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Abstract: Graphene oxide (GO) is widely used in sensors. The detection of proteins based on bare
GO has been developed; however, the detection sensitivity needs to be improved. In this paper, a
novel GO-DNA sensor for thrombin detection was developed using an aptamer linked to the surface
of GO. Polyethylene glycol (PEG) was further used to prevent thrombin from nonspecific adsorption
and to improve the sensitivity of the sensor for detection of thrombin. In order to improve the limit
of detection for thrombin, we developed a GO and RecJf exonuclease co-assisted signal amplification
strategy, and a detection limit of 24.35 fM for thrombin was achieved using this strategy. The results
show that it is a promising method in analytical applications.

Keywords: graphene oxide (GO); polyethylene glycol (PEG); aptamer; high sensitivity; thrombin
detection

1. Introduction

Thrombin is a serine protease in the blood that participates in physiological and
pathological reactions such as inflammation, wound repair, blood coagulation, and platelet
activation [1,2]. Variations in the concentration levels of thrombin in blood can cause abnor-
mal coagulation function [3]. In addition, thrombin is closely related to the development of
many diseases and is used as a disease marker [4–6]. Therefore, a high-sensitivity method
for detection of thrombin is important in the early stage of clinical diagnosis. Some methods
have been widely applied for thrombin detection, including electrochemistry [7,8], surface
plasmon resonance (SPR) [9], colorimetry [10], immunosorbent assay (ELISA) [11], and
amperometry [12]. However, some detection approaches lack high sensitivity or selectivity,
and some methods are complicated. Therefore, there is a need to develop a simple and
highly sensitive method. Aptamers are flexible, repeatable, easy to fix, and regenerate with
no differences between batches, and they have been widely used in the biosensor field [13].
Recently, studies have applied aptamer-based biosensors for the detection of thrombin due
to their good sensitivity and selectivity, high accuracy, fast response, and low cost [14,15];
however, detection sensitivity needs to be improved.

Graphene oxide (GO) has two characteristics: First, it is a high-efficiency quenching
agent. The fluorescent group used in the experiment was quenched near the surface of
GO. Second, it can interact with DNA through π-π bonds and hydrogen bonding [16].
Therefore, it has strong adsorption to single-stranded DNA and has a high signal-to-noise
ratio. When a target molecule exists, adsorption is relieved [17]. The surface of GO is rich
in hydrophilic groups such as alkyl groups, epoxy groups, and carboxyl groups, which
can be evenly dispersed in water. Therefore, GO-based sensors have attracted special
attention, due to their short assay time, relatively low cost, and no requirement for skillful
technicians [18–23]. The carboxyl groups on the surface of GO conjugate with the amino-
modified aptamer, and therefore, the aptamer fixes on the surface of GO. Other molecules
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can not be conjugated. The detection accuracy is improved and the appearance of false
positive signals is avoided [18,24]. A target protein (thrombin) can still be adsorbed on
the surface of GO. In order to solve these problems, a resisting nonspecific displacement
probe covalently linked to GO and PEG has been further used to prevent protein (thrombin)
from nonspecific binding to the GO. In this study, a GO and exonuclease co-assisted signal
amplification strategy was further developed in order to improve the protein detection limit.

2. Materials and Methods
2.1. Chemicals and Materials

GO was synthesized from natural graphene powder using the modified Hummers
method [24]. The human α-thrombin with purity more than 95% was obtained from
Haematologic Technologies Inc. (Essex Junction, VT, USA). The exonuclease was purchased
from New England Biolabs (Beijing) Ltd. (Beijing, China). The PEG and other proteins
were purchased from Sigma-Aldrich Chemical Co., Ltd. (Shanghai, China).

As shown in Table 1, the underlined sequences could be a hairpin structure. The
aptamer was purchased from Sangon Biotechnology Co., Ltd. (Shanghai, China) with HPLC
purification [14]. The underlined sequences could be easily recognized by RecJf exonuclease
(Exo). The PBS buffer was purchased from Shanghai Double Helix Biotechnology Co., Ltd.
(Shanghai, China). The human blood serum samples were obtained from Affiliated Hospital
of Jiangsu University.

Table 1. DNA sequences for this experiment.

Thrombin binding aptamer (TBA) 5′-AAAAGTCCGTG GTAGGGCA
GGTTGGGGTGACT-FAM-3′

The complementary sequence of thrombin
aptamer

5′-NH2–AGTCACCCCAACCTGCC
CTACCACGGACT-3′

2.2. Sensor Preparation

The prepared GO powder was dispersed in ultrapure water, and then sonicated for
0.5 h (1000 W). A uniform GO dispersion was obtained. A solution was prepared containing
a mixture of 50 mM NHS and 200 mM EDC in ultrapure water and GO solution according
to the volume ratio of 1:1:2. The solution was centrifuged at 1000 rpm for 20 min to activate
GO. In order to immobilize the DNA on the surface of GO, 20 µg/mL of activated GO
was added to 200 µL of 10 nM DNA. The reaction time was 12 h at 4 ◦C [25]. Then, it was
centrifuged at 1000 rpm for 20 min to remove the immobilized DNA sequence.

2.3. Sensitivity for Thrombin Detection

The 1 mL PBS contained 20 µg/mL of GO and 10 nM of DNA. Then, different con-
centrations of thrombin were added and incubated for 30 min for the detection. RecJf
exonuclease digestion was carried out at 37 ◦C in a buffer including 10 mM Tris hydrochlo-
ride (Tris-HCl), 50 mM NaCl, 10 mM MgCl2, and 1 mM dithiothreitol (DTT, pH 7.9). The
fluorescence intensity was detected using a Synergy™ H4 Hybrid Multi-Mode Microplate
Reader (BioTek Inc., Winooski, VT, USA). The emission spectra were recorded in the
wavelength of 510–600 nm with excitation at 480 nm. The curves were made using the
fluorescence intensity at 520 nm. The data obtained in the experiment were processed
using Origin 8.0. The value of F/F0-1 is the ratio of fluorescence intensity. F and F0 are the
fluorescence intensities with thrombin and without thrombin, respectively.

2.4. Selectivity for Thrombin Detection

Other proteins (lysozyme, IgG, and BSA) were added with 0.1 nM into 10 nM ap-
tamer and 20 µg/mL GO under the same conditions as thrombin, and incubated at room
temperature for 30 min for detection of fluorescence intensity.
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3. Results and Discussion
3.1. Design Strategy for Thrombin Detection

Scheme 1 shows that the strategy for the grahene oxide (GO)-aptamer sensor to detect
thrombin. The amino-modified capture DNA was immobilized to the activated GO surface
using the covalent bonds with the COOH group on the surface of GO. PEG was applied on
the GO surface to prevent the nonspecific adsorption of thrombin binding aptamer (TBA)
and protein. Then, TBA modified with FAM (carboxyfluorescein) was added. Capture
DNA was partially complementary to TBA. Therefore, FAM labeled on the 3′ end of
the aptamer was quenched by GO using fluorescence resonance energy transfer (FRET)
between GO and FAM. When thrombin was captured by the aptamer, the structure of the
TBA–thrombin complex changed and separated from the GO surface, and the fluorescence
intensity recovered. RecJf Exo degraded DNA in the direction 5′→3′. Capture DNA
formed a hairpin-shaped structure on the surface of GO and was not recognized by RecJf
exonuclease. The RecJf exonuclease in the solution recognized the single-stranded TBA
in the TBA–thrombin complex and hydrolyzed it to release thrombin into the solution for
recycling. Thrombin continued to bind to TBA on the GO surface, which enhanced the
fluorescence intensity. PEG was reported as a blocking agent to prevent the absorbability of
nonspecific binding materials. It is a nonionic surfactant that may strongly interact with GO
through its hydrocarbon lipophilic group. This interfered with the formation of aptamers
or protein/GO complexes [26]. It was used to prevent the protein from nonspecific binding
to improve the detection limit in the following detection strategy.
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Scheme 1. The strategy for thrombin detection using the exonuclease co-assisted amplification strategy.

3.2. Sensitivity for Thrombin Detection Using a Covalent Linking Aptamer with
PEG-Based Sensor

As shown in Figure 1a, several characteristic peaks of GO were observed in the FT-IR
spectrum including the peaks at 3386, 1718, 1618, and 1050 cm−1, due to O-H stretching vi-
bration, C=O stretching vibration, C-OH stretching vibration, and C-O stretching vibration,
respectively. This showed that GO was successfully synthesized [27]. Figure 1b shows the
SEM of GO. The fluorescence intensity of different concentrations of FAM-DNA with the
addition of various concentrations of GO using a covalent linking aptamer are shown in
Figure S1. Note, 90% of the fluorescence intensity was quenched when GO was 5 µg/mL.
A GO concentration lower than 5 µg/mL was not enough, and a GO concentration higher
than 5 µg/mL was redundant. Therefore, 5 µg/mL of GO was chosen. When thrombin
was added, the change of fluorescence intensity was the highest at 10 nM. Therefore, 10 nM
DNA was selected. The fluorescence intensity of the GO-DNA sensor by covalent linking
with the change of time after added thrombin is shown in Figure S2. The release of aptamer
from GO required almost 30 min. Therefore, 30 min was chosen as the incubation time.
As shown in Figure 2A, the detection signal became stronger with thrombin concentra-
tions increasing from 0.0025 to 15 nM. There is a linear relationship between the thrombin
concentrations and the values of F/F0-1 (R2 = 0.99), as shown in Figure 2B. The limit of
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detection (LOD) for thrombin was calculated as 0.11 pM based on the 3σ/slope over the
range 1–15 nM (Figure 2C).
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Figure 2. (A) The fluorescence intensity of the GO-DNA sensor by covalent linking in the presence
of different concentrations of thrombin (0.00025, 0.005, 0.01, 0.1, 0.5,1, 5, 10, 15, and 20 nM); (B) the
values of F/F0-1 for the assay with the concentrations of thrombin; (C) the values of F/F0-1 for
detection with the concentrations of thrombin. The number of samples was 5.

As illustrated in Figure 3A, the effect of PEG concentration on the GO-DNA sensor
for fluorescence intensity is shown when the aptamer is adsorpted on the surface of GO
without (gray bar) and with (dark grey bar) thrombin. Figure 3B shows the values of F/F0-1.
After adding PEG, the increased fluorescence intensity is obvious with 30 nM PEG. As
shown in Figure 3B, the fluorescence intensity of the solution increases with the addition
of PEG up to 90 nM because PEG can improve the fluorescence intensity. As shown in
Figure 4A, the curve shows that the fluorescence intensity increases as the concentration of
thrombin increases. The inset in Figure 4B reveals a linear correlation (R2 = 0.98) between
the value of F/F0-1 and the concentration of thrombin over the range 0.0002–15 nM. The
detection limit was improved to 0.034 pM based on 3σ/slope lower than the 0.11 pM
without PEG.
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Figure 3. (A) Effect of PEG concentrations on the GO-DNA sensor for fluorescence intensity (aptamer
adsorpted on the surface of GO without (gray bar) and with (dark grey bar) thrombin); (B) effect
of PEG concentrations on the GO-DNA sensor for change of fluorescence intensity. The number of
samples was 5.
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Figure 4. (A) The detection of different concentrations of thrombin from bottom to top (0.0002, 0.05,
0.01,1, 5, and 15 nM) using the GO-DNA sensor; (B) the values of F/F0-1 for the assay with the
concentrations of thrombin; (C) the values of F/F0-1 for the detection of thrombin. The number of
samples was 5.
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3.3. Sensitivity of the Detection for Thrombin Using a Covalent Linking Aptamer with Exonuclease
Co-Assisted Amplification Strategy

As shown in Figure S3, the red curve represents the increased fluorescence intensity
produced by thrombin without exonuclease and the blue curve represents the fluorescence
signal under the reaction of exonuclease. This highlights the effect of exonuclease. As
shown in Figure S4, 90% of the fluorescence intensity of DNA with FAM was quenched and
trended to a minimum value at 20 µg/mL GO. Therefore, 20 µg/mL of GO was used for the
following experiments. As shown in Figure S5, the fluorescence intensity increased rapidly
in the presence of 0.03 U µL−1 RecJf exonuclease at 37 ◦C in buffer (50 mM NaCl, 1 mM
DTT, 10 mM MgCl2, and 10 mM Tris–HCl with pH 7.9) [28]. Thirty minutes was chosen as
the incubation time due to the complete digestion of DNA in 30 min for the next recycle.
In addition, the detected fluorescence intensity of thrombin in water was higher than in
0.01 M PBS in the presence of RecJf exonuclease, as shown in Figure S6. Therefore, water
was a dissolved buffer in the detection of thrombin. Figure 5A illustrates the fluorescence
intensity of the GO-DNA sensor with different thrombin concentrations. Figure 5B shows
the calibration curve of fluorescence intensity and a linear correlation (R2 = 0.97) between
the values of F/F0-1 and the concentrations of thrombin over the range 0.000125–25 nM.
LOD was improved to 24.35 fM based on the 3σ/slope (Figure 5B).
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Figure 5. (A) The detection of different concentrations of thrombin (0.000125, 0.001, 0.01, 0.1, 0.5, 3, 7,
20, and 25 nM were seperately for color lines from bottom to top) using the GO-DNA sensor; (B) and
the inset (C) the values of F/F0-1 for the assay with the concentrations of thrombin. The number of
samples was 5.

As shown in Table 2, LOD is lower than that obtained from other assays. In addition
to LOD, this method is simple and inexpensive. Therefore, it is a promising method for
thrombin detection.
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Table 2. Different methods for thrombin detection based on aptamer sensors.

Detection Technique Linear Range Detection Limit Reference

Fluorescence From 0.05 pM to 200 pM 0.05 pM [29]
Fluorescence From 20 pM to 200 pM 9.2 pM [30]

Surface plasmon resonance (SPR) From 0.1 nM to 75 nM 0.1 nM [31]
Electrochemistry (differential pulse

voltammetry (DPV) From 1pM to 30 nM 0.32 pM [32]

Electrochemistry (differential pulse
voltammetry (DPV) From 1 pM to 10 nM 0.64 pM [33]

Flow strip biosensor (LFB) From 6.4 pM to 500 nM 4.9 pM [34]
Colorimetric method From 1.3 nM to133 nM 0.61 nM [35]

Fluorescence From 0.000125 nM to 25 nM 24.35 fM Present work

3.4. Selectivity of the Thrombin Detection with the Exonuclease Co-Assisted
Amplification Strategy

To evaluate the specificity of the GO-based aptamer for thrombin, the influences
of some relevant biological species including IgG, BSA, and lysozyme were detected
(Figure 6) as negative controls, each at an identical concentration of 0.001 nM. Thrombin
resulted in significant enhancement as compared with other proteins because other proteins
could not specifically bind to the aptamer. This shows the sensor has good selectivity for
thrombin detection.
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Figure 6. The fluorescence intensity of aptamer (10 nM)-GO (20 µg/mL) in the presence of other
proteins (BSA, Ig G, and lysozyme, the concentration was 0.001 nM for every protein). The number of
samples was 5.

3.5. The Application of Exonuclease Co-Assisted Amplification Detection

In order to further study the potential application of the biosensor, thrombin was
detected in real samples in order to make a better reliability evaluation of the sensor
application analysis. The Affiliated Hospital of Jiangsu University provided human blood
serum samples. Each sample was carried out three times. Table 3 shows the detection
results. The recovery (between 96.56% and 102.62%) and relative standard deviation (RSD)
(between 7.22% and 10.41%) were acceptable. These results show that the method is
promising in real samples.

Table 3. Detection of thrombin in human blood serum (the number of samples was 5).

Serum
Sample

Concentration of
Thrombin Added (nM)

Concentration
Obtained with

Aptasensor (nM)
Recovery/% RSD/%

1 0.000125 0.000128 102.62 10.41
2 0.001 0.0009656 96.56 9.37
3 0.1 0.009983 99.83 7.22
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4. Conclusions

Here, we developed an immobilized aptamer on the surface of graphene oxide and
exonuclease co-assisted amplification for thrombin detection. In this study, this sensor
was resistant to false positive signals and nonspecific probe displacement. The adsorption
of thrombin on the surface of GO was prevented by using PEG. Thrombin was released
by using RecJf exonuclease to digest the single-stranded aptamer, which could then be
detected for the next recycle. The detection limit was 24.35 fM. The detection sensitivity was
improved in this method. This method has great potential for early detection of diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13091435/s1, Figure S1. (A)The fluorescence intensity of
different concentrations of FAM-DNA in the addition of various concentrations of GO. (B) Effect of
different concentrations of DNA for thrombin detection; Figure S2. The fluorescence intensity of GO-
DNA sensor by covalent linking with the change of time after added thrombin (1 nM); Figure S3. The
fluorescence intensity of TBA in blank (black), with thrombin (red), and with 0.03U/µL exonuclease
(blue); Figure S4. (A)The fluorescence intensity of TBA in the presence of various concentrations
of GO (2, 6, 10, 12, 15, 20, 25 µg/mL); (B) The Influence of GO concentration for the detection of
thrombin; Figure S5. The fluorescence intensity of TBA changing with time (Black:10 nM DNA-20
µg/ml GO, Red: 10 nM DNA-20 µg/ml GO- (1nM) Thrombin-Exonulase (0.03 U/µL); Figure S6. The
Influence of buffer environment for the detection of thrombin.
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