, 218, 473–487. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Bereli, N.; Yavuz, H.; Denizli, A. Scaling up of biosensors for clinical applications and commercialization. In Advanced Biosensors for Virus Detection; Academic Press: Cambridge, MA, USA, 2022; pp. 407–421. [Google Scholar]
- Erdem, O.; Es, I.; Saylan, Y.; Inci, F. Unifying the efforts of medicine, chemistry, and engineering in biosensing technologies to tackle the challenges of the COVID-19 pandemic. Anal. Chem. 2021, 94, 3–25. [Google Scholar] [CrossRef]
- Rodríguez-Sevilla, E.; Rodríguez-Sevilla, E.; Ramírez-Silva, M.T.; Romero-Romo, M.; Ibarra Escutia, P.; Palomar-Pardavé, M. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors 2014, 14, 14423–14439. [Google Scholar] [CrossRef]
- Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors 2014, 14, 13863–13912. [Google Scholar] [CrossRef]
- Altıntaş, Z.; Tothill, I. Biomarkers and biosensors for the early diagnosis of lung cancer. Sens. Actuators B Chem. 2013, 188, 988–998. [Google Scholar] [CrossRef]
- Roda, A.; Mirasoli, M.; Michelini, E.; Di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in chemical luminescence-based biosensors: A critical review. Biosens. Bioelectron. 2016, 76, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Baryeh, K.; Takalkar, S.; Lund, M.; Liu, G. Introduction to medical biosensors for point of care applications. In Medical Biosensors for Point of Care (POC) Applications; Narayan, R.J., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 3–25. [Google Scholar]
- Marazuela, M.; Moreno-Bondi, M. Fiber-optic biosensors–an overview. Anal. Bioanal. Chem. 2002, 372, 664–682. [Google Scholar] [CrossRef] [PubMed]
- Healy, D.A.; Healy, D.A.; Hayes, C.J.; Leonard, P.; McKenna, L.; O’Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125–131. [Google Scholar] [CrossRef]
- Motaharian, A.; Naseri, K.; Mehrpour, O.; Shoeibi, S. Electrochemical determination of atypical antipsychotic drug quetiapine using nano-molecularly imprinted polymer modified carbon paste electrode. Anal. Chim. Acta 2020, 1097, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Purohit, B.; Vernekar, P.R.; Shetti, N.P.; Chandra, P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sens. Int. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Grazon, C.; Baer, R.C.; Kuzmanović, U.; Nguyen, T.; Chen, M.; Zamani, M.; Chern, M.; Aquino, P.; Zhang, X.; Lecommandoux, S.; et al. A progesterone biosensor derived from microbial screening. Nat. Commun. 2020, 11, 1276. [Google Scholar] [CrossRef] [PubMed]
- Muguruma, H. Biosensors: Enzyme immobilization chemistry. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 64–71. [Google Scholar]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Denizli, A. Plasmonic sensors for monitoring biological and chemical threat agents. Biosensors 2020, 10, 142. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Recent progress in optical sensors for biomedical diagnostics. Micromachines 2020, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, Y.; Lv, C.; Zhang, Z.; Peng, X. Copper-based metal–organic xerogels on paper for chemiluminescence detection of dopamine. Anal. Methods 2020, 12, 4191–4198. [Google Scholar] [CrossRef]
- Emir Diltemiz, S.; Yağmuroğlu, O. Development of reflectometric interference spectroscopy based sensor for paraokson determination. Eskiseh. Tech. Univ. J. Sci. Technol. C-Life Sci. Biotechnol. 2019, 8, 12–22. [Google Scholar]
- Zhang, H.; Dong, X.; Wang, J.; Guan, R.; Cao, D.; Chen, Q. Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypochlorite ions. ACS Appl. Mater. Interfaces 2019, 11, 32489–32499. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Mergu, N.; Kumawat, L.K. A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media. Sens. Actuators B Chem. 2016, 223, 101–113. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, T.; Gil, Y.G.; Kim, G.H.; Park, C.; Jang, H.; Min, J. Fabrication of bioprobe self-assembled on Au–Te nanoworm structure for SERS biosensor. Materials 2020, 13, 3234. [Google Scholar] [CrossRef] [PubMed]
- Dibekkaya, H.; Saylan, Y.; Yılmaz, F.; Derazshamshir, A.; Denizli, A. Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J. Macromol. Sci. A 2016, 53, 585–594. [Google Scholar] [CrossRef]
- Safran, V.; Göktürk, I.; Bakhshpur, M.; Yılmaz, F.; Denizli, A. Development of molecularly imprinted polymer-based optical sensor for the sensitive penicillin G detection in milk. ChemistrySelect 2021, 6, 11865–11875. [Google Scholar] [CrossRef]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Balaji, A.; Zhang, J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Arshad, F.; Nabi, F.; İkbal, S.; Khan, R.H. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf. B Biointerfaces 2022, 212, 112356. [Google Scholar] [CrossRef] [PubMed]
- Çimen, D.; Bereli, N.; Günaydın, S.; Denizli, A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020, 219, 121259. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.J.; Pollard, T.D.; Goyanes, A.; Gaisford, S.; Elbadawi, M.; Basit, A.W. Optical biosensors—Illuminating the path to personalized drug dosing. Biosens. Bioelectron. 2021, 188, 113331. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Ultrathin transition-metal dichalcogenide nanosheet-based colorimetric sensor for sensitive and label-free detection of DNA. Sens. Actuators B Chem. 2019, 290, 565–572. [Google Scholar] [CrossRef]
- Tonyushkina, K.; Nichols, J.H. Glucose meters: A review of technical challenges to obtaining accurate results. J. Diabetes Sci. Technol. 2009, 3, 971–980. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Saylan, Y.; Denizli, A. Molecularly imprinted polymer-based microfluidic systems for point-of-care applications. Micromachines 2019, 10, 766. [Google Scholar] [CrossRef]
- Manz, A.; Harrison, D.J.; Verpoorte, E.M.J.; Fettinger, J.C.; Paulus, A.; Lüdi, H.; Widmer, H.M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. J. Chromatog. A 1992, 593, 253–258. [Google Scholar] [CrossRef]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012, 12, 2118–2134. [Google Scholar] [CrossRef]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip. 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Shende, P.; Prabhakar, B.; Patil, A. Color changing sensors: A multimodal system for integrated screening. TrAC Trends Anal. Chem. 2019, 121, 115687. [Google Scholar] [CrossRef]
- VS, A.P.; Joseph, P.; Daniel, K.; Susithra, L.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes- review. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar]
- Liu, Y.; Han, X.; He, L.; Yin, Y. Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem. Int. Ed. 2012, 51, 6373–6377. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, Y.; Yin, Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 2014, 14, 2466–2470. [Google Scholar] [CrossRef]
- Liu, D.; Fang, L.; Zhou, F.; Li, H.; Zhang, T.; Li, C.; Cai, W.; Deng, Z.; Li, L.; Li, Y. Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. 2018, 28, 1707392. [Google Scholar] [CrossRef]
- Kaur, B.; Kaur, N.; Kumar, S. Colorimetric metal ion sensors-A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. [Google Scholar] [CrossRef]
- Milindanuth, P.; Pisitsak, P. A novel colorimetric sensor based on rhodamine-B derivative and bacterial cellulose for the detection of Cu(II) ions in water. Mater. Chem. Phys. 2018, 216, 325–331. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, B.; Wei, G. Two-dimensional material-based colorimetric biosensors: A review. Biosensors 2021, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Gangapuram, R.B.; Bandi, R.; Dadigala, R.; Kotu, G.M.; Guttena, V. Facile green synthesis of gold nanoparticles with carboxymethyl gum karaya, selective and sensitive colorimetric detection of copper (II) ions. J. Clust. Sci. 2017, 28, 2873–2890. [Google Scholar] [CrossRef]
- Park, G.J.; Hwang, I.H.; Song, E.J.; Kim, H.; Kim, C. A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 2014, 70, 2822–2828. [Google Scholar] [CrossRef]
- Deng, H.H.; Li, G.W.; Liu, A.L.; Chen, W.; Lin, X.H.; Xia, X.H. Thermally treated bare gold nanoparticles for colorimetric sensing of copper ions. Microchim. Acta 2014, 181, 911–916. [Google Scholar] [CrossRef]
- Abdulazeez, I.; Basheer, C.; Al-Saadi, A.A. A selective detection approach for copper(II) ions using a hydrazone-based colorimetric sensor: Spectroscopic and DFT study. RSC Adv. 2018, 8, 39983–39991. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Z.; Qu, W.; Shao, H.; Jiang, X. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens. Bioelectron. 2011, 26, 4064–4069. [Google Scholar] [CrossRef] [PubMed]
- Lou, T.; Chen, L.; Wang, Y.; Chen, L.; Li, J. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 4215–4220. [Google Scholar] [CrossRef]
- Xie, G.L.; Yu, H.; Deng, M.H.; Zhao, X.L.; Yu, P. A colorimetric microfluidic sensor made by a simple instrumental-free prototyping process for sensitive quantitation of copper. Chem. Pap. 2019, 73, 1509–1517. [Google Scholar] [CrossRef]
- Maddali, H.; Mmiles, C.E.; Kohn, J.; O’Carroll, D.M. Optical biosensors for virus detection: Prospects for SARS-CoV-2/COVID-19. ChemBioChem 2021, 22, 1176–1189. [Google Scholar] [CrossRef]
- Velasco-Garcia, M.N. Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin. Cell Dev. Biol. 2009, 20, 27–33. [Google Scholar] [CrossRef]
- Girigoswami, K.; Akhtar, N. Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nano Dimens. 2019, 10, 1–17. [Google Scholar]
- Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T.A.; Bhand, S.; Hayat, A.; Marty, J.L. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 2018, 10, 197. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Wu, F.; Hao, G.; Chen, Y.; Tan, C.; Tan, Y.; Jiang, Y. A dual-response quinoline-based fluorescent sensor for the detection of copper (II) and iron(III) ions in aqueous medium. Sens. Actuators B Chem. 2017, 243, 765–774. [Google Scholar] [CrossRef]
- Verwilst, P.; Sunwoo, K.; Kim, J.S. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem. Commun. 2015, 51, 5556–5571. [Google Scholar] [CrossRef]
- Cotruvo, J.J.A.; Aron, A.T.; Ramos-Torres, K.M.; Chang, C.J. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 2015, 44, 4400–4414. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.C.; Qi, J.W.; Hu, C.; Zhang, L.; Song, W.; Liang, R.P.; Qiu, J.D. Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Anal. Chim. Acta 2015, 895, 95–103. [Google Scholar] [CrossRef]
- Xie, Y.F.; Jiang, Y.J.; Zou, H.Y.; Wang, J.; Huang, C.Z. Discrimination of copper and silver ions based on the label-free quantum dots. Talanta 2020, 220, 121430. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Ding, T.; Liu, J.; Zhang, G.; Tong, L.; Cheng, X.; Yang, Y.; Chen, Z.; Tang, B. Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with Alzheimer’s disease. Talanta 2021, 223, 121745. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Wu, S.P. A pyrene-based highly selective turn-on fluorescent sensor for copper (II) ions and its application in living cell imaging. Sens. Actuators B Chem. 2013, 181, 743–748. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, C.; Zhu, A.; Deng, Z.; Tian, Y.; Jin, M. Two-photon ratiometric fluorescent sensor based on specific biomolecular recognition for selective and sensitive detection of copper ions in live cells. Anal. Chem. 2013, 85, 11936–11943. [Google Scholar] [CrossRef]
- Peng, J.; Ling, J.; Zhang, X.Q.; Bai, H.P.; Zheng, L.; Cao, Q.E.; Ding, Z.T. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. Spectrochim. Acta A Mol. Biomol. 2015, 137, 1250–1257. [Google Scholar] [CrossRef]
- Du, T.; Wang, J.; Zhang, T.; Zhang, L.; Yang, C.; Yue, T.; Sun, J.; Li, T.; Zhou, M.; Wang, J. An integrating platform of ratiometric fluorescent adsorbent for unconventional real-time removing and monitoring of copper ions. ACS Appl. Mater. Interfaces 2020, 12, 13189–13199. [Google Scholar] [CrossRef]
- Xie, T.; Zhong, X.; Liu, Z.; Xie, C. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper (II). Microchim. Acta 2020, 187, 323. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, R.; Zhang, G.; Liu, X.; Qu, F.; Lu, L. Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu2+. Anal. Bioanal. Chem. 2020, 412, 1317–1324. [Google Scholar] [CrossRef]
- Chatterjee, S.; Gohil, H.; Raval, I.; Chatterjee, S.; Paital, A.R. An anthracene excimer fluorescence probe on mesoporous silica for dual functions of detection and adsorption of mercury (II) and copper (II) with biological in vivo applications. Small 2019, 15, 1804749. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, R.; Wang, J.; Zhang, Y.; Wen, C.; Tan, Y.; Yang, M. An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu2+ detection. Analyst 2020, 145, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Patir, K.; Gogoi, S.K. Nitrogen-doped carbon dots as fluorescence ON–OFF–ON sensor for parallel detection of copper(II) and mercury(II) ions in solutions as well as in filter paper-based microfluidic device. Nanoscale Adv. 2019, 1, 592. [Google Scholar] [CrossRef]
- Blum, L.J.; Coulet, P.R. Luminescent biosensors. In Biosensors and Their Applications; Yang, V.C., Ngo, T.T., Eds.; Springer: New York, NY, USA, 2012; pp. 213–223. [Google Scholar]
- Shi, Y.; Liu, Q.; Yuan, W.; Xue, M.; Feng, W.; Li, F. Dye-assembled upconversion nanocomposite for luminescence ratiometric in vivo bioimaging of copper ions. ACS Appl. Mater. Interfaces 2018, 11, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Xia, H.; Mu, Y.; Liu, X. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem. Comm. 2016, 52, 6613–6616. [Google Scholar] [CrossRef]
- Rawal, R.; Kharangarh, P.R.; Dawra, S.; Tomar, M.; Gupta, V.; Pundir, C.S. A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem. 2020, 89, 165–174. [Google Scholar] [CrossRef]
- Gunn, J.A.; Gunn, J.A.; Shelley, C.; Lewis, S.W.; Toop, T.; Archer, M. The determination of morphine in the larvae of Calliphora stygia using flow injection analysis and HPLC with chemiluminescence detection. J. Anal. Toxicol. 2006, 30, 519–523. [Google Scholar] [CrossRef]
- Hindson, B.J.; Barnett, N.W. Analytical applications of acidic potassium permanganate as a chemiluminescence reagent. Anal. Chim. Acta 2001, 445, 1–19. [Google Scholar] [CrossRef]
- Zhang, X.R.; Baeyens, W.R.G.; Van der Weken, G.; Calokerinos, A.C.; Nakashima, K. Chemiluminescence determination of captopril based on a Rhodamine B sensitized cerium (IV) method. Anal. Chim. Acta 1995, 303, 121–125. [Google Scholar] [CrossRef]
- Ouyang, H.; Shu, Q.; Wang, W.; Wang, Z.; Yang, S.; Wang, L.; Fu, Z. An ultra-facile and label-free immunoassay strategy for detection of copper (II) utilizing chemiluminescence self-enhancement of Cu (II)-ethylenediaminetetraacetate chelate. Biosens. Bioelectron. 2016, 85, 157–163. [Google Scholar] [CrossRef]
- Sun, H.; Gao, N.; Wu, L.; Ren, J.; Wei, W.; Qu, X. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem. Eur. J. 2013, 19, 13362–13368. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Abolghasemi-Fakhri, Z. Gold nanostar-enhanced chemiluminescence probe for highly sensitive detection of Cu(II) ions. Sens. Actuators B Chem. 2018, 257, 629–634. [Google Scholar] [CrossRef]
- Chan, Y.H.; Chen, J.; Liu, Q.; Wark, S.E.; Son, D.H.; Batteas, J.D. Ultrasensitive copper (II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal. Chem. 2010, 82, 3671–3678. [Google Scholar] [CrossRef]
- Wang, H.; Pei, Y.; Qian, X.; An, X. Eu-metal organic framework@ TEMPO-oxidized cellulose nanofibrils photoluminescence film for detecting copper ions. Carbohydr. Polym. 2020, 236, 116030. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, Q.; Hu, S. Carbon dots with concentration-tunable multicolored photoluminescence for simultaneous detection of Fe3+ and Cu2+ ions. Sens. Actuators B Chem. 2017, 253, 928–933. [Google Scholar] [CrossRef]
- Ganiga, M.; Cyriac, J. Understanding the photoluminescence mechanism of nitrogen-doped carbon dots by selective interaction with copper ions. ChemPhysChem 2016, 17, 2315–2321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Kim, J. Highly sensitive and selective photoluminescence detection of copper ions via in situ formation of fluorescent polydopamine. J. Nanosci. Nanotechnol. 2017, 17, 5776–5779. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhang, Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens. Actuators B Chem. 2014, 196, 647–652. [Google Scholar] [CrossRef]
- Liu, X.; Gao, W.; Zhou, X.; Ma, Y. Pristine graphene quantum dots for detection of copper ions. J. Mater. Res. 2014, 29, 1401–1407. [Google Scholar] [CrossRef]
- Šípová, H.; Homola, J. Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 2013, 773, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Bakhshpour, M.; Göktürk, I.; Bereli, N.; Yılmaz, F.; Denizli, A. selective detection of penicillin G antibiotic in milk by molecularly imprinted polymer-based plasmonic SPR sensor. Biomimetics 2021, 6, 72. [Google Scholar] [CrossRef]
- Saylan, Y.; Erdem, Ö.; Cihangir, N.; Denizli, A. Detecting fingerprints of waterborne bacteria on a sensor. Chemosensors 2019, 7, 33. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020, 219, 121219. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.P.; Dorofeenko, A.V.; Pukhov, A.A.; Lisyansky, A.A. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam. Phys. Rev. B 2018, 97, 235407. [Google Scholar] [CrossRef]
- Zhou, X.L.; Yang, Y.; Wang, S.; Liu, X.W. Surface plasmon resonance microscopy: From single-molecule sensing to single-cell imaging. Angew. Chem. Int. Ed. 2020, 59, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zeng, X.; Liang, J. Surface plasmon resonance: An introduction to a surface spectroscopy technique. J. Chem. Educ. 2010, 87, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, E.; Raether, H. Notizen: Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Das, C.M.; Ouyang, Q.; Dinh, X.Q.; Coquet, P.; Yong, K.T. A theoretical insight into the use of anti-reflective coatings for the upliftment of sensitivity of surface plasmon resonance sensors. Opt. Commun. 2020, 458, 124748. [Google Scholar] [CrossRef]
- Cyago, A.; Advincula, R. Surface plasmon resonance spectroscopy and molecularly imprinted polymer (MIP) sensors. In Handbook of Spectroscopy; Gauglitz, G., Moore, S.D., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2014; pp. 1229–1258. [Google Scholar]
- Mohammadzadeh-Asl, S.; Aghanejad, A.; de la Guardia, M.; Ezzati Nazhad Dolatabadi, J.; Keshtkar, A. Surface plasmon resonance signal enhancement based on erlotinib loaded magnetic nanoparticles for evaluation of its interaction with human lung cancer cells. Opt. Laser Technol. 2021, 133, 106521. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.; Huang, L.; Ouyang, Z.; Wang, Z.; Kong, X.; Li, T.; Yin, Y.; Wu, Y.; He, Q. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Wu, Y.; Chang, S.J.; Chen, C.J.; Liu, J.T. Investigation of the recognition interaction between glycated hemoglobin and its aptamer by using surface plasmon resonance. Talanta 2021, 222, 121466. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Çimen, D.; Derazshamshir, A.; Bereli, N.; Yılmaz, F.; Denizli, A. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sens. Actuators B Chem. 2017, 241, 446–454. [Google Scholar] [CrossRef]
- Peng, D.; Kavanagh, O.; Gao, H.; Zhang, X.; Deng, S.; Chen, D.; Liu, Z.; Xie, C.; Situ, C.; Yuan, Z. Surface plasmon resonance biosensor for the determination of 3-methyl-quinoxaline-2-carboxylic acid, the marker residue of olaquindox, in swine tissues. Food Chem. 2020, 302, 124623. [Google Scholar] [CrossRef]
- Shibayama, J.; Mitsutake, K.; Yamauchi, J.; Nakano, H. Kretschmann- and Otto-type surface plasmon resonance waveguide sensors in the terahertz regime. Microw. Opt. Technol. Lett. 2021, 63, 103–106. [Google Scholar] [CrossRef]
- Dong, J.; Gao, N.; Peng, Y.; Guo, C.; Lv, Z.; Wang, Y.; Zhou, C.; Ning, B.; Liu, M.; Gao, Z. Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Control 2012, 25, 543–549. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef]
- Inci, F.; Saylan, Y.; Kojouri, A.M.; Ogut, M.G.; Denizli, A.; Demirci, U. A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Appl. Mater. Today 2020, 18, 100478. [Google Scholar] [CrossRef]
- Rahtuvanoğlu, A.; Akgönüllü, S.; Karacan, S.; Denizli, A. Biomimetic nanoparticles based surface plasmon resonance biosensors for histamine detection in foods. ChemistrySelect 2020, 5, 5683–5692. [Google Scholar] [CrossRef]
- Atay, N.Ö.; Osman, B.; Akgöl, S.; Karagözler, A.; Denizli, A. Preparation of molecularly imprinted spr nanosensor for myoglobin detection. Curr. Appl. Polym. Sci. 2018, 2, 102–111. [Google Scholar] [CrossRef]
- Maisonneuve, M.; Valsecchi, C.; Wang, C.; Brolo, A.G.; Meunier, M. Leukemic marker detection using a spectro-polarimetric surface plasmon resonance platform. Biosens. Bioelectron. 2015, 63, 80–85. [Google Scholar] [CrossRef]
- Gerdan, Z.; Saylan, Y.; Uğur, M.; Denizli, A. Ion-imprinted polymer-on-a-sensor for copper detection. Biosensors 2022, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Safran, V.; Göktürk, I.; Derazshamshir, A.; Yılmaz, F.; Sağlam, N.; Denizli, A. Rapid sensing of Cu+2 in water and biological samples by sensitive molecularly imprinted based plasmonic biosensor. Microchem. J. 2019, 148, 141–150. [Google Scholar] [CrossRef]
- Forzani, E.S.; Zhang, H.; Chen, W.; Tao, N. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. Environ. Sci. Technol. 2005, 39, 1257–1262. [Google Scholar] [CrossRef]
- Daniyal, W.M.E.M.M.; Fen, Y.W.; Abdullah, J.; Sadrolhosseini, A.R.; Saleviter, S.; Omar, N.A.S. Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film. Opt. Express 2018, 26, 34880–34893. [Google Scholar] [CrossRef]
- Chen, H.; Jia, S.; Zhang, J.; Jang, M.; Chen, X.; Koh, K.; Wang, Z. Sensitive detection of copper(II) ions based on the conformational change of peptides by surface plasmon resonance spectroscopy. Anal. Methods 2015, 7, 8942–8946. [Google Scholar] [CrossRef]
- Ding, L.; Gao, Y.; Di, J. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate. Biosens. Bioelectron. 2016, 83, 9–14. [Google Scholar] [CrossRef]
Ref. | Sensor | Polymer Type | Range | LOD | Selectivity | Real Sample |
---|---|---|---|---|---|---|
[82] | Colorimetric | Carboxymethyl gum karaya-capped gold nanoparticles | 10–1000 nM | 10 nM | Cr3+, Zn2+, Fe2+, Co2+, Cd2+, Mn2+, Ni2+, Hg2+, Ca2+, Mg2+, Ag+, K+ | Tap water, human plasma, and urine |
[83] | Colorimetric | Julolidine-containing naphthol-based probe | 3.0 × 10−5 M | 1.4 × 10−5 M | F−, Cl−, Br−, I−, OAc−, CN−, SCN−, SO42−, H2PO4− | Not available (NA) |
[84] | Colorimetric | Thermally treated gold nanoparticles | 0–6 μM | 0.04 μM | Zn2+, K+, Ca2+, Na+, Mg2+, Al3+, Fe2+, Fe3+, Cr3+, Cd2+, Hg2+, Pb2+, Ba2+, Ag+ | Mineral water |
[85] | Colorimetric | Hydrazone | 2 × 10−3 M | 0.34 μg/L | Mg2+, Ca2+, Ni2+, Zn2+,Pd2+ | NA |
[86] | Colorimetric | Papain-coated gold nanoparticles | 20 μM | 200 nM | Pb2+, Ba2+, Ca2+, Cd2+, Co2+, Fe3+, Mg2+, Mn2+, Ni2+, Zn2+ | Lake and tap water |
[87] | Colorimetric | Silver-coated gold nanoparticles | 5–800 nM | 1 nM | K+, Li+, Na+, Mg2+, Ag+, Ca2+, Mn2+, Al3+, Hg2+, Cd2+, Zn2+, Cr3+, Co2+, Pb2+ | Tap and pond water |
[88] | Colorimetric | Patterned-PVC film | 0–30 mg/L | 0.096 mg/L | K+, Zn2+, Ca2+, Pb2+, Ni2+, Mg2+, Na+, Fe2+, Fe3+, Co2+ | Tap water |
[96] | Fluorescence | Silica-coated quantum dots | 22 nM–8.8 mM | 8.9 nM | Cr3+, Fe2+, Ni2+, Co2+, K+,Ti2+, Mn2+, Mg2+, Ca2+, Sn2+, Al3+, Cd2+, Pb2+, Hg2+, Fe3+, Ag+ | River water |
[97] | Fluorescence | Mercaptoacetic acid-coated quantum dots | 40–600 nM | 35 nM | Ni2+, Co2+, K+, Mn2+, Ca2+, Na+, Al3+, Ba2+, Cd2+, Pb2+, Hg2+, Fe3+, Ag+, Mg2+ | Human urine |
[98] | Fluorescence | Bovine serum albumin-stabilized gold nanoclusters | 0.5–30 μM | 0.1465 μM | Ca2+, Mg2+, Na+, K+, Zn2+, Sn2+, Cr3+, Fe3+, Fe2+, Pb2+ | Mice |
[99] | Fluorescence | Pyrene and hydrazone | 50 μM | 2.73 μM | Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Pb2+, Zn2+ | Live cells |
[100] | Fluorescence | Amino triphenylamine dendron-hybridised quantum dots | 10−3–10−7 M | 10 nM | Na+, K+, Ca2+, Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cu+ | Live cells |
[101] | Fluorescence | Oligonucleotides-stabilized silver nanoclusters | 6–240 nM | 3.4 nM | Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Pb2+, Zn2+ | River water |
[102] | Fluorescence | Metal-organic frameworks | 2.07 × 10−7–8.29 × 10−4 M | 1.91 × 10−7 M | Ca2+, Cd2+, Co2+, K+, Mg2+, Ni2+ | NA |
[103] | Fluorescence | Silica-anchored nanocrystals | 0.01–2 μM | 6.3 nM | Al3+, Fe3+, Ca2+, Pb2+, Hg2+, Mg2+, Zn2+, Fe2+, Cr2+, Ba2+, Cd2+ | Tea |
[104] | Fluorescence | Carbon dots/gold nanoclusters-embedded metal-organic frameworks | 10−3–103 μM | 0.3324 nM | Na+, Fe3+, Zn2+, Mg2+, Fe2+, Pb2+, Al3+, Ca2+ | Human serum |
[105] | Fluorescence | Silica-based hybrid material | 1–5 µM | 5.44 ppb | Li+, Na+, K+, Ca2+, Mg2, Sr2+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, Hg2+, Cd2+ | Grape and orange juice |
[106] | Fluorescence | Porphyrinic metal-organic frameworks | 1–250 nM | 220 pM | Mg2+, Zn2+, Ca2+, Cd2+, Fe2+, Fe3+, Ni2+, Ag+, Al3+, Hg2+, Co2+, Pb2+ | Live cells |
[107] | Fluorescence | Nitrogen-doped carbon dots | 0–25 μM | 2.3 nM | Ag+, Pb2+, Fe3+, Cr6+, Zn2+, Au3+, Co2+, Hg2+ | Tap water |
[109] | Luminescence | Lanthanide-doped upconversion nanoparticles | 12 μmol/L | 37 nmol/L | Tm3+, Yb3+, K+, Na+, Er3+, Cd2+, Ca2+, Co2+, Ni2+, Al3+, Mg2+, Mn2+, Zn2+, Sn2+, Ba2+, Hg2+, Ag+, Fe3+, Fe3+, H2O2 | Live mice and cell |
[110] | Luminescence | Azine-linked covalent organic frameworks | 0–0.4 μM | 0.31 μM | Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Zn2+, Cd2+, Ni2+, Pb2+, Co2+, Ag+, Fe3+, Al3+ | NA |
[115] | Chemiluminescence | Monoclonal antibody | 1.0–1000 ng/mL | 0.33 ng/mL | Fe3+, Pb2+, Hg2+, Cd2+, Ca2+, Zn2+, Mn2+, Cr3+, Co2+, K+, Na+, Ba2+, Mg2+, Ag+, Fe2+, Al+3, NH4+ | Lake water |
[117] | Chemiluminescence | Gold nanostars | 0.002–9 μM | 0.9 nM | Mn2+, Fe3+ Pb2+, Zn2+, Co2+, Cr3+, Al+3, As5+, Hg2+, Cd2+, Eu+3, Fe2+, Na+, Ag+, Ni2+, Cr6+ | Human plasma, well and river water |
[118] | Photoluminescence | Mercaptohexadecanoic acid-capped quantum dots | 0–100 µM | 5 nM | Ni2+, Mn2+, K+, Ca2+, Co2+, Pb2+, Na+, Ba2+ | Physiological fluids |
[119] | Photoluminescence | Metal-organic frameworks-oxidized cellulose nanofibrils | 0–100 µM | NA | H2O, Mn2+, Ni2+, Cu2+, Na+, K+, Mg2+, Zn2+, Ca2+, Co2+ | NA |
[120] | Photoluminescence | Carbon dots | 0–300 μM | 0.12 μM | Ba2+, Ca2+, Cd2+, K+, Mg2+, Na+, Li+, Zn2+, Ni2+, Al3+, Mn2+, Fe2+, Hg2+, Sr2+ | NA |
[116] | Photoluminescence | Amino-functionalized graphene quantum dots | 0–100 nM | 6.9 nM | Al3+, Ag+, Co2+, Cd2+, Ni2+, Mg2+, Mn2+, Pb2+, Zn2+, Fe2+, Fe3+, Hg2+ | Human lung cells |
[121] | Photoluminescence | Nitrogen-doped carbon dots | 10 μM–0.4 mM | 10 μM | Fe3+, Fe2+, Zn2+, Hg2+, K+, Na+, Ag+, Mn2+, NH4+, Pb2+, Cd2+, Ni2+, Au3+, Mg2+, Ca2+, Co2+ | Pond water |
[122] | Photoluminescence | Polydopamine | 1–1000 nM | 1 nM | Na+, K+, Mg2+, Fe3+ | NA |
[123] | Photoluminescence | Polyethylenimine-capped carbon quantum dots | 0.3–66.6 μM | 115 nM | Co2+, Ca2+, Ni2+, Mn2+, Hg2+, Pb2+, Ba2+, Cd2+, Fe3+ | River water |
[124] | Photoluminescence | Graphene quantum dots | 0–0.2 mM | 0.33 µM | Cr3+, Ba2+, Ca2+, Cd2+, Co2+, K+, Mn2+, Ni2+, Pb2+, Zn2+, Fe3+, Ag+, Hg2+ | Tap water |
[147] | Surface plasmon resonance | Molecularly imprinted nanofilm | 0.04–5 μM | 0.027 µM | Fe2+, Cd2+, Li+, Ni2+, Pb2+ | Artificial plasma and urine |
[148] | Surface plasmon resonance | Molecularly imprinted nanoparticles | 0.1–100 nM | NA | Ni2+, Zn2+ | Artificial urine and serum |
[149] | Surface plasmon resonance | Peptide-modified film | 800 pM–100 μM | 0.1 ppb | NA | Tap water |
[150] | Surface plasmon resonance | Nanocrystalline cellulose-modified composite film | 0.01–60 ppm | 0.01 ppm | NA | NA |
[151] | Surface plasmon resonance | Peptide-immobilized | 1 × 10−12–1 × 10−6 M | 0.44 pM | Mg2+, Ca2+, Zn2+, Pb2+, Mn2+, Ba2+, Ni2+, Co2+ | NA |
[152] | Surface plasmon resonance | Indium tin oxide film-coated gold nanoparticles | 10−11–10−5 M | 5 × 10−12 M | K+, Fe2+, Pb2+, Co2+, Zn2+, Ni2+, Cd2+, Ag+, Hg2+ | Tap and river water, milk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerdan, Z.; Saylan, Y.; Denizli, A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines 2022, 13, 1298. https://doi.org/10.3390/mi13081298
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines. 2022; 13(8):1298. https://doi.org/10.3390/mi13081298
Chicago/Turabian StyleGerdan, Zeynep, Yeşeren Saylan, and Adil Denizli. 2022. "Recent Advances of Optical Sensors for Copper Ion Detection" Micromachines 13, no. 8: 1298. https://doi.org/10.3390/mi13081298
APA StyleGerdan, Z., Saylan, Y., & Denizli, A. (2022). Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines, 13(8), 1298. https://doi.org/10.3390/mi13081298