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Abstract: As the physical dimensions of cell transistors in dynamic random-access memory (DRAM)
have been aggressively scaled down, buried-channel-array transistors (BCATs) have been adopted in
industry to suppress short channel effects and to achieve a better performance. In very aggressively
scaled-down BCATs, the impact of structural variations on the electrical characteristics can be more
significant than expected. Using a technology computer-aided design (TCAD) tool, the structural
variations in BCAT (e.g., the aspect ratio of the BCAT recess-to-gate length, BCAT depth, junction
depth, fin width, and fin fillet radius) were simulated to enable a quantitative understanding of
its impact on the device characteristics, such as the input/output characteristics, threshold voltage,
subthreshold swing, on-/off-current ratio, and drain-induced barrier lowering. This work paves the
road for the design of a variation-robust BCAT.

Keywords: buried channel array transistor; structural variation; short channel effects; device
characteristics

1. Introduction

The physical dimensions of transistors in integrated circuit (IC) have been scaled
down (i) to make the density of the transistors in ICs as high as possible and (ii) to improve
the electrical performance of the transistors [1,2]. However, as the channel length of the
transistors (including the metal oxide semiconductor field effect transistor (MOSFET)) has
been aggressively decreased, and the short channel effect (SCE) has adversely affected
the devices’ performance. Note that the threshold voltage in MOSFET becomes lower
with a shorter channel length (which is an undesirable secondary effect). To address the
SCE issue, many engineering solutions have been proposed, such as (i) the use of a new
device architecture to enhance the gate-to-channel capacitive coupling (e.g., fin-shaped FET,
ultra-thin-body FET, and multiple-bridge-channel FET), (ii) the use of novel materials (e.g.,
SiGe in source/drain or compound semiconductors in the channel to induce appropriate
stress, resulting in better mobility of the electrons/holes), and (iii) the high-k/metal-gate
technique for achieving an electrically thin but physically thick gate oxide layer [3–8]. One
of the solutions for overcoming the SCE in DRAM (dynamic random-access memory) cell
transistors is to adopt the buried-channel-array transistor (BCAT) structure. This device
structure can increase the effective channel length due primarily to its recessed channel
and buried gate structure [9]. However, as the 3D physical dimensions of BCATs have
been significantly scaled down, it is important to study the impact of structural variations
on the electrical characteristics of BCATs. Moreover, process-induced systematic/random
variation results in undesired alterations to the device characteristics [10]. Thus, the impact
of structural variations on the electrical characteristics of BCATs must be quantitatively
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studied in order to control device characteristics in mass production and pave the road for
the design of next-generation BCAT devices. In this work, a BCAT device with 20 nm-long
gate length was simulated with a 3D technology computer-aided design (TCAD) tool (i.e.,
Synopsys Sentaurus). To obtain a nominal device structure, its device design parameters
were altered in order to reveal the ways in which each parameter’s variation affected the
device characteristics.

2. Baseline Device Design and Its Structural Variations

The BCAT device was built with the Sentaurus TCAD tool, and a 3D bird’s eye view
of the device is shown in Figure 1a. The saddle-fin-shaped silicon channel was buried
under the nitride (Si3Ni4) insulator layer and covered by the tungsten gate and silicon
oxide (see Figure 1b). The cross-sectional views across the channel and along the channel is
shown in Figure 1c,d, respectively. The physical gate length (Lgate) and recess (Drecess) of
the baseline BCAT device was nominally set to 20 nm and 120 nm, respectively, resulting in
a Drecess/Lgate (= ARgate) of ~ 6.0 (see Figure 2a). Its gate material was tungsten, with the
working function of 4.8 eV. The recessed region and the saddle fin of the baseline BCAT
device were surrounded by the gate oxide of 5 nm. Note that the DBCAT corresponded to
the thickness of the nitride in gate stack (see Figure 2b). The silicon substrate/body region
was doped with 1017 cm−3 boron, while the source and drain regions were counter-doped
with 1020 cm−3 arsenic. Note that the Gaussian doping profile was used for the device. The
nominal junction depth (Djunction) was set to 40% of Drecess (see Figure 2c vs. Figure 2a).
The saddle fin width (Wfin) of the nominal BCAT device was set to 17 nm (see Figure 2d).
The saddle fin fillet radius (Rfillet) was defined as the multiplication factor of the saddle
fin radius (see Figure 2e). This quantitatively indicated whether the saddle fin shape was
rounded or angled [11]. The nominal Rfillet was set to 1.0 to ensure that the saddle fin was
shaped as a semi-circle.
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The impacts of structural variations in baseline device on its electrical characteristics
were investigated. The aspect ratio of Drecess to Lgate (i.e., ARgate) varied from 5 (−17% of
the baseline) up to 7 (+17% of the baseline). Note that the ARgate of the baseline device
structure was 6. The BCAT depth (DBCAT) varied from 24 nm (−33% of the baseline) to
48 nm (+33% of the baseline). Note that the DBCAT of the baseline device was 36 nm. The
Djunction (which is defined as the depth at which the doping concentration is 1017 cm−3)
varied from 30% to 50% of the Drecess. The saddle fin width (Wfin) varied from 11 nm to
23 nm (i.e., −33 ~ +33% of the baseline value). Note that the nominal saddle fin width
(Wfin) of the baseline device was 17 nm. The saddle fin fillet radius (Rfillet) of the baseline
device was 1.0, and it varied from 0.4 (−60% of the baseline) to 0.7 (−30% of the baseline).
For each structural variation mentioned above, the input/output characteristics (i.e., ID-vs.
-VG/ID-vs.-VD) were simulated (see Table 1).
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Table 1. ID-VG and ID-VD of the BCAT for given parametric variations, including ARgate, DBCAT,
Djunction, Wfin, and Rfillet. Note that the drain current is normalized to the channel width.

Plot ID-VG ID-VD

ARgate
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The Philips unified mobility model was adopted for the simulations to assess the 
dependence of the mobility on the electron-hole scatterings, screening of ionized 
impurities by charged carriers, and clustering of impurities [12]. The mobility degradation 
at the semiconductor–insulator interfaces due to surface roughness scattering was 
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the band-to-band tunnelling [15]. 

3. Results and Discussion 

The Philips unified mobility model was adopted for the simulations to assess the
dependence of the mobility on the electron-hole scatterings, screening of ionized impurities
by charged carriers, and clustering of impurities [12]. The mobility degradation at the
semiconductor–insulator interfaces due to surface roughness scattering was incorporated
into in the simulations using the Lombardi mobility model [13]. The Canali model was
taken into account for the carrier velocity saturation in the regions with high and low
electric fields [14]. The Hurkx trap-assisted tunnelling model was used to observe the
band-to-band tunnelling [15].

3. Results and Discussion

For the given parameters, including ARgate, DBCAT, Djunction, Wfin, and Rfillet, the in-
put/output characteristics (i.e., ID-vs.-VG/ID-vs.-VD) of the baseline device were simulated
with the structural variations. The results are summarized in Table 1.
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It is noteworthy that the short channel effects of the DRAM cell transistor in the ~ 20 nm
technology mode were effectively rebuilt (see the ID vs. VD plots in Table 1). From the ID vs.
VG plots, key device characteristics were extracted, and they are summarized in Figure 3a–d.
Herein, the threshold voltage (Vth) was defined using the constant current method (i.e., the
constant current = 10−7 A × W (channel width)/L (channel length) [16]). The nominal (baseline
structure) device performance metrics were: Vth = 0.656 V; SS = 76 mV/dec; on-/off-current
ratio = 3.4 × 1010; and DIBL = 23.6 mV/V. Note that these results are within reasonable ranges
(Vth ≈ 0.7 V; SS < 90 mV/dec; on-/off-current ratio ≈ 1010; DIBL ≈<50 mV/V) compared to
the other reported/published experimental results, such as those of the 20 nm FinFET device or
30 nm buried-word-line-structured device [17,18]. Higher ARgate induced a lower Vth, steeper
subthreshold swing (SS), better drain-induced barrier lowering (DIBL), and a higher on-/off-
current ratio. This is due primarily to the higher height of the saddle fin, as well as the channel
region being more closely surrounded by the gate, resulting in a higher gate-to-channel coupling
capacitance. Note that increasing ARgate significantly affected the SS (i.e., from 74.1 mV/dec
to 78.6 mV/dec; nominal SS = 76.0 mV/dec) and on-/off-current ratio (i.e., from 2.2 × 109

to 6.2 × 1011; nominal on-/off-current ratio = 3.4 × 1010) at ± 17% of the baseline. Though
increasing the ARgate yielded a better performance in terms of the device characteristics
(i.e., a steeper SS, higher on-/off-current ratio, and lower DIBL), the difficulties involved in
the fabrication process must be considered. To achieve the higher ARgate, a deeper BCAT
recess (Drecess) at the same gate length is needed, requiring more advanced technologies in
the lithography and etching processes. In addition, the increase in ARgate must be limited
to the marginal point in order to avoid the risks of the bending/leaning of the Si active
substrate or voids in the gate materials (tungsten, in this study) during the deposition
process (due to imperfect deposition in the deep BCAT recessed area) [19,20]. Increasing
the DBCAT resulted in a lower Vth, non-steeper SS, lower on-/off-current ratio, and a worse
DIBL. This is mainly because (1) the gate controllability decreased as the effective gate
length became shorter (herein, the effective gate length was defined as the distance from
the bottom of the nitride layer at the source side to that at the drain side), and because the
(2) electric field intensity of the metal gate became weak. In regard to the fabrication process
flow, the parameter DBCAT can be controlled by adjusting the amount of the metal gate
etch-back. If the metal gate etch-back or cleaning process is stable in the process deviation,
it may provide a useful option for achieving the higher SS, on-/off- current, and lower
DIBL [21].

However, the purpose of the stacking nitride insulator layer on top of the metal gate
is to reduce gate-induced drain leakage (GIDL) by isolating the metal gate and drain and
reducing the metal gate–drain overlapped region. Thus, the DBCAT must be adjusted and
limited to the appropriate level in order to meet the device specifications, such as the GIDL.
Increasing the Djunction resulted in lower Vth, worse DIBL, and non-steeper SS. This is due to
the shortening of the effective channel length with the increasing Djunction [22]. Varying the
Djunction might yield a better device performance without changing the physical dimensions
of the device; thus, it has the advantages of avoiding any undesired defections caused
by the process/structure. It was shown that increasing the Djunction (i.e., −33% to +33%
of baseline) resulted in remarkable decrease in the Vth (from 0.664 V to 0.641 V; nominal
Vth = 0.656 V) and increase in the on-/off-current ratio (from 2.4 × 108 to 5.0 × 1011; nominal
on/off-current ratio = 3.4 × 1010). However, as the DIBL increases from 21.0 mV/V to
28.2 mV/V, caused by the SCE, the control of the Djunction must be carefully considered
by compensating for the SCE (i.e., silicon-on-insulator or junction engineering, such as
pocket implanting, etc.). A narrower fin width (Wfin) resulted in a lower Vth, non-steeper
SS, and higher on-/off-current ratio. The channel region becomes fully depleted with the
narrower fin width, so that the gate controllability of the channel region is enhanced [23].
A narrower Wfin would require more advanced technologies in the fabrication process (i.e.,
smaller-scale lithography or etching processes), as the lateral size of the active Si becomes
smaller. Similar to those of the ARgate, the risks of the leaning/bending of the active silicon
substrate must be considered, since the aspect ratio of the height of the active silicon to Wfin
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increases as the Wfin decreases. Compared to the other parametric variations, the parameter,
Rfillet, resulted in the least significant variation (i.e., <5%) in the device performance. This
is because the saddle fin width was less than the fin height (Wfin = 17 nm, Hfin = 48 nm).
Otherwise, the Rfillet would have affected the device performance. If the corner of the
saddle fin becomes more rounded, the device reliability will be less degraded due to the
less concentrated electric field at the corner [24,25].
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4. Conclusions

The buried-channel-array transistor (BCAT) with a 20 nm-long gate length was sim-
ulated with the Sentaurus TCAD tool, and then the impacts of the structure variations
on its device characteristics were investigated. For the given baseline device structure,
the structure parameters including ARgate, DBCAT, Djunction, Wfin, and Rfillet were adjusted
in order to quantitatively observe the variations in the input/output characteristics and
key device performance metrics (i.e., Vth, SS, on-/off-current ratio, and DIBL). When the
Djunction was altered (i.e., ±33%), the Vth variation (between 0.664 V and 0.641 V; nominal
Vth = 0.656 V) and DIBL (from 21.0 mV/V to 28.2 mV/V; nominal DIBL = 23.6 mV/V) were
most significantly degraded/affected. When the ARgate was increased by +17% (vs. the
baseline), the on-/off-current ratio was most significantly increased up to 6.2 × 1011 (note
that the on-/off-current ratio of the baseline was 3.4 × 1010). Among the other structural
parameters, it turned out that Rfillet minimally affected the device performance (i.e., <5%).
Those structural variations, in the end, affected the gate-to-channel capacitances, effective
channel length, and depletion regions of the BCAT.
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