Ultra-Wideband Power Amplifier Design Strategy for 5G Sub-6-GHz Applications
Abstract
:1. Introduction
2. Output Network Topology and Bandwidth Estimation
3. Design and Implementation
Author Contributions
Funding
Conflicts of Interest
References
- Moreno Rubio, J.J.; Camarchia, V.; Quaglia, R.; Angarita Malaver, E.F.; Pirola, M. A 0.6–3.8 GHz GaN Power Amplifier Designed Through a Simple Strategy. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 446–448. [Google Scholar] [CrossRef]
- Moreno Rubio, J.J.; Quaglia, R.; Baddeley, A.; Tasker, P.J.; Cripps, S.C. Design of a Broadband Power Amplifier Based on Power and Efficiency Contour Estimation. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 772–774. [Google Scholar] [CrossRef]
- Nia, H.T.-A.; Nayyeri, V. A 0.85–5.4 GHz 25-W GaN power amplifier. IEEE Microw. Wirel. Compon. Lett. 2020, 28, 251–253. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Pan, W.; Tang, Y. 0.4–3.0 GHz highly efficient harmonic-tuned power amplifier. Electron. Lett. 2015, 51, 1911–1913. [Google Scholar] [CrossRef]
- Dai, Z.; He, S.; You, F.; Peng, J.; Chen, P.; Dong, L. A new distributed parameter broadband matching method for power amplifier via real frequency technique. IEEE Trans. Microw. Theory Tech. 2015, 63, 449–458. [Google Scholar] [CrossRef]
- Ejaz, M.E.; Kilinc, S.; Yarman, S.B.; Ozoguz, S.; Srivastava, S.; Nurellari, E. A Unified Real Frequency Technique for the Solution to Broadband Matching Problems. In Proceedings of the 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 11–12 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kilinc, S.; Yarman, B.S. Design of an Ultra-Wideband GaN Power Amplifier via Real Frequency Technique. In Proceedings of the 2018 18th Mediterranean Microwave Symposium (MMS), Istanbul, Turkey, 31 October–2 November 2018; pp. 179–182. [Google Scholar] [CrossRef]
- Meng, X.; Yu, C.; Liu, Y.; Wu, Y. Design approach for implementation of class-J broadband power amplifiers using synthesized band-pass and low-pass matching topology. IEEE Trans. Microw. Theory Tech. 2017, 65, 4984–4996. [Google Scholar] [CrossRef]
- Sharma, T.; Aflaki, P.; Helaoui, M.; Ghannouchi, F.M. Broadband GaN class-E power amplifier for load modulated delta sigma and 5G transmitter applications. IEEE Access 2018, 6, 4709–4719. [Google Scholar] [CrossRef]
- Moreno Rubio, J.J.; Angarita Malaver, E.F.; Lara González, L.Á. Wideband Doherty Power Amplifier: A Design Approach. Micromachines 2022, 13, 497. [Google Scholar] [CrossRef] [PubMed]
- Quaglia, R.; Shepphard, D.J.; Cripps, S. A reappraisal of optimum output matching conditions in microwave power transistors. IEEE Trans. Microw. Theory Tech. 2017, 65, 838–845. [Google Scholar] [CrossRef] [Green Version]
Ref. | BW (GHz) | Gain (dB) | Output Power (dBm) | PAE (%) | Drain Efficiency (%) |
---|---|---|---|---|---|
[1] | 0.6–3.8 | 9–14 | 40–41.9 | 46–75 | 51–76 |
[2] | 0.45–3.4 | 8–10.5 | 41.5–44.3 | 54–70.4 | - |
[3] | 0.85–5.4 | 8–9.5 | 43.5–44.9 | 45–55 | - |
[4] | 0.4–3 | 10–12 | 40–42.5 | 53–72 | - |
This work | 0.1–4 | 9–14 | 40–42.5 | 48–68 | 52–70.7 |
Device | |||
---|---|---|---|
CG2H40010 | 0.45 nH | 2.03 pF | 1/25 S |
CG2H40025 | 0.49 nH | 3.39 pF | 1/14 S |
1/46 S | 1/30 S | 19.5° | 51.3° |
1/46 S | 1/50 S | 19.5° | 64.4° |
1/46 S | 1/100 S | 19.5° | 76.5° |
Device | ||||||||
CG2H40010 | 18.1° | 19.2° | 23.9° | 35.1° | 21.9° | 46.8° | 19.5° | 51.3° |
CG2H40025 | 6° | 31.5° | 7.9° | 51° | 5.9° | 61.9° | 4° | 65.6° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno Rubio, J.J.; Angarita Malaver, E.F.; Mesa Lara, J.A. Ultra-Wideband Power Amplifier Design Strategy for 5G Sub-6-GHz Applications. Micromachines 2022, 13, 1541. https://doi.org/10.3390/mi13091541
Moreno Rubio JJ, Angarita Malaver EF, Mesa Lara JA. Ultra-Wideband Power Amplifier Design Strategy for 5G Sub-6-GHz Applications. Micromachines. 2022; 13(9):1541. https://doi.org/10.3390/mi13091541
Chicago/Turabian StyleMoreno Rubio, Jorge Julián, Edison Ferney Angarita Malaver, and Jairo Alonso Mesa Lara. 2022. "Ultra-Wideband Power Amplifier Design Strategy for 5G Sub-6-GHz Applications" Micromachines 13, no. 9: 1541. https://doi.org/10.3390/mi13091541
APA StyleMoreno Rubio, J. J., Angarita Malaver, E. F., & Mesa Lara, J. A. (2022). Ultra-Wideband Power Amplifier Design Strategy for 5G Sub-6-GHz Applications. Micromachines, 13(9), 1541. https://doi.org/10.3390/mi13091541