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Abstract: Considering the demand for low temperature bonding in 3D integration and packaging of
microelectronic or micromechanical components, this paper presents the development and application
of an innovative inductive heating system using micro coils for rapid Cu-Sn solid-liquid interdiffusion
(SLID) bonding at chip-level. The design and optimization of the micro coil as well as the analysis
of the heating process were carried out by means of finite element method (FEM). The micro coil
is a composite material of an aluminum nitride (AlN) carrier substrate and embedded metallic coil
conductors. The conductive coil geometry is generated by electroplating of 500 µm thick copper
into the AlN carrier. By using the aforementioned micro coil for inductive Cu-Sn SLID bonding,
a complete transformation into the thermodynamic stable ε-phase Cu3Sn with an average shear
strength of 45.1 N/mm2 could be achieved in 130 s by applying a bond pressure of 3 MPa. In
comparison to conventional bonding methods using conduction-based global heating, the presented
inductive bonding approach is characterized by combining very high heating rates of about 180 K/s
as well as localized heating and efficient cooling of the bond structures. In future, the technology will
open new opportunities in the field of wafer-level bonding.

Keywords: MEMS packaging; low-temperature bonding; selective bonding; SLID bonding; IMC;
intermetallic compound; induction heating; localized heating; micro coil; electromagnetic (EM) field

1. Introduction

The last decades have shown an astonishing growth in the complexity of microsys-
tems to fulfil the increasing demand of new functionalities and higher integration density.
Current trends in microsystems packaging focus on the heterogeneous integration of new
innovative material systems with different thermomechanical properties for the interac-
tion of several functionalities in one smart system—so called micro-electro-mechanical
systems (MEMS) [1]. Another driving force is 3D integration by stacking microsystems
and integrated microelectronic components or devices on top of each other. This enables,
for example, vertical interconnections with low parasitic capacitance and inductance [1–3].
However, a robust and hermetically sealed bond package is required to ensure reliability
and functionality, especially under harsh environmental conditions, and determines the
long-term drift characteristics of the bonded device.

The hermetic encapsulation of MEMS can be realized by zero-level or wafer-level
packaging techniques to combine two or more substrates with various functional compo-
nents [4]. Conventional wafer bonding methods such as silicon direct bonding, anodic
bonding, glass frit bonding, thermo-compression bonding, or hybrid bonding are car-
ried out at elevated temperatures and, in some cases, with subsequent annealing of the
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substrates [4–11]. This can cause damage to fragile and temperature-sensitive elements.
To avoid such thermal stress within the package, the bonding process of heterogeneous
material stacks requires a reduction of the thermal load.

From a wide variety of bonding techniques, the SLID bonding is of great importance
today and can meet these thermal requirements. The process results in hermetically
sealed and mechanically stable packages with the possibility for fine-pitch bonding [12,13].
The main process advantages are moderate processing temperatures, low stresses in the
final assembly and high re-melting temperatures of the formed intermetallic compounds
(IMCs) [14,15]. In 1966, Bernstein presented for the first time the SLID mechanism of the
binary systems Ag-In, Au-In, and Cu-In [16]. Today, Au-Sn [14,17,18] and Cu-Sn [14,19,20]
are the most studied SLID systems with process temperatures above 278 ◦C and 232 ◦C,
and IMC melting temperatures at about 500 ◦C and 700 ◦C, respectively. Therefore, SLID
bonding is one of the most interesting low-temperature packaging technique, especially for
wafer-level and 3D integration.

However, all of the above-mentioned bonding methods, including SLID bonding, are
performed using a global heating of all substrates and components. A promising approach
to minimize this problem is to focus the bonding temperature locally to the bond interface.
Therefore, bonding processes utilizing selective heating of the interface become more rele-
vant. One possibility to implement this approach is the use of self-propagating exothermic
reactions (SER). The first application of such chemical reactions dates back to 1895, when
Goldschmidt used self-propagating thermite reactions in a powder composite of aluminum
and iron oxide to join railroad tracks [21]. In 1988, Clevenger et al. published exothermic
Ni/Si foils, which consist of nanoscale reactive multilayer systems (RMS) [22]. Integrated
reactive material systems (iRMS) represent a further development of the RMS foils. Braeuer
et al. introduced direct deposition and patterning techniques of different reactive multi-
layer systems (Al/Pd, Al/Ti, Ti/Si) with the help of conventionally used process steps in
microelectronics and microsystems technology [23–25]. Other publications on iRMS with
integrated CuO/Al systems followed in 2018, 2020, and 2021 [26–28]. However, reactive
bonding with iRMS requires a complex fabrication process and leads to material limitations.
The deposition of the multilayers is highly time-consuming and minor deviations in the
layer thickness can result in incomplete reactions.

Another very promising approach is the induction heating technology, which allows
contactless transfer of highly concentrated energy into electrically conductive materials
with a high degree of efficiency [29,30]. However, current research work on induction
heating is mainly concentrated in macroscopic fabrication processes. With inductive contact
joining (ICJ), metals and composites can be bonded very efficiently [31,32]. Another
field of induction-based joining is the longitudinal welding of pipes from advanced high
strength steels (AHSS) by high-frequency induction welding. The authors demonstrated
the longitudinal welding of 42SiCr- [33] and 34MnB5-pipes [34] in combination with
subsequent heat treatments to manufacture pipes with enhanced mechanical properties.

In 2002, induction heating for bonding at microscopic level was used for the first
time by Thompson et al. to support silicon direct bonding with subsequent inductive
annealing of the substrates [35]. Since 2002, the number of publications on inductive heating
for MEMS packaging with ferromagnetic and solder materials (e.g., Ni/Co, Sn/Pb) has
increased gradually [36,37]. Chen et al. investigated the correlations of induction heating
between pattern design on printed circuit boards and determined the heat distribution by
FEM and infrared (IR) thermal imager [38]. However, due to the structural dimensions
as well as material combinations, the integration into microtechnological and industrial
manufacturing chains could not be demonstrated. In the previous work of the authors
in 2019 and 2020 [27,39], a method for selective induction heating of Cu-Sn layers for
energy-efficient bonding at wafer-level were realized for the first time, using an optimized
coil design. In order to heat industrially relevant bond structures with sufficient efficiency
and homogeneity, the induction coils need to be miniaturized continuously. This would
enable specific integration into economic manufacturing processes.
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Meanwhile, Yin et al. [40] and Sun et al. [41] demonstrated that inductive heating
of the binary system Cu-Sn leads to significantly faster intermetallic phase formation of
Cu6Sn5 and Cu3Sn. Moreover, Hammad et al. was able to achieve significantly improved
microstructure features and mechanical properties of inductively heated tin-silver-zinc
alloys after IMC formation [42]. Furthermore, induction heating can be used for sintering
of micro-scaled silver particles to bond microelectronic components at chip-level [43].

In the present paper, FEM, design, and fabrication of a novel miniaturized induction
coil based on a ceramic-metal compound for inductive Cu-Sn SLID bonding is proposed.
The coil design is adapted to the bond layout for homogeneous and rapid heat generation.
Additionally, a diffusion model for the binary system Cu-Sn could be developed using
FEM, which provides a correlation between layer thickness, temperature, and time as well
as characteristic details of the formed IMCs during the bonding process. Furthermore,
the approach, design, fabrication, and assembly of an inductive bonding module are
described in detail. In comparison to the previous work [27,39], bond structures with
considerably smaller lateral widths were used during the experiments. The heat-treated
and bonded structures were characterized in terms of temperature distribution, heating
rate, microstructure, and mechanical strength.

2. Physical Background
2.1. Induction Heating

According to Ampere’s law, an electric current flow through a primary conductor
(here referred to the micro coil) forms an alternating EM field around the coil. By defined
positioning of a secondary conductor (here referred to the electrically conductive Cu-Sn
bond layer) in the EM field, an induced voltage Ui generates eddy currents I inside the
conductor. Due to the ohmic resistance R of the secondary conductor material, the eddy
currents cause a heat flow

.
Qel based on the Joule effect, which is locally limited to the area

where the magnetic field penetrates the material. Equation (1) determines the heat flow in
the secondary conductor with the cross-section A.

.
Qel = I2·R =

∫
A

J2dA·R (1)

The heat concentration at the secondary conductor surface increases exponentially
with increasing frequency f 0 and can be defined by the current density J(x) (2).

J(x) = J0·e(−
x
δ ) (2)

Depending on the frequency, the alternating eddy current in the secondary conductor
tends to move to the outer surface, which reduces the internal magnetic fields in the
material. The current density J0 is maximum on the surface, dropping off exponentially
toward the center of the secondary conductor due to the skin effect. The skin depth δ (3)
determines the skin effect and represents the distance from the secondary conductor’s
surface where the current density is reduced to 37% of its maximum value. In this area,
about 86% of the electric energy is converted into heat [29,30].

δ =
1

π· f0·µ·σ
(3)

The skin depth depends on the permeability µ, the electrical conductivity σ, and the
frequency f 0 of the EM field. Table 1 shows the dependence of the skin depth for copper
and tin as a function of the frequency in the range of 1 MHz to 2 MHz.
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Table 1. Dependence of the skin depth on the EM field frequency.

Symbol Unit Parameter Range

Frequency f MHz 1.00 1.25 1.50 1.75 2.00

Copper
Skin depth @ 25 ◦C δ µm 67.26 60.16 54.92 50.84 47.56

Tin
Skin depth @ 25 ◦C δ µm 166.9 149.28 136.27 126.16 118.02

Due to the edge effect, the majority of the induced current density is concentrated at
the border of the heated material, which leads to inhomogeneous temperature distribution.
To avoid such phenomenon, the coil size should approximately match the size of the
structure to be heated. The edge effect can be neglected for the heating of micro-scaled
layers considering the scale and conductivity of the material [44].

In addition to the skin effect, energy transmission due to EM heating also depends
on the coil geometry, the distance between coil and bond layer (here referred to coupling
distance), input power, heating time, conduction, convention, radiation, and temperature-
dependent properties of the material. To increase the EM heating efficiency, it is important
to adapt the coil geometry to the geometrical dimensions of the heated structure [45].

Figure 1 shows a schematic representation with considered heat losses based on an
exemplary setup consisting of coil conductors embedded in a substrate, a water-cooled
heat sink, and two bond partners (copper and tin). The traditional transfer modes for heat
energy with reference to convection, conduction, and radiation can be used in various
combinations to generate heat and transport it through the individual layers as well as
components. In contrast to resistive-based heating, where heat propagates from the source
to the bonding zone via a variable mix of heat transfer modes, induction-based heating can
generate the desired heat in the bonding zone itself.
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In the illustrated example, the heat generated in the material is dissipated by convec-
tion

.
Qconv from the coil substrate through the heat sink (4), by conduction

.
Qcond between

the bond partner copper and tin (5), and by radiation
.

Qrad from the tin surface (6).

.
Qconv = h·AC·(TC1 − TC2) (4)

.
Qcond =

AB·λ
t

(
TB − TA1|A2

)
(5)

.
Qrad = ε·σ·AA1·

(
T4

A1 − T4
amb

)
(6)

The different values are related to the components of the setup, where h is the heat
transfer coefficient, λ is the thermal conductivity, t is the total thickness of the bond partner,
ε is the emissivity, and σ is the Stefan–Boltzmann constant. AC refer to the area of the
cooling zone, AB to the area of the bonding zone, and AA1 to the area of the tin surface.
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2.2. Solid-Liquid Interdiffusion Bonding

The SLID bonding (also known as Transient Liquid Phase Bonding) is a packaging
technique based on intermetallic diffusion between two or more metals, with a high-
temperature melting metal (such as Cu or Au) and a low-temperature melting metal (such
as Sn or In) under the influence of temperature, time, and pressure. Intermetallic formation
is driven by the atomic concentration gradient and can be described by the second Fick’s
law of diffusion [46]. It states that the diffusive flux goes from a high-concentration area
to a low-concentration area proportional to the concentration gradient. According to the
Arrhenius Equation (7), the diffusivity is determined by the diffusion coefficient D0, the
activation energy EA, the universal gas constant R, and the absolute temperature T.

D = D0· exp
(
− EA

RT

)
(7)

Figure 2 illustrates the Cu-Sn phase diagram with the IMC formation based on the
temperature and the relative material concentrations. The diffusion process of unalloyed
copper and tin will accelerate by exceeding the melting point of Sn (TM_Sn = 232 ◦C). The
temperature range used in the literature is between 250 ◦C and 300 ◦C [14,15,19,20,46], re-
sulting in intermetallic bonds of Cu6Sn5 (η-phase) and Cu3Sn (ε-phase) during the bonding
process. The η-phase is formed in the early heating stage. As the interdiffusion continues,
the ε-phase starts to grow at the Cu6Sn5/Cu interface. Compared to the metastable η-phase,
the thermodynamically stable ε-phase possesses significantly improved thermal and me-
chanical properties. In order to obtain the preferred ε-phase, the binary system should be
designed in such a way that the Cu can absorb most of the Sn [47]. Since a non-uniform
heat input can lead to voids and inclusions during the diffusion process, it is also important
to achieve homogeneous temperature distribution in the bonding area.
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Figure 2. Representation of the Cu-Sn phase diagram with the IMC formation, where the red dot
and gray dot are related to the original copper and tin layers, respectively. The yellow dot shows
the first formed η-phase Cu6Sn5, the green dot the stable ε-phase Cu3Sn. Reprinted/adapted with
permission from Ref. [48]. Copyright 2017, copyright Charlie Sanabria.

Based on the fundamental findings of Yin et al. [40] and Sun et al. [41], the diffusion
rate of Sn at temperatures above its melting point is accelerated and leads to Cu3Sn phases
with increased thicknesses. Due to the highly selective and very fast inductive heat input,
it is possible to overheat the material system locally. As a result, the diffusion process can
be expedited significantly, without majorly affecting the entire bonding substrates.
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3. Experimental Setup
3.1. Design and Materials

For performing the inductive bonding experiments, heterogeneous chip-level stacks
were used in this study as the joining partner. The substrate materials include a combination
of silicon and Borofloat® 33 glass with thicknesses of hSi = 675 µm and hG = 500 µm,
respectively (SCHOTT Technical Glass Solutions GmbH, Jena, Germany). A 6-inch wafer
was structured in twelve bond chips, which are shown in Figure 3. Each chip contains four
bond frames on an area of 33 × 28 mm2. The frames served as test structures to validate
the prospective hermetic encapsulation of MEMS devices at wafer-level.
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Figure 3. (a) Wafer design with twelve symmetrically arranged single chips; (b) Single chip with four
bond frames.

Due to the comparatively high thermal conductivity of silicon with approximately
λSi = 150 W/(m·K) [49,50], silicon dioxide (SiO2) layers with a thickness of hSiO2 = 2 µm
were deposited on the wafer surface, which act as a thermal barrier to partially compensate
the heat dissipation during inductive heating. An overview of the most relevant material
and layout parameter of the bond substrates is given in Table 2.

Table 2. Material and design parameters of the bond substrates.

Symbol 1 Unit Parameter

Dimensions

Length l mm 33
Width w mm 28

Silicon substrate

Thickness hSi µm 675
Thermal conductivity λSi W/(m·K) 153 [49,50]
Volume resistivity ρSi Ω·cm 10 to 20
Thickness of thermal barrier (SiO2) hSiO2 µm 2

Borofloat® 33 substrate

Thickness hG µm 500
Thermal conductivity λG W/(m·K) 1.2 [51]
Volume resistivity ρG Ω·cm 1 × 108 (at 250 ◦C) [51]

1 Symbolism according to Figures 3 and 4.
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The deposition of the Cu-Sn frames onto the substrates was performed by electroplat-
ing (electrochemical deposition—ECD) of 1.0 µm thick tin and 2.5 µm thick copper. The
geometrical and material parameters of the bond frames are listed in Table 3.

Table 3. Material and design parameters of the bond frames.

Symbol 1 Unit Parameter

Length lf mm 10
Width wf mm 10
Number of frames # – 4
Thickness copper hCu µm 2.5
Thickness tin hSn µm 1.0
Lateral frame distance df mm 4
Lateral frame width xf µm 500
Frame radius rf mm 1.5
Total frame area Af mm2 1469.2

1 Symbolism according to Figures 3 and 4.

The most important parameter from Table 3 is the lateral frame width. This value
essentially determines the width of the corresponding micro coil, and thus, the cross
section and thermal behavior of the coil during the process. After the ECD, the electrically
conductive seed layer was removed. Finally, the wafer could be separated into single chips.
Figure 4 shows a diced silicon wafer with a cross section of the Cu-Sn frames.

3.2. Simulation Model

A frequency-transient study in COMSOL Multiphysics® was applied to determine
the EM heating in the metal frames, the water-cooling based on convection (4) and the
heat losses due to the heat transfer modes conduction (5) and radiation (6). The simulation
model in Figure 5 represents the basis of the mentioned physical mechanism.
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The model contains the exact geometries of the micro coil and the bond setup as
well as simplified components of the inductive bonding module (cooling channel, heat
sink, thermal isolators, and ambient air). The physics-controlled meshing was performed
using tetrahedra and swept elements to fit the mesh size to the respective geometry. To
perform the analysis, the AC/DC module, the heat transfer module, and detailed material
parameter from the software database were used. Simplifications were made for the
thermal and electrical contact points, resulting in the assumption of an ideal surface
transition. Furthermore, the simulation model relies on temperature-dependent material
properties such as thermal conductivity, specific heat capacity, volume resistivity, thermal
expansion coefficient, and density. In addition, the radiation effect for each material could
be determined by assigning the emissivity in the boundary conditions. In order to consider
the cooling of the micro coil and the overall system, the electromagnetic and thermal
simulations were combined with the consideration of a laminar flow. In the boundary
conditions, a water flow velocity of v = 0.66 m/s was specified, which corresponds to a
water flow rate of Q = 1 L/min including the channel cross section. The water temperature
within the channels was set to TW = 20 ◦C. The aim was to geometrically design the cooling
channel without turbulences (e.g., vorticity, cross flow) and to efficiently cool the micro coil.
During the FEM, electrical parameters (coil current I0, frequency f 0), the heating time th,
the coupling distance d, and harmonics could be varied.

3.3. Micro Coil

The definition of the coil layout (Figure 6) was based on the simulation results of the
coil geometry (Section 4.1). In order to ensure an accurate fabrication process, the layout
consists of two connected sections:

• ECD section with electrically conductive contact area for electroplating as well as
electrolyte level compensation;

• Coil section with conductor lines as well as contact pads for smart connectivity with
the induction generator.
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Figure 6. Micro coil design with the ECD section as well as the coil section.

Aluminum nitride (AlN, CeramTec Alunit® 170 C) was used as substrate and carrier
material for the micro coil fabrication. Due to its excellent thermal conductivity, high
volume resistivity, and high dielectric strength, AlN fulfills the relevant requirements for
the application as coil substrate. The AlN parameters are listed in Table 4.
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Table 4. Substrate and material parameter of CeramTec Alunit® 170 C.

Symbol Unit Parameter

Substrate parameter

Length l mm 48
Width w mm 28
Thickness h mm 1
Surface quality – – as fired
Surface roughness Ra_max µm 0.6
Flatness xD % 0.3

Material parameter

Thermal conductivity λ W/(m·K) 170 [52]
Specific heat capacity cp J/(kg·K) 720 @ 100 ◦C [52]
Volume resistivity ρ Ω·cm 1 × 1014 @ 20 ◦C [52]
Dielectric strength κ kV/mm 15 @ 0.635 mm [52]

The process flow for the integration of miniaturized and metallic coil conductors into
an AlN carrier substrate consists of several process steps (Figure 7). First, the surface quality
of the carrier substrate needs to be improved to ensure suitable surface roughness and
flatness for subsequent process steps and the micro coil application for induction heating.
Subsequently, laser micromachining is performed to generate the coil geometry as well
as the electrically conductive seed layer. The seed layer is used to fill the laser-patterned
AlN trenches using copper ECD. Finally, the copper outgrowth generated during the ECD
process is removed by a coarse and fine grinding step.
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After surface finishing, the AlN carrier substrate can be patterned by laser processing.
The most important requirements for the process are the lateral conductor width, the
trench depth, and the roughness of the trench side walls. Furthermore, the thermal stress
of the substrate during laser patterning should be minimized to prevent cracks in the
material and chipping of the conductor lines. Based on the simulation of the coil geometry
(Section 4.1), an optimized conductor cross section could be determined. A lateral conductor
width of wc = 500 µm with a similar conductor thickness of hc = 500 µm results in good
inductive heating efficiency, acceptable self-heating of the coil conductors, and the best
possible manufacturing feasibility of the micro coil in terms of laser structuring and Cu
ECD. Due to the significantly higher material removal rate, the deep laser ablation for
patterning the basic coil geometry was realized with the ultrashort pulse laser. Afterwards,
the pre-patterned substrate was post-processed with the nanosecond laser to generate
the electrically conductive seed layer. The laser pulse leads to an ionization of the upper
atomic AlN substrate layer and consequently to the formation of a hot, dense plasma.
The resulting reduction of AlN to aluminum, nitrogen and additional atomic constituents
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forms an oxidation-resistant and electrically conductive intermetallic compound on the
laser-machined surface. The sheet resistance was determined with the 4-point probes
method [53] and is in the range of RSeed = 3.2 to 6.9 Ω. The thickness of the generated seed
layer is in the range of 1 µm to 3 µm, depending on the surface condition and the laser
pattern. Figure 8 shows the AlN substrate after laser processing of the ECD section as well
as the coil section.
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Figure 8. AlN carrier after laser processing: (a) Photographic image of the coil substrate; (b) Macro-
scopic image of laser-patterned coil conductors (3.0× magnification); (c) SEM cross section of the
laser-generated seed layer on top of AlN.

The macroscopic image shows a lateral conductor width of wt ≈ 330 µm at the laser-
patterned trench end. Consequently, the ablation process results for the used laser setup
in a depth-dependent conicity of 1/3. Measurements with confocal microscopy indicated
a slope angle of approximately 83◦. With the pre-defined lateral coil conductor width of
wc = 500 µm at the surface of the AlN substrate as well as a trench depth or conductor
thickness of hc = 500 µm, the trench width wt can be determined with (8).

wt = wc −
(

hc

3

)
(8)

The volume resistivity ρSeed can be calculated from the sheet resistance RSeed and the
seed layer thickness hSeed using the following Equation (9).

ρSeed = hSeed·RSeed (9)

Assuming a 2.5 µm thick seed layer, the resulting volume resistivity is in the range of
ρSeed = 8.0 × 10−4 Ω·cm to 1.73 × 10−3 Ω·cm.

The subsequent copper ECD was performed using an experimental beaker setup
(Figure 9). The electrical connection of the AlN substrate (cathode) was realized onto the
seed layer of the ECD section by means of a crocodile clip. Prior to the deposition process,
a pre-treatment of the laser-machined AlN substrates was carried out. The substrates were
cleaned in DI water and isopropanol with ultrasonic assistance to remove the residual
dust layer caused by the laser process. Subsequently, the deposition was performed in a
two-step process sequence with current densities in the range of J = 4 A/dm2 to 6 A/dm2

for t = 450 min. The first deposition step was used to increase the thickness of the thin and
sensitive intermetallic seed layer. In the second step, the coil trenches were completely
filled. The aim was to overgrow the coil trenches with the deposited copper (Figure 7d).
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Figure 9. Copper ECD of the laser-patterned AlN substrates: (a) Full setup with beaker, electrolyte,
anode, cathode, and electric motor; (b) Arrangement of copper anode and AlN cathode.

The theoretical mass of the Cu layer mCu can be determined using electrogravimetry
with Faraday’s law of electrolysis (10), where MCu is the molar mass of copper, Q is the
electrical charge, z is the ionic charge, and F is the Faraday constant.

mCu =
MCu·Q

z·F (10)

Thereafter, the thickness of the deposited copper layer hCu can be calculated using the
following Equation (11), where ρCu is the copper density and ACa is the entire cathode area.

hcu =
mCu

ρCu·ACa
(11)

Figure 10 demonstrates an AlN substrate after the two-step process sequence with
the copper outgrowth in the coil conductors. The deposited copper layer had a theoretical
mass of approximately mCu = 0.68 g and a thickness of hCu = 603.2 µm. This corresponds to
an average deposition rate of approximately a = 1.34 µm/min.
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Figure 10. Photographic images of the AlN carrier after ECD process with copper filled trenches.

After ECD, a subsequent grinding process was used to ensure a flat conductor surface
without defects and voids. Finally, the ECD section is separated by a dicing step to
remove the short circuit of the coil conductors. The final dimension of the AlN substrate
is 40 mm × 28 mm. The finished micro coil substrate with the Cu conductors embedded
in AlN as well as a corresponding SEM cross section are shown in Figure 11. The coil
conductors have a maximum thickness of hc = 539 µm with a lateral width of wc = 515 µm on
the surface and wc = 357 µm at the bottom of the trench. Finally, the electrical characteristics
of the coil were determined using the impedance analyzer 16,777 k (SinePhase Instruments
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GmbH, Austria) for a resonance frequency of f 0 = 2 MHz. The coil has an inductance of
L = 124 nH and an electrical resistance of R = 0.116 Ω.
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Figure 11. AlN/Cu micro coil after manufacturing process: (a) Photographic image of the micro coil;
(b) SEM cross section of two copper conductor lines embedded in AlN.

3.4. Inductive Bonding Module

In order to perform the inductive heating and bonding experiments with the fabricated
micro coil, the conceptual design and fabrication of a bonding module was necessary. The
design required the implication of complex interactions between coil self-heating, inductive
frame heating as well as the water-cooling and was based on the simulation results of
the thermal management (Section 4.2). The computational design (3D CAD model) of the
module with major components is presented in Figure 12.
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Figure 12. CAD modeling of the inductive bonding module: (a) Assembly of the module;
(b) Exploded view of the module with important components and materials.

For the dimensioning of the module, the following aspects had to be considered in
order to ensure efficient inductive heating and bonding:

• Transfer of the entire experimental setup consisting of bonding module, micro coil,
and bond substrates to the inductive bonding system

• Efficient cooling of the micro coil during induction heating;
• Electrical connection of the micro coil with the induction generator;
• Alignment of the bond structures to the coil layout.

The cooling concept includes a universal cooling system consisting of a base module
with standardized meander-shaped cooling channels and an unstructured cover plate as a
heat sink. The base module and the bracket were made of a composite polymer with very
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high-volume resistivity to prevent undesired electromagnetic coupling into the module
as well as improved thermal conductivity and temperature stability. The assembly of the
inductive bond module is illustrated in Figure 13.
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Figure 13. Assembly of the inductive bond module: (a) Individual component; (b) Base module
with hose mounting; (c) Pins for component adjustment; (d) Water sealing; (e) Heat sink; (f) Bracket;
(g) Screwing with mounting and contact screws; (h) Bonding module with Cu/AlN micro coil.

In order to ensure maximum flexibility of the bonding process and, if required, to
efficiently modify the process setup (e.g., micro coil, heat sink, connection cables), a concept
for the electrical supply of the micro coil was developed. This concept has to fulfill the
following requirements:

• Connection concept: releasable, mechanical screw fitting without soldering;
• Connection cable: high frequency litz wire for low electrical losses;
• Connection element/fastener: cable lug, screw.

These requirements were directly adopted to the designing and fabrication of the
micro coil (through holes in the coil pads) as well as the dimensioning and manufacturing
of the bonding module (access points, screw threads). The result is a setup that allows the
coil substrate to be attached to the bonding module and to establish the electrical contact.
To prevent electrical sparks and breakdowns between the connection points, PTFE with a
high dielectric breakdown strength of EBD = 20 kV/mm was used as the insulation material.

3.5. Inductive Heating System

Since low skin depths (3) are preferable for efficient inductive heating of very thin
metal layers, the experiments were performed in high frequency range. Thus, a Sinus 102
(Himmelwerk Hoch- und Mittelfrequenzanlagen GmbH, Tübingen, Germany) induction
generator with an operating frequency in the range of 1 MHz to 2 MHz, a maximum
output power of P = 10 kW, as well as a parallel operating resonant inverter was used. The
inverter adjusts the resonance frequency f 0 of the current and magnetic field as well as the
magnitude of the current by means of the impedance. The electric resonant circuit is in
resonance when the capacitive reactance of the capacitor XC and inductive reactance of the
coil XL are equal (XC = XL). Consequently, an entirely ohmic impedance (effective resistance
R) results in the oscillating system. The coil inductance L and the total capacitance C of the
inverter arrangement determine the LC resonant circuit. The resonance frequency f 0 can be
calculated using Thomson’s equation of oscillation (12).

f0 =
1

2π·
√

L·C
(12)
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Since the used coil determines the inductance, the frequency can only be changed
by adjusting the capacitance of the resonant inverter. Figure 14 shows the setup for the
induction heating experiments. Various measurement and control devices were used for
the process monitoring. A flow controller was installed to adjust and monitor the water
flow through the bonding module. To determine the resulting coil current as well as the
precise resonance frequency, the Rogowski coil CWT MiniHF 6 (PEM—Power Electronic
Measurements Ltd., Long Eaton, UK) was used. An amplifier and an oscilloscope realized
the metrological recording of the measured data. An IR camera PI 640i (Optris GmbH,
Berlin, Germany) with microscope optic was used to evaluate the bond structures in terms
of heating rate and temperature homogeneity.
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3.6. Inductive Bonding System

To automatically perform the bonding experiments, an integrated system is required
that includes the inductive bonding module (Section 3.4), the inductive heating system
(Section 3.5), mechanical components, monitoring devices, and the control cabinet. There-
fore, a concept for a bonding system was developed and realized that imitates a wafer
bonder by a modular rig with improved flexibility in terms of usable units (i.e., inductive
bonding module) and energy sources (i.e., inductive heating system) as well as improved
accessibility for electrical cable routings and process monitoring. The computational 3D
model of the entire system with the major components such as the servo motor, the column
guide, and the wedge error compensation is illustrated in Figure 15. In terms of the mechan-
ics, an adjustable and defined bonding pressure is required. Therefore, a servo motor drive
(maximum pressing force of F = 17 kN) with an integrated force sensor (accuracy ± 0.25%,
repetition accuracy ± 0.01 mm, scanning frequency 1 kHz) and a control unit was used
to precisely move the bonding module and to apply specific bond pressures. The process
chamber encapsulates the bonding modules and allows constant atmospheric process con-
ditions. A combination of a column guide frame and a wedge error compensation ensures
parallel applied and homogeneous bonding pressure. Furthermore, the separation of the
bonding chamber, the drivetrain, and the additional units (e.g., control cabinet, inductive
heating system) increases the mechanical precision.
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4. Results and Discussion
4.1. FE Simulation of Coil Geometry

The aim of the geometry simulation is to evaluate a suitable micro coil design for rapid
and homogeneous heat development in all metallic bond frames in a single heating step.
To determine the influence of the EM field with focus on temperature distribution and
heating rate, the coil was optimized in terms of basic geometry, conductor width, conductor
cross section, conductor displacement, relative position of the conductors to the frames,
and coupling distance of the coil to the frames. The results were the initial design data for
manufacturing the micro coil (Section 3.3). The FEM was carried out with a coil current of
I0 = 50 A, a frequency of f 0 = 2 MHz (upper limit of the induction generator), and heating
times in the range of th = 1 s to 10 s. Borofloat® 33 glass with Cu-Sn frames analogous to the
specifications in Tables 2 and 3 was used. The resulting coupling distance was d = 0.5 mm.
Figure 16 illustrates the simulation results of the heat distribution as well as the maximum
temperature in the bond substrate and frames for the finalized meander-shaped coil design
(Figure 6). The simulation images compare the temperature progression after heating times
of th = 1 s (a) and th = 10 s (b).
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The simulation after one second shows a maximum temperature in the bond frames of
Tmax_1 = 343 ◦C with an average temperature of about TØ_1 = 271 ◦C as well as a minimum
temperature in the bond substrate of Tmin_1 = 48.1 ◦C. The heating in the bond frames
results in a homogeneous temperature distribution. After ten seconds, the heat input into
the frame corners increases to Tmax_10 = 513 ◦C with an average frame temperature of about
TØ_10 = 366 ◦C. Due to self-heating of the coil conductors (1), convection (4), and conduc-
tion (5), the minimum bond substrate temperature increases to Tmin_10 = 116 ◦C. Thus,
strictly localized heating of the bond frames (selectivity) will not be achieved without addi-
tional cooling (temperature management, Section 4.2). However, a rapid and homogeneous
heat input into the bond frames could be demonstrated with the used coil geometry.

4.2. FE Simulation of Thermal Management

The aim of the thermal management simulation is to configure a setup for efficient
cooling of the micro coil as well as high temperature selectivity between the induction-
heated bond frames and the surrounding materials. Therefore, the simplified simulation
model (Section 3.2) was optimized with respect to material and geometry parameters of
the cooling channel as well as the heat sink. The results were the initial design data for
manufacturing the inductive bonding module (Section 3.4). To compare the results with
the FE simulation of the coil geometry (Section 4.1), identical electrical process parameters
with I0 = 50 A and f 0 = 2 MHz were used. The chosen heating times varied in the range of
th = 1 s to 10 s. The coupling distance was d = 0.5 mm.

Figure 17 shows the temperature distribution in the conductors and the coil substrate
after th = 1 s (a) and th = 10 s (b) using an AlN heat sink with a thickness of h = 1.5 mm.
Due to the water inlet and outlet position of the cooling channel, the water and coil temper-
ature increase continuously towards the outlet. However, the maximum coil temperature
of Tmax_10 = 26.6 ◦C after th = 10 s demonstrates that the temperature in the coil and
surrounding components can be limited during the inductive heating process.
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Figure 17. FE simulation of the thermal management based on a passively water-cooled micro coil:
(a) Coil and heat sink temperature after th = 1 s; (b) Coil and heat sink temperature after th = 10 s.

The resulting inductive heating of the bond frames after th = 1 s (a) and th = 10 s (b) is
shown in Figure 18. Compared to the heating without water cooling system (Figure 16), a
lower average frame temperature of TØ_1 = 183 ◦C after one second and TØ_10 = 263 ◦C after
ten seconds is achieved using the cooling module. The remaining model components (micro
coil, bond substrate, and heat sink) stay close to room temperature. Thus, an almost selective
heating of the bond frames is achieved. Furthermore, the simulation results indicate that
the average heating rate of dT/dt = 183 K/s within one second is significantly higher than
the heating rate of dT/dt = 26.3 K/s within ten seconds. Accordingly, the increase in the
frame temperature as a function of time will continuously decrease at constant coil current
and frequency. This will lead to the formation of a temperature plateau.
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4.3. Inductive Heating

The inductive heating system (Figure 14) was applied to characterize the heating and
cooling rate as well as the temperature distribution of the entire bond setup. The aim
was the validation of the FEM results and the parameterization for the inductive bonding
experiments (Section 4.4) using IR thermography imaging and current measurement.

For the heating experiments, the maximum generator control voltage Umax = 880 V was
varied in the range of U = 44 V to 70.4 V. This corresponds to an applied induction power
of P = 500 W to 800 W and a measured coil current of I0 = 51.8 A to 93.6 A, respectively.
Based on the determined coil inductance of L = 124 nH and the used inverter capacitance of
C = 40 nF, the resonance frequency f 0 of the LC resonant circuit is approximately 1.958 MHz.
Related to (3), a calculated skin depth of δCu = 47.96 µm for copper and δSn = 119.27 µm for
tin results. Due to the application of similar electrical parameters, the experimental and
simulated results could be compared. The coupling distance was determined by the used
glass substrate with a thickness of hG = 0.5 mm. The experiments were performed in two
stages. In the first step, only the self-heating of the coil conductors was investigated. In
the second step, the thermal management of the entire setup was analyzed based on the
inductive heating of the bond frames. Figure 19 illustrates the IR thermography images of
the coil self-heating after th = 1 s (a) and th = 10 s (b).
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The results demonstrate that the heat distribution in the micro coil is comparable to
the FEM (Figure 17). With maximum temperatures in the conductors of Tmax_1 = 25.3 ◦C
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after one second and Tmax_10 = 28.9 ◦C after ten seconds, a slightly increased heating was
observed. Nevertheless, the self-heating of the micro coil can be controlled very efficiently.
Moreover, the influence of a stronger cooling effect on the inlet side of the cooling channel
could not be observed here, indicating a more homogeneous temperature distribution.

Analogous to the simulation results (Figure 18), the IR images in Figure 20 show
an almost homogeneous and localized frame heating after th = 1 s (a) and th = 10 s (b).
Therefore, the electrically nonconductive glass substrate is only slightly thermally stressed.
Temperature peaks at the inner corners of the frames were detected after th = 10 s. Due to
the highly selective heating, the temperature in the center of the frames can be dissipated
less efficiently compared to the outer sides of the frames. As a result, the frames influence
each other and cause a hot spot in the center. This proximity effect will homogenize with
increasing frame number. The maximum temperature inhomogeneity, based on all heated
bond frames, was found to be ∆T_1 = 7 K after th = 1 s and ∆T_10 = 32 K after th = 10 s. The
maximum heating rate was dT/dt ≈ 180 K/s with temperature peaks of Tmax_1 = 177.3 ◦C
after th = 1 s and Tmax_10 = 258.5 ◦C after th = 10 s.

Micromachines 2022, 13, x FOR PEER REVIEW 19 of 25 
 

 

Figure 19. IR images of the coil self-heating for I0 = 51.8 A and f0 = 1.958 MHz: (a) Temperature input 
after th = 1 s; (b) Temperature input after th = 10 s. 

The results demonstrate that the heat distribution in the micro coil is comparable to 
the FEM (Figure 17). With maximum temperatures in the conductors of Tmax_1 = 25.3 °C 
after one second and Tmax_10 = 28.9 °C after ten seconds, a slightly increased heating was 
observed. Nevertheless, the self-heating of the micro coil can be controlled very efficiently. 
Moreover, the influence of a stronger cooling effect on the inlet side of the cooling channel 
could not be observed here, indicating a more homogeneous temperature distribution. 

Analogous to the simulation results (Figure 18), the IR images in Figure 20 show an 
almost homogeneous and localized frame heating after th = 1 s (a) and th = 10 s (b). 
Therefore, the electrically nonconductive glass substrate is only slightly thermally 
stressed. Temperature peaks at the inner corners of the frames were detected after th = 10 
s. Due to the highly selective heating, the temperature in the center of the frames can be 
dissipated less efficiently compared to the outer sides of the frames. As a result, the frames 
influence each other and cause a hot spot in the center. This proximity effect will 
homogenize with increasing frame number. The maximum temperature inhomogeneity, 
based on all heated bond frames, was found to be ΔT_1 = 7 K after th = 1 s and ΔT_10 = 32 K 
after th = 10 s. The maximum heating rate was dT/dt ≈ 180 K/s with temperature peaks of 
Tmax_1 = 177.3 °C after th = 1 s and Tmax_10 = 258.5 °C after th = 10 s. 

  
(a) (b) 

Figure 20. IR images of the localized inductive Cu-Sn heating for I0 = 51.8 A and f0 = 1.958 MHz: (a) 
Temperature distribution after th = 1 s; (b) Temperature distribution after th = 10 s. 

Figure 21 shows a comparison of the average temperatures of the bond frames, the 
bond substrate, and the contact area for I0 = 51.8 A with respect to the heating time th. 
Additionally, the heat input into the bond frames is shown for increasing coil currents at 
I0 = 65.3 A, I0 = 73.4 A, and I0 = 93.6 A.  

Figure 20. IR images of the localized inductive Cu-Sn heating for I0 = 51.8 A and f 0 = 1.958 MHz:
(a) Temperature distribution after th = 1 s; (b) Temperature distribution after th = 10 s.

Figure 21 shows a comparison of the average temperatures of the bond frames, the
bond substrate, and the contact area for I0 = 51.8 A with respect to the heating time th.
Additionally, the heat input into the bond frames is shown for increasing coil currents at
I0 = 65.3 A, I0 = 73.4 A, and I0 = 93.6 A.
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The results show that the temperatures in the bond frames increase continuously with
rising current and time. After th = 10 s, a temperature plateau is reached for all coil currents.
Consequently, a current of about I0 = 65 A with a heating time of th = 5 s is necessary to
reach the minimum target temperature of 250 ◦C for the formation of the intermetallic
phases in the Cu-Sn binary system. After interrupting the coil current I0, the frames cool
down to almost room temperature in ∆t ≈ 5 s. Due to the water-cooled bonding module,
convection (4) and conduction (5) play a dominant role in the heat dissipation.

4.4. Inductive Bonding

The bond process was performed using the inductive bonding system (Figure 15).
Figure 22a shows a heterogeneous substrate stack consisting of silicon and glass after
inductive Cu-Sn SLID bonding. For the process preparation, the inductive bonding module
was used to place the silicon and glass chips with the Cu-Sn frames on top of each other.
For this, the bracket of the module served as a mechanical alignment guidance to adjust
the two substrates to each other. After positioning the bond chips, a tool force of F = 210 N
was applied, corresponding to an effective bond pressure of p = 3 MPa in the frames. A
coil current of I0 = 78.6 A with a frequency of f 0 = 1.898 MHz was applied to initiate the
diffusion process. The current and frequency deviated slightly, compared to the values from
the inductive heating experiments (Section 4.3), since the impedance of the entire system
changed due to additional components (e.g., adapter and pressure plates). A heating time
of th = 120 s was used for the diffusion process. The tool pressure was kept for ten more
seconds after the coil current was switched off to ensure a complete phase transformation.
After a bonding time of tb = 130 s, the pressure plate was retracted (p = 0 MPa) and the
bonded substrate stack could be extracted.
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By applying a low pressure within a bonded frame, it could be demonstrated that the
resulting interferogram with light and dark lines (Newton’s rings) could not propagate
outward. This indicated a sealed bond connection. The formed IMCs are shown in
Figure 22b. A complete formation to the thermodynamically stable ε-phase Cu3Sn is
observed at the outer corner of a bonded frame. At the inner frame corner, the ε-phase
is enclosed by an additionally formed phase. Ramm et al. stated that significantly above
350 ◦C, a further reaction within the alloy may lead to the formation of Cu4Sn [4]. This
correlates with the observations in Figure 20, where the temperature input was higher in
the inner frame corners due to the proximity effect. The interface thickness after bonding
was in the range of 6 µm to 6.5 µm, which means a compression of about 0.5 µm to 1 µm.
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Energy-dispersive X-ray spectroscopy (EDX) analysis was performed to allow a more
detailed investigation of the formed phases. Thus, the exact compositions of the IMCs
could be determined by analyzing the atomic proportion of Cu and Sn. Figure 23 shows an
EDX line scan through the bonded interface as well as the atomic percentage in dependence
of the phase length for the ε-phase Cu3Sn. Within the phase boundaries, a copper content
of about mCu = 75 % and a tin content of mSn = 23% were found. Thus, the copper content
is approximately 3 times higher than the tin content, which corresponds to a complete
conversion to Cu3Sn.
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To evaluate the mechanical strength of the bonded Cu-Sn interface, the compression
shear test [54] was applied. In order to ensure a concentrated force load without damaging
the substrate materials due to the compression effect, the specimen geometry was adapted
to the test setup. For this purpose, the bonded chip stacks were separated into different
sized samples using blade dicing to reduce the shear area Ashear (Figure 24a). With a dicing
yield of Y = 100%, a quantitative indication of the mechanical strength could be obtained.
The used test setup includes the material testing machine TIRAtest 2805 (TIRA GMBH,
Schalkau, Germany) with an integrated shear fixture. The shear force Fshear was determined
by means of a load cell, considering the shear angle. With the pre-defined lateral shear area
Ashear, the shear strength τshear could be calculated with (13).

τshear =
Fshear
Ashear

(13)
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Based on the aforementioned parameter set for the inductive bonding experiments,
the shear strength of 34 samples was determined (Figure 24b). For this, an average
shear strength of τshear_Ø = 45.1 N/mm2 was obtained. The maximum shear strength
for no sample failure was τshear_0% = 11.2 N/mm2, whereas the median shear strength
(50% failure) was τshear_50% = 31.3 N/mm2. The maximum strength was measured at
τshear_100% = 111.8 N/mm2. For more than 50% of the samples, the shear strength reached
values between 20 N/mm2 and 60 N/mm2. Thus, the average shear strength is in the
range of conventional Cu-Sn SLID bonding [55] and significantly higher than the mechan-
ical strength of well-known bonding methods such as adhesive and glass frit bonding
(30 N/mm2) [54]. By further optimization of the bonding parameters, the variation of the
measured shear strength can be minimized.

5. Conclusions

The process sequence presented in this paper combines the advantages of SLID bonding
(e.g., moderate process temperature, high operation temperature, and mechanically strong
interface) with the characteristics of inductive thin film heating (e.g., very high heating
rate, selective heating). To establish industrial induction-based process flows for chip and
wafer bonding, the miniaturization of the induction coil is essential. The application of a
micro coil with electrically conductive coil conductors embedded in a ceramic matrix for
inductive heating of metal layers with thicknesses below 5 µm is demonstrated in this paper
for the first time. Therefore, an efficient planar technology consisting of laser structuring and
electroplating was elaborated for the coil manufacturing. Due to the high selectivity of the
heating process, it could be shown that the majority of the transferred energy converts into
localized heating of the bond frames, resulting in a minimized thermal load on the substrates.
Thus, very high heating rates of about 180 K/s could be achieved. In contrast, a rapid cooling
close to room temperature was realized in approximately 5 s, due to the large surface to
volume ratio of the bond frames and the efficient heat dissipation of the inductive bonding
module. With respect to the Cu-Sn binary system, the target phase Cu3Sn was achieved in a
process time of 130 s with a tool pressure of 3 MPa. Compared to conventional Cu-Sn SLID
bonding, this means a reduction of the bonding time by approximately 60 to 90% [14,15,19].

The presented inductive bonding approach based on micro coils represents a poten-
tially highly economical and time- and energy-efficient alternative to conventional bonding
processes using conduction based global heating (e.g., SLID bonding, thermo-compression
bonding, eutectic bonding). The developed processing routes and equipment successfully
demonstrate the integrability of induction heating into complex bonding procedures. More-
over, the unique characteristics of induction heating, especially rapid and local temperature
input, will offer new opportunities in terms of the application spectrum, new material
combinations, and layouts.

In future research, the presented micro coil approach will be extended by scaling the
setup to wafer-level in combination with further miniaturization of the coil conductors. In
addition, alternative coil materials (e.g., silver, electrically conductive ceramics) are to be
investigated and used. The implementation of impedance-controlled matching networks
is also planned to further increase the process efficiency by higher frequencies and the
associated reduction in skin depth.
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