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Abstract: To maximize the performance of energy storage systems more effectively, modern bat-
teries/supercapacitors not only require high energy density but also need to be fully recharged
within a short time or capable of high-power discharge for electric vehicles and power applications.
Thus, how to improve the rate capability of batteries or supercapacitors is a very important direc-
tion of research and engineering. Making low-tortuous structures is an efficient means to boost
power density without replacing materials or sacrificing energy density. In recent years, numerous
manufacturing methods have been developed to prepare low-tortuous configurations for fast ion
transportation, leading to impressive high-rate electrochemical performance. This review paper
summarizes several smart manufacturing processes for making well-aligned 3D microstructures for
batteries and supercapacitors. These techniques can also be adopted in other advanced fields that
require sophisticated structural control to achieve superior properties.

Keywords: batteries; supercapacitors; template; freeze drying; magnetic field; 3D printing; laser
drilling; micro manufacturing

1. Introduction

Living in the era of electric vehicles (EVs), millions of scientists, engineers, and tech-
nicians have been relentlessly improving EV battery performance. Lithium-ion batteries
(LIBs) stand out among all energy storage systems for EVs because of their high energy
density and great cycle life. Additionally, fast charging and discharging capabilities are
critical for EVs to have a similar driving mode as that of gasoline cars [1–5]. Short recharge
time is necessary for long-distance traveling or EV owners who do not have a private
garage/parking lot equipped with a battery charger. The Vehicle Technologies Office of
USDOE has announced that their program aims to reduce the EV charge time to 15 min or
less [6]. Large output power is also important to have a good acceleration on a highway
or when carrying heavy loads. Tesla’s superchargers can offer a very fast charge rate of
120–145 kW, shortening the recharge time to approximately 30 min [3]. Nevertheless, the
threshold for recharge speed comes from the battery but not the charger.

When a LIB is charging, lithium ions are extracted from the cathode, migrating through
the winding routes formed in the interstitial space between electrode particles. Then,
lithium ions swim in the electrolyte and reach the anode surface, while the ions again have
to move through tortuous channels to complete the charge transfer reactions (Figure 1a).
In order to enhance the rate capability of electrochemical energy storage devices, without
replacing their electrochemistry and materials, reducing the tortuosity of the electrode
(Figure 1b) is an inevitable means during battery cell manufacturing. With a rational design
of the electrode structure, ions can follow the shortest path to penetrate the electrode,
thereby achieving fast kinetics of electrochemical reactions. Additionally, this concept
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may also be employed in advanced solid-state battery systems to improve their power
density [7–9].
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Figure 1. Schematic drawing illustrating lithium-ion diffusion in (a) the high-tortuous electrode and
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Figure 1c shows how tortuosity (τ) is defined, which is calculated using the square
value of ion diffusion length (L′) divided by the shortest distance of the imagined ion
diffusion (L) without considering the interference from obstacles [10]:

τ =

(
L′

L

)2

(1)

The effective diffusivity of ions in an electrode with pores can be expressed as [10,11]:

De f f = D
( ε

τ

)
(2)

where ε is the porosity of the electrode and D is the diffusion coefficient of ions in the
electrochemical system. This equation clearly suggests that higher porosity and lower
tortuosity will promote fast ion diffusion, enabling excellent extreme fast charging (XFC)
capability for an energy storage system. In fact, the tortuosity can be expressed as a function
or porosity, according to the Bruggeman relationship [12]:

τ = ε1−α (3)

where α is the constant called the Bruggeman exponent, which depends upon the morphol-
ogy, porosity, material, and particle size distribution of the components in the electrode.
The major tool to determine the tortuosity of the electrode is electrochemical impedance
spectroscopy (EIS) [11,13–15]. Some researchers have applied 2D/3D microstructure and
tomographic image processing methods to give an estimate of tortuosity [10,16,17].

In this review, smart manufacturing technologies used to fabricate low-tortuous elec-
trodes are introduced and categorized. Their correlated high-rate performance data, espe-
cially fast charging features, are also presented. For a scalable production, the processing
complexity and cost-effectiveness of selected tools are taken into account when judging the
practicality of the manufacturing methods and their capability to be commercialized. In the
following sections, different manufacturing methods of making low-tortuous electrodes
are introduced and compared in terms of electrochemical performance and commercial
practicality.

2. Template-Directed Manufacturing for Low-Tortuous Structures
2.1. Anodic Aluminium Oxide Templated Methods

Using a porous template with a vertically aligned channel structure is a facile means
to make low-tortuous electrodes with great power density. Porous-type anodic aluminum
oxides (AAOs), made from the anodization of aluminum in acidic electrolytes, have been
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widely studied and utilized in energy applications [18–20]. AAO-derived low-tortuous
electrodes possess a neatly arranged three-dimensional porous structure, which can direct
ions to flow through the shortest path, thereby resulting in excellent rate capability in
batteries and supercapacitors [21–32]. Figure 2 gives an example of a Si nanomesh anode
for LIBs, fabricated by using AAO as the template to sequentially deposit a silver buffer
layer and silicon via sputtering, followed by the coating of poly(methyl methacrylate)
(PMMA) supporting the polymer layer for the electrode transfer step [32]. AAO, silver,
and PMMA were all removed to complete the low-tortuous electrode manufacturing. The
as-prepared Si nanomesh electrode possesses well-aligned holes ~70 nm in diameter with
a density of ~96 holes µm−2, showing a much better rate performance than that of the
planar Si nanofilm electrode [32]. The advantages of using AAO as a hard template to
make porous electrodes are the (1) highly oriented channel structure, (2) low-cost template
material, and (3) easy removal of template for streamlining processing. However, some
delicate structural designs require the vacuum deposition of active and buffer materials,
which raises the manufacturing cost and, therefore, reduces their scalability.
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Figure 2. AAO-directed low-tortuous Si nanomesh electrode. Reproduced with permission from
ref. [32]. Copyright 2017, Elsevier.

2.2. Bio-Derived Templated Methods

To make the templated production process more sustainable and eco-friendlier, plenty
of approaches utilizing bio-derived templates have been reported. Woods [33–41], plant
fibers [42,43], butterfly wings [44,45], and crab shells [46] were adopted as bio-templates to
build low-tortuous structures for smooth ion transportation. Hu et al. developed a multi-
scale aligned garnet framework enabled by the wood template along with a poly(ethylene
oxide) (PEO) polymer electrolyte impregnated into the mesopores, showing a high ionic
conductivity (1.8 × 10−4 S cm−1) [33]. Figure 3a shows the process flowchart of the wood
template preparation. First, the wood was cut perpendicular to the longitudinal direction,
followed by mechanical pressing to densify the pore structure shown in the scanning elec-
tron microscope (SEM) images in Figure 3a. The fibrous nanostructure is highly aligned and
can absorb abundant precursors due to the hydrophilicity of wood cellulose and capillary
force induced by the orderly aligned pores [33]. The wood template can be removed after a
simple pyrolysis treatment. Figure 3b shows the structure of low-tortuous and mesoporous
wood-derived carbon as an anode for Na-ion batteries. The anisotropic pores have two
sizes (10–15 µm from cellulose fibers and 100–200 µm from vessels) [47,48] with a wall
thickness of 1–2 µm and a channel width of 10–15 µm, which enable an ultra-thick wood-
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derived carbon anode (850 µm) with large mass loading (55 mg cm−2) to deliver a high
areal capacity of 13.6 mAh cm−2 [34]. The vertically aligned porous structure can facilitate
Na-ion transport, so a much thicker electrode can be designed to achieve higher areal
energy density. Crab shells can also serve as a functional template to make nanostructured
battery electrodes. Cui et al. used animal shells from various crab species to create the hol-
low nanochannel structure with an inner diameter of 40–70 nm for the accommodation of
silicon anode or sulfur cathode materials [46]. Both bio-templated electrodes demonstrated
good rate capability at up to 1C and stable cyclability [46]. Butterfly wings can be used to
generate 3D carbon frameworks as well for supplying channels to better access electrolytes,
increase redox-active sites, and provide conductive pathways for electrons and ions in
the electrode [44]. The butterfly wing-derived carbon can be adopted as both the cathode-
supporting substrate and the anode active material, delivering a high energy density of
42.9 Wh kg−1 at a power density of 800 W kg−1 in supercapacitors, indicating its superior
high-rate performance from the 3D hierarchical porous structure [44]. Bio-templates have
several benefits such as low-cost, environmentally friendly, adjustable morphologies, and
facile separation, but the supply of biomaterials must be sustainably consistent to guarantee
the production quality.
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Figure 3. (a) Wood-derived aligned template structure for solid-state electrolytes. Reproduced
with permission from ref. [33]. Copyright 2019, ACS Publications. (b) SEM images of carbonized
wood slabs. Reproduced with permission from ref. [34]. Copyright 2016, Wiley-VCH. (c) Crab shell
porous structures. Reproduced with permission from ref. [46]. Copyright 2013, ACS Publications.
(d) Butterfly wing-derived carbon framework for supercapacitors and Na-ion batteries. Reproduced
with permission from ref. [44]. Copyright 2021, Springer.

2.3. Bubble Templated Methods

Other than hard templates, gaseous bubbles can be implemented to make 3D foams for
energy storage applications. Dynamic hydrogen bubble template (DHBT) electrodeposition
is one example of using bubbles to make the metallic porous structure as the electrode
support [49–51]. The as-prepared Ni foam scaffold can be used as the 3D current collector
to enhance electrical and ionic conductivity. Another approach is introducing NH4HCO3
as a foaming agent to generate NH3 and CO2 gases during the drying step of electrode
preparation [52]. This oriented porous electrode structure can promote both the rate
performance (≈7 times higher capacity at 5C) and mass loading (≈50% higher with a
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similar specific capacity), outperforming those of the conventional electrode [52]. Another
group utilized NaHCO3, which also produces CO2 gas but requires washing to remove
the byproduct NaOH, to form interconnected pores in the electrode [53]. The 3D porous
network enabled the LiFePO4 cathode to have excellent rate performance, showing 35%
capacity retention at 60C (charge/discharge within 1 min) [53]. Due to the high mobility of
bubbles, obtaining well-aligned low-tortuous structures could be challenging.

2.4. Templated Phase Inversion Methods

The template method can also be combined with the phase inversion approach to
make well-aligned structures for energy storage devices. Yu et al. covered a stainless-steel
mesh on the electrode slurry when executing N-methyl-2-pyrrolidone (NMP)-based tape
casting (Figure 4a) [54], and the electrode coating layer instantly solidified after water was
poured on top of the slurry. The water molecules can substitute the solvent molecules to
generate pores with a polymer-poor phase [55,56]. This method successfully creates not
only open and aligned microchannels but also thick electrodes with high areal loading
(up to 100 mg cm−2), resulting in both high power density and high energy density [54].
Additionally, the solid-state electrolyte system can also apply the templated phase inversion
method to build 3D vertically aligned microchannels for the enhancement of ion transport.
Figure 4b shows the synthetic process of the low-tortuous perovskite Li0.34La0.51TiO3 (LLTO)
solid-state electrolyte [57]. Nylon mesh was implemented as the template with a similar
phase inversion reaction between water and NMP to form a dense skin layer, and the top-
down growth continued until the formation of the bottom layer was completed [57]. The
LLTO electrolyte with 3D microchannels showed significantly lower interfacial resistance
than that of planar LLTO (reduced from 853 to 133 Ω cm2) due to the shorter diffusion
distance in the interdigitated structure built by the low-tortuous LLTO electrolyte and
LFP cathode, demonstrating that the unique structure can support efficient and fast ion
transport in the cell [57]. Other related examples including the carbon-sulfur composite
cathodes [58], all-ceramic lithium-ion batteries [59], nitrogen-doped carbon electrodes for
supercapacitors, and cathode support of solid oxide electrolysis cells [60] all show superior
performance under high current rates by adopting the templated phase inversion method.
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3. Low-Tortuous Structural Design via Cooling or Heating
3.1. Directional Freezing Methods

Freeze drying with controlled cooling is a famous method of introducing a low-
tortuous structure into electrodes. The electrode components or precursors are first dis-
persed in the aqueous solution, followed by the freezing from the bottom of the solution
to grow ice crystals along with the temperature gradient vertically. The unfrozen solid
substances are separated by the ice columns during continuous freezing, resulting in the
well-aligned channels surrounded by the electrode material/substrate. Figure 5a,b display
ice-templated carbon aerogels made via the unidirectional freezing as the anode for Na-ion
and K-ion batteries [61]. Figure 5c,d show the microstructure of the long and vertically
aligned tubular channels formed by the removal of the ice template in the aerogel before
and after carbonization, indicating that smooth and fast ion transport can be guaranteed.
The honeycomb structure observed from the top view (Figure 5e) indicates that there are
abundant connected electron pathways between the microchannels to ensure low electri-
cal resistance during the electrochemical reactions. The as-made carbonaceous electrode
achieved high energy densities of ≈220 and ≈118 Wh kg−1 and high rate performances of
206 and 148 mAh g−1 at 2C for Na-ion and K-ion batteries, respectively [61]. In fact, the
freezing rate plays an important role to control the dimension of channel/pore formation,
and both channel wall thickness and pore spacing are decreased with increasing freezing
speed, leading to a higher tortuosity [62]. The directional freezing methods of building low-
tortuous structures can also be applied to various material systems for high-rate batteries
such as intercalation and conversion cathodes [62–74], scaffolds for sulfur cathodes [75,76],
intercalation and conversion anodes [71,72,77–85], metallic lithium anode hosts [75,86],
solid-state electrolytes [87–91], supercapacitor electrodes [39,92], and Al-ion batteries [93],
showing their all-around applications.
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Figure 5. (a) Vertically aligned carbon aerogels synthesized by freeze drying. (b) The ultralight
aligned cellulose nanocrystal (CNC)/polyethylene oxide (PEO) aerogels. (c) SEM images of cross-
sectional and top view (inset) of the CNC/PEO aerogels. (d) Longitudinal view and (e) top view of
the vertically aligned carbon aerogels. Reproduced with permission from ref. [61]. Copyright 2022,
Wiley-VCH.

3.2. Evaporation-Induced Methods

Opposite to the freezing methods, applying heat to the electrode may also facilitate
the formation of the low-tortuous structure. Yu et al. developed a vertically aligned
nanosheets (VANS) electrode that can promote directional and fast ion transport, illustrated
in Figure 6a,b [94]. The evaporation-induced procedure includes slurry preparation with
mixed solvents, rapid evaporation, and nanosheet rotation to obtain vertical alignment
shown in Figure 6c [94]. The control of the evaporation process is key to the success
of electrode orientational ordering, requiring a downward gravity force and upward
evaporation flow force to offer sufficient torque for the rotation of nanosheets [94]. As
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a result, the electrode structure maintains upright alignment due to the fast removal of
solvents, leaving no relaxation time for the nanosheets to lie horizontally again. Another
study implemented evaporation-induced self-assembly to synthesize mesoporous titanium
dioxide/carbon composite electrodes [95]. Multiple polymers were selected to form a
suitable block copolymer paired with the titania precursor, and the internal repulsion
of specific polymer blocks led to microphase separation during the evaporation process,
where oriented mesopores were generated [95]. The prepared electrode can enable high
areal mass loading, high bulk density, and high volumetric capacity, originated from the
electrode structure with ordered pores.
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4. Magnetic/Electric/Shear-Field-Assisted Manufacturing for Low-Tortuous Electrodes
4.1. Magnetic-Field-Assisted Methods

Applying magnetic force during electrode preparation is an effective means to realize
highly oriented electrode structures. Either the electrode material or the decorative coating
material needs to be magnetically responsive (paramagnetic or ferromagnetic) to fulfill the
processing requirement. Cobalt-based cathode materials [96,97], iron oxides [98–101], cobalt
oxides [102], ferrofluids [103,104], multiwalled carbon nanotubes [105], and nickel-based
alloys [106] have been successfully used to produce low-tortuous electrodes. Figure 7a
demonstrates that the LiCoO2 cathode suspension with magnetized nylon rods can align
along with the magnetic field direction and can then be sintered after thermal treatment.
The nylon rods decorated by the ferrofluid exhibit great alignment under the magnetic
field (Figure 7b). The magnetic emulsion droplets have a similar magnetic alignment effect,
which can serve as a sacrificial phase that generates straight and vertical channels after
pyrolysis (Figure 7c,d). The modified LiCoO2 electrode with the same porosity as that of
the conventional electrode can deliver a three times higher areal capacity and a high-rate
capacity at 2C, indicating an effective approach without sacrificing the battery energy
density [103]. An ultrahigh areal capacity (up to ≈14 mAh cm−2) for both the graphitic
anode and LiCoO2 cathode adopting the same strategy has also been reported from the
same group [101].
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4.2. Electric-Field-Assisted Methods

The electric field is another source of non-contact force to align the materials for low-
tortuous structures. Figure 8 gives an example of combining electrophoresis and freeze
drying to make a low-tortuous structure with hollow channels [107]. The electrophoresis
deposition guides the graphene oxide nanosheets through the colloid to the electrode under
the electric field, and the graphene oxide nanosheets can orient vertically on top of the elec-
trode. With the following freezing process, the pores can be further expanded and secured.
The vertically aligned reduced graphene can deliver a high specific capacitance (78% of
that at 2 mV s−1) at a high scan rate of 500 mV s−1 in an electrochemical capacitor [107].
The authors claimed that this method can be adopted to any colloid with a negative surface
charge for the film electrode preparation with a controllable thickness and pore size [107].
An earlier study also reported that sulfur-graphene composite nanosheets can self-assemble
into perpendicular nanowalls driven by the electric field [108]. A good high-rate capacity
(over 400 mAh g−1 at 8C) can be obtained in the highly oriented nanowall electrode in Li-S
cells [108].
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4.3. Shear-Field-Assisted Methods

Other than the non-contact force induced by the magnetic field or electric field, the
shear force can also be applied to obtain low-tortuous structures. Yang et al. employed the
mechanical shear field to directionally orientate the 2D MXene (Ti3C2Tx) material for better
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ion transport, shown in Figure 9a [109]. By applying an external shear force, the Ti3C2Tx
nanosheets can be vertically aligned even with a much greater thickness because the higher-
order discotic lamellar phase formed under the assistance of a surfactant (Figure 9b) can
turn perpendicularly to the shear direction (Figure 9c) [109–112]. The non-ionic surfactant
used in this study (hexaethylene glycol monododecyl ether) can enhance the stacking
symmetry when multiple MXene sheets integrate into liquid crystals. As a result, the areal
capacitances of the vertically aligned Mxene films in supercapacitors with either a thinner
or a thicker configuration (the mass loading ranging from 2.80 to 6.16 mg cm−2) are similar
while operating at a high cycling rate (ranging from 1000 to 2000 mV s−1) [109]. The shear-
field-assisted alignment of the liquid crystal mesophase of nanomaterials can be further
utilized in other applications such as filtration, fuel cells, catalysis, and photovoltaics for
superior performance [109].
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5. Low-Tortuous Electrodes Enabled by Advanced Printing
5.1. Additive Manufacturing Methods

Additive manufacturing techniques, also known as 3D printing, are advanced manu-
facturing methods overwhelmingly adopted in multiple fields in the last decade. Large-
scale customization, food, vehicles, buildings, weapons, and aerospace applications are
the mainstream development directions due to the efficiency and customizable features
of 3D printing. Using 3D printing to make battery components has also drawn much
attention in recent years, especially in making well-aligned structures. Many electrochemi-
cal energy storage systems such as Li-ion batteries [113–125], Li-S/Se batteries [126–132],
metallic lithium batteries [133–137], solid-state electrolytes [138], Na-ion batteries [139,140],
Na-ion capacitors [141], Na-oxygen batteries [142], Ni-Fe batteries [143], Zn-ion batter-
ies [139,144,145], and Zn-air batteries [146] have boosted their rate capability by using
3D-printed structural designs. Figure 10a illustrates how to make a freestanding electrode
via 3D printing technology [113]. A viscous ink including all the necessary electrode in-
gredients is prepared, followed by 3D printing under a computer-controlled system to
build a specific patterned structure. The electrode may need appropriate drying and/or
calcination processes afterward to complete the process. Figure 10b,c demonstrate a few
different patterns that can be achieved in 3D-printed electrodes. Figure 10d displays the
microstructures of electrodes with various low-tortuous structures, which can facilitate
high-rate battery performance. It was found that the electrode with a 3D line structure
can give the highest capacity and the best cycle stability than those with the grid or ring
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structure, probably because of the relatively simple and consistent channel structure of the
3D line pattern [113]. The ultrathick 3D-printed electrode (8 layers; 1500 µm) gave excellent
electrochemical performance, delivering a high areal capacity of 7.5 mAh cm−2 and a high
energy density of 69.41 J cm−2 at a power density of 2.99 mW cm−2 [113].
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5.2. Stamping Methods

Stamping is an old-fashioned way to print repeated patterns on the substrate, which
can also be used to make electrodes with special designs, particularly interdigitated struc-
tures. The interdigitated electrode design has several merits, including no separators
required, reduction in ion transport resistance, and capability of being integrated into
circuits and micro devices [147–149]. In this case, stamping is an efficient means to quickly
reproduce micro-electrodes for energy storage devices. Figure 11a–d show the stamping
process to fabricate interdigitated electrodes for micro-supercapacitors [150]. The stamp
shapes can be facilely designed by computer-aided 3D models, followed by 3D printing
using a polylactic acid filament. One study used MXene slurry as the electrode ink, and
the electrode can be stamped onto the substrate with unique patterns [150]. After filling
the gel electrolyte (PVA/H2SO4) and wiring silver contacts, an interdigitated solid-state
micro-supercapacitor can output an areal capacitance of 50 mF cm−2 at 800 µA cm−2 [150].
The stamping methods have also been applied to prepare micro-battery electrodes with
Zn//MnO2 [151] or self-assembled viruses [152], and graphene-based micro-supercapacitor
electrodes [153]. A similar concept is utilized in a flexible node-type electrode realized by
adding an imprinting step during electrode manufacturing [154]. The only difference is that
the grid pattern is made by a post-roll-pressing procedure with a mesh template [154]. The
post-patterned electrode also showed better adhesion on metal current collectors, measured
by the test displayed in Figure 11e,f, resulting in stable electrochemical performance after
3000 flexing cycles [154].
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6. Top-down Manufacturing Process for Low-Tortuous Electrodes
6.1. Laser Drilling Methods

The laser has been used as a mature cutting tool for precise miniature machining on a
wide variety of substrates, and the cutting focus could be 25 microns or under with high
accuracy [155]. Therefore, the laser can be used to drill low-tortuous holes into electrodes
to improve their high-rate capability. Figure 12a–i compare the surface morphology of
the LFP electrode with multiwalled carbon nanotubes (MWCNTs) and carbon nanofibers
(CNFs) (CM-LFP), the same electrode but with laser-drilled holes (Laser-CM-LFP), and the
LFP electrode prepared with the traditional slurry casting process (Con-LFP) [156]. Thicker
electrodes with low-tortuous holes can be fabricated with high areal capacities (3.02 and
5.33 mAh cm−2 from areal loadings of 20.0 and 40.0 mg cm−2, respectively), but still possess
great cycle stability [156]. Figure 12j,k show the distribution of lithium-ion flux and current,
respectively, indicating fast ion pathways in the drilled hole and concentrated current den-
sity around the edge of the hole to promote fast kinetics of electrochemical reactions [156].
The authors also pointed out that the larger the opening of the laser-drilled hole, the lower
the ionic resistance that could be obtained [156]. Nevertheless, too large a pore size might
degrade the mechanical property of the electrode. Many energy storage devices including
Li-ion batteries [157–166], solid-state batteries [167], supercapacitors [168], and redox flow
batteries [169,170] can also take advantage of laser drilling to enhance their electrochemical
performance. One unique approach using a laser to create micrometer-sized through-holes
is for the prelithiation of a graphite anode in the configuration of a laminated lithium-ion
battery [171]. In this design, the lithium ions supplied from the additional lithium metal foil
can easily penetrate multiple electrode/separator stacks in the laminated cell, shortening
the prelithiation process that can be integrated into the formation cycles of the full cell [171].

6.2. Etching Methods

Etching is a classic method to remove materials from the substrate by using corrosive,
caustic, or abrasive substances, mostly utilized for printing in ancient times. In modern
times, etching has been widely used in advanced semiconductor manufacturing, and many
different etching technologies have been developed [172–175]. Battery scientists have also
adopted etching techniques including inductively coupled plasma/reactive ion etching
(ICP/RIE) [176–182], catalytic etching [183], and wet etching [184–186] to make different
3D electrode structures for better high-rate performance. Dry etching is a powerful process
that can accurately remove unwanted materials with exact quantity and shape with the as-
sistance of patterning and photolithography (Figure 13). The array patterns can be obtained
by photolithography (Figure 13a), combining with metal deposition and lift-off (Figure 13b)
or with pre-oxidation, acid etching, and photoresist removal processes (Figure 13c) [181].
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The low-tortuous silicon electrode forms in vertical arrays after ICP/RIE etching and mask
removal (Figure 13e,f), and a high aspect ratio of up to 22 is achievable [181]. Another
etching-enabled low-tortuous design is that Duan et al. developed a hierarchically porous
holey-graphene framework structure by a simple wet-etching process using hydrogen
peroxide (H2O2), promoting high-rate capability even at a rate as high as 10C [186]. The
3D porous electrode structure facilitates rapid ion transport by offering internally straight
channels in the holey-graphene composite material [186]. The cost-ineffectiveness of dry
etching and the poor structural uniformity caused by wet etching are potential limiting
factors for etching processes to be employed in energy storage applications.
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as high as 10C [186]. The 3D porous electrode structure facilitates rapid ion transport by 
offering internally straight channels in the holey-graphene composite material [186]. The 
cost-ineffectiveness of dry etching and the poor structural uniformity caused by wet etch-
ing are potential limiting factors for etching processes to be employed in energy storage 
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Figure 12. 3D reconstruction images and SEM images of (a–c) CM-LFP (LFP cathode with CNFs and
MWCNTs), (d–f) Laser-CM-LFP (laser-drilled CM-LFP cathode), and (g–i) Con-LFP (conventional
LFP cathode). (j) Li-ion flux distribution, and (k) current distribution with laser-drilled holes in the
electrode. Reproduced with permission from ref. [156]. Copyright 2021, Elsevier.
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Figure 13. Different fabrication procedures of the vertical silicon (Si) nanowire array electrode using
(a) photoresist, (b) chromium (Cr), and (c) silicon dioxide (SiO2) as patterning masks along with pho-
tolithography and multiple processing techniques. (d) The circular patterns made by photoresist, Cr, and
SiO2 masks. (e) ICP/RIE process to etch silicon for the low-tortuous array structure. (f) SEM image of the
vertical Si nanowire arrays. Reproduced with permission from ref. [181]. Copyright 2021, Springer Nature.



Micromachines 2022, 13, 1534 13 of 22

6.3. Cutting Methods

Cutting or chopping is another method to accomplish top-down manufacturing of
low-tortuous electrodes. Fu et al. designed a fiber-aligned thick (FAT) electrode by simply
rolling up the electrode with a fibrous substrate followed by cutting into a spiral structure
perpendicular to the axial direction (Figure 14a) [187]. The FAT electrode not only has a high
areal capacity, controlled by the cutting thickness, but also possesses through-thickness
electrode alignment and ample electrolyte channels, facilitating both high energy density
and high power density [187]. The fabricated 1 mm thick electrode is made with high areal
loading of 128 mg cm−2, which can still deliver a high capacity of 155 mAh g−1 under
0.5 mA cm2 [187]. Other groups also adopted a similar strategy to cut electrode rolls into
low-tortuous electrodes for the applications in lithium-oxygen batteries [188] and metallic
lithium anodes [189]. Unlike winding, graphene nanosheet composites can form a thick
horizontally aligned monolith after vacuum filtration and compression, which can be cut
and rotated to create vertically aligned channels as low-tortuous electrodes as well [190].
To cut stacked electrodes perpendicular to the alignment direction may require special tools
and crafts to obtain electrodes with a consistent thickness.
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7. Summary and Outlook

In the past decade, a tremendous number of smart manufacturing methods have been
developed to make low-tortuous electrodes and solid-state electrolytes. Most of them share
the same features including high power density, high energy density, high areal loading,
and highly efficient active material utilization. Figure 15 summarizes the most popular pro-
cesses to produce low-tortuous structures. Templating is a classic manufacturing technique
that uses a sacrificial framework to form the structure with the same 3D morphology, which
gives excellent product uniformity and structural controllability. Freeze drying is a mature
drying process implemented when heating is unfavorable to the material. The frozen sol-
vent (usually ice) can grow directionally along with the cooling gradient, leading to vertical
channels after the ice crystals are removed during sublimation. Magnetic-field-assisted
low-tortuous structure formation is a quite creative approach, which employs the nature of
the magnetic moment induced by the applied magnetic field, offering the necessary torque
for good alignment. Three-dimensional printing is an emerging technology disrupting
various industries. Scientists and engineers make use of the additive manufacturing to
produce electrodes with several special state-of-the-art structures for different kinds of
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applications, including a highly oriented electrode to improve high-rate performance. Laser
drilling can precisely control the shape, density, size, and depth of the holes on electrodes,
resulting in the design flexibility of making porous electrodes or substrates.
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This review article briefly introduces various smart manufacturing methods for low-
tortuous structures, which could be implemented in other advanced applications in addi-
tion to electrochemical energy storage devices. Manufacturing cost has always been the
most fundamental determinant of mass production and commercialization. The cost of the
template material and the process of template removal must be low enough for large-scale
operation. Bio-derived templates may encounter difficulties with varying quality from
different batches of organic matters, although the sustainability of biologic materials is
still undoubtedly attractive. Freeze drying seems to be a cost-effective method to build
a low-tortuous structure, but the dimension and morphology of each ice crystal column
might not be identical, requiring in-depth research to enhance uniformity. Magnetic-field-
assisted vertically aligned structure formation needs magnetic substances, which increases
the inactive material loading and reduces the versatility of this method. Three-dimensional
printing should be further improved by minimizing the size of printed products (i.e., added
resolution), so the electrode design will not be limited. Laser drilling is a promising non-
contact manufacturing technique due to its high precision and speed. However, the power
consumption and facility cost of laser devices could be high but is yet to be confirmed
for the production cost-effectiveness before scaling up. To sum up, there are plenty of
approaches to construct hierarchical low-tortuous electrodes, but the structural uniformity,
low material and processing cost, and device performance targets must be met simultane-
ously using the same manufacturing technology to achieve the ultimate goal for high-rate
energy storage systems.
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