Wound-Dressing-Based Antenna Inkjet-Printed Using Nanosilver Ink for Wireless Medical Monitoring
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of Inkjet-Printed Silver Films
2.3. Characterization of UV-Curable Paste and Silver Film
3. Results
3.1. Screen Printing of UV-Curable Paste
3.2. Inkjet-Printed Silver Film
3.3. Inkjet-Printed Wound-Dressing-Based Antenna
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasan, M.M.; Hossain, M.M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review. J. Mater. Sci. 2021, 56, 14900–14942. [Google Scholar]
- Chelliah, R.; Wei, S.; Daliri, E.B.-M.; RubAb, M.; Elahi, F.; Yeon, S.-J.; Jo, K.H.; Liu, S.; Oh, D.H. Development of Nanosensors Based Intelligent Packaging Systems: Food Quality and Medicine. Nanomaterials 2021, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Corchia, L.; Monti, G.; Benedetto, E.D.; Tarricone, L. Wearable Antennas for Remote Health Care Monitoring Systems. Int. J. Antennas Propag. 2017, 2017, 3012341. [Google Scholar] [CrossRef]
- Velan, S.; Sundarsingh, E.F.; Kanagasabai, M.; Sarma, A.K.; Raviteja, C.; Sivasamy, R.; Pakkathillam, J.K. Dual-Band EBG Integrated Monopole Antenna Deploying Fractal Geometry for Wearable Applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 249–252. [Google Scholar] [CrossRef]
- Zhong, J.; Kiourti, A.; Sebastian, T.; Bayram, Y.; Volakis, J.L. Conformal Load-Bearing Spiral Antenna on Conductive Textile Threads. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 230–233. [Google Scholar] [CrossRef]
- Virkki, J.; Wei, Z.; Liu, A.; Ukkonen, L.; Bjorninen, T. Wearable Passive E-Textile UHF RFID Tag Based on a Slotted Patch Antenna with Sewn Ground and Microchip Interconnections. Int. J. Antennas Propag. 2017, 2017, 3476017. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, L.; Ver-Hoeye, S.; Fernandex-Garcia, M.; Vazquez-Antuna, C.; Andres, F.L.-H. On the Development of a Novel Mixed Embroidered-Woven Slot Antenna for Wireless Applications. IEEE Access 2019, 7, 9476–9789. [Google Scholar] [CrossRef]
- Adami, S.-E.; Zhu, D.; Yi, L.; Mellios, E.; Stark, B.H.; Beeby, S. A 2.45 GHz rectenna screen-printed on polycotton for on-body RF power transfer and harvesting. In Proceedings of the IEEE Wireless Power Transfer Conference, Boulder, CO, USA, 13–15 May 2015. [Google Scholar]
- Lamminen, A.; Arapov, K.; With, G.D.; Haque, S.; Sandberg, H.G.O.; Friedrich, H.; Ermolov, V. Graphene-Flakes Printed Wideband Elliptical Dipole Antenna for Low Cost Wireless Communications Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1883–1886. [Google Scholar] [CrossRef]
- Meredov, A.; Klionovski, K.; Shamin, A. Screen-Printed, Flexible, Parasitic Beam-Switching Millimeter-Wave Antenna Array for Wearable Applications. IEEE Open J. Antennas Propag. 2020, 1, 2–10. [Google Scholar] [CrossRef]
- Farooqui, M.F.; Shamim, A. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds. Sci. Rep. 2016, 6, 28949. [Google Scholar] [CrossRef]
- Kim, M.; Jee, H.; Lee, J. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications. Nanomaterials 2021, 11, 2840. [Google Scholar] [CrossRef] [PubMed]
- Reenaers, D.; Marchal, W.; Biesmans, I.; Nivelle, P.; D’Haen, J.; Deferme, W. Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering. Nanomaterials 2020, 10, 892. [Google Scholar] [CrossRef] [PubMed]
- Bisognin, A.; Thielleux, J.; Wei, W.; Titz, D.; Ferrero, F.; Brachat, P.; Jacquemod, G.; Happy, H.; Luxey, C. Inkjet Coplanar Square Monopole on Flexible Substrate for 60-GHz Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 435–438. [Google Scholar] [CrossRef]
- Pacchini, S.; Cometto, M.; Chok, J.J.; Dufour, G.; Tiercelin, N.; Pernod, P.; Kang, T.B.; Coquet, P. Inkjet-printing of Hybrid Ag/Conductive polymer towards strechable microwave devices. In Proceedings of the European Microwave Conference, Paris, France, 7–10 September 2015. [Google Scholar]
- Tehrani, B.K.; Cook, B.S.; Tentzeris, M.M. Inkjet Printing of Multilayer Millimeter-Wave Yagi-Uda Antennas on Flexible Substrates. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 143–146. [Google Scholar] [CrossRef]
- Paracha, K.N.; Rahim, S.K.A.; Chattha, H.T.; Aljaafreh, S.S.; Rehman, S.U.; Lo, Y.C. Low-Cost Printed Flexible Antenna by Using an Office Printer for Conformal Applications. Int. J. Antennas Propag. 2018, 2018, 3241581. [Google Scholar] [CrossRef]
- Chauraya, A.; Whittow, W.G.; Vardaxoglou, J.C.; Li, Y.; Torah, R.; Yang, K.; Beeby, S.; Todor, J. Inkjet printed dipole antennas on textiles for wearable communications. Electron. Lett. 2014, 50, 916–917. [Google Scholar] [CrossRef]
- Whittow, W.G.; Li, Y.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. Printed frequency selective surfaces on textiles. IET Microw. Antennas Propag. 2013, 7, 760–767. [Google Scholar] [CrossRef]
- Krykpayev, B.; Farooqui, M.F.; Bilal, R.M.; Vaseem, M.; Shamim, A. A wearable tracking device inkjet-printed on textile. Microelectron. J. 2017, 65, 40–48. [Google Scholar] [CrossRef]
- Das, N.K.; Voda, S.M.; Pozar, D.M. Two methods for the measurement of substrate dielectric constant. IEEE Trans. Microw. Theory Tech. 1987, 35, 636–641. [Google Scholar] [CrossRef]
- Cho, C.-L.; Kao, H.-L.; Wu, Y.-H.; Chang, L.-C.; Cheng, C.-H. Direct Fabrication of inkjet-printed dielectric film for metal–insulator–metal capacitors. J. Electron. Mater. 2018, 47, 677–683. [Google Scholar] [CrossRef]
- Zou, G.; Gronqvist, H.; Starski, J.P.; Liu, J. Characterization of liquid crystal polymer for high frequency system-in-a-package applications. IEEE Trans. Adv. Packag. 2002, 25, 503–508. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
Reference | Frequency | Material Parameters | Process | Structure | Gain | ||
---|---|---|---|---|---|---|---|
(GHz) | Substrate | er/tanδ | Thickness | (dBi) | |||
[4] | 1.8/2.45 | jean fabric + foam | 1.7/0.085 | 2 mm | Stitching | Patch + EBG | - |
[5] | 1–3 | Kevlar fabric + foam | 2.6/0.006 | 25 mm | Weaving | Spiral | 6.5 |
[6] | 0.915 | Cat. #A1220 + foam | 1.26/0.007 | 4 mm | Stitching | Slotted patch | −3.56 |
[7] | 5 | PET/PES | 2.2/0.01 | 0.36 mm | Embroidered–woven | SIW | −4.9 |
[8] | 2.45 | Polycotton | 3.23/0.06 | 970 μm | Screen printing | Rectenna | - |
[9] | 2–5 | Kapton HN | 3.4/0.0018 | 76 μm | Screen printing | Quasi-dipole | 2.3 |
[10] | 77 | PREPERM PPE260 | 2.6/0.0044 | 0.15 mm | Screen printing | Parasitic antenna array | 11.2 |
[14] | 60 | PEN | 2.9/0.025 | 125 μm | Inkjet printing | CPW patch | 1.86 |
[15] | 13 | PDMS | 2.68/0.04 | 180 μm | Inkjet printing | Patch | - |
[16] | 24.5 | LCP | 2.9/0.0025 | 100 μm | Inkjet printing | 5-director Yagi–Uda | 8 |
[17] | 2.45 | PET | 2.7/0.135 | 125 μm | Inkjet printing | CPW-fed Z-shaped | 1.44 |
This Work | 3.2–4.6 | Wound dressing | 3.2/0.05 | 700 μm | Inkjet printing | Quasi-Yagi | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-B.; Kao, H.-L.; Chang, L.-C.; Lin, Y.-C.; Chen, Y.-Y.; Chung, W.-H.; Chiu, H.-C. Wound-Dressing-Based Antenna Inkjet-Printed Using Nanosilver Ink for Wireless Medical Monitoring. Micromachines 2022, 13, 1510. https://doi.org/10.3390/mi13091510
Chen C-B, Kao H-L, Chang L-C, Lin Y-C, Chen Y-Y, Chung W-H, Chiu H-C. Wound-Dressing-Based Antenna Inkjet-Printed Using Nanosilver Ink for Wireless Medical Monitoring. Micromachines. 2022; 13(9):1510. https://doi.org/10.3390/mi13091510
Chicago/Turabian StyleChen, Chun-Bing, Hsuan-Ling Kao, Li-Chun Chang, Yi-Chen Lin, Yung-Yu Chen, Wen-Hung Chung, and Hsien-Chin Chiu. 2022. "Wound-Dressing-Based Antenna Inkjet-Printed Using Nanosilver Ink for Wireless Medical Monitoring" Micromachines 13, no. 9: 1510. https://doi.org/10.3390/mi13091510
APA StyleChen, C. -B., Kao, H. -L., Chang, L. -C., Lin, Y. -C., Chen, Y. -Y., Chung, W. -H., & Chiu, H. -C. (2022). Wound-Dressing-Based Antenna Inkjet-Printed Using Nanosilver Ink for Wireless Medical Monitoring. Micromachines, 13(9), 1510. https://doi.org/10.3390/mi13091510