Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Rig for Studies of Single Shock Wave Propagation in Bubbly Water
2.2. Test Rig for Studies of Shock Wave Package Propagation in Bubbly Water
3. Results and Discussion
3.1. Single Shock Wave Propagation in Bubbly Water
3.2. Shock Wave Package Propagation in Bubbly Water
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADC | Analog-to-digital converter |
BW | Bubbly water |
ES | Electronic shutter |
HPC | High-pressure chamber |
LPC | Low-pressure chamber |
PC | Personal computer |
PDH | Pulsed detonation hydroramjet |
SW | Shock wave |
ST | Signal trigger |
C | Low-frequency speed of sound in bubbly water |
D | Detonation velocity |
Dij | Detonation velocity at measuring segment ij |
d | Bubble diameter |
d0 | Initial bubble diameter |
h | Height of bubbly water column |
L | Distance |
Ld | Distance between the cross sections of the donor detonation tube branching |
Lij | Distance between measuring ports i and j |
Lp | Penetration depth of gaseous detonation products into bubbly water |
M | Mach number |
P0,HPC | Initial pressure in the HPC |
P0,LPC | Initial pressure in the LPC |
T | Gas temperature |
T0 | Room temperature |
t1 | Time taken to detonation wave to arrive at sensor P2 |
t2 | Time taken to detonation wave to exit a tube |
ucs | Contact surface velocity |
α | Volumetric gas content |
γ | Specific heat ratio |
Δh | Cumulative height of gas volume |
ΔP | Pressure amplitude |
Δt | Time interval |
Δtij | Time taken to the wave front to travel between measuring ports i and j |
Δx | Distance interval |
τ | Delay time |
References
- Frolov, S.M.; Frolov, F.S.; Aksenov, V.S.; Avdeev, K.A. Hydrojet Pulsed Detonation Engine (Variants) and the Method of Hydrothrust Development. Patent Application PCT/RU2013/001148 of 23.12.2013. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015099552 (accessed on 30 August 2022).
- Zhou, Y.; Dai, L.; Jiao, N. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. Micromachines 2022, 13, 1068. [Google Scholar] [CrossRef]
- Golub, V.V.; Bazhenova, T.V.; Baklanov, D.I.; Ivanov, K.V.; Krivokorytov, M.S. Using of hydrogen-air mixture detonation in needle-free injection devices. High Temp. 2013, 51, 138–140. [Google Scholar] [CrossRef]
- Gelfand, B.E.; Gubin, S.A.; Kogarko, B.S.; Kogarko, S.M. Investigations of compression waves in a mixture of liquid with gas bubbles. Sov. Phys. Dokl. 1973, 18, 787–791. [Google Scholar]
- Borisov, A.A.; Gelfand, B.E.; Timofeev, E.I. Shock waves in liquids containing gas bubbles. Int. J. Multiph. Flow 1983, 9, 531–543. [Google Scholar] [CrossRef]
- Nakoryakov, V.E.; Pokusaev, B.G.; Shraiber, I.R.; Kuznetsov, V.V.; Malykh, N.V. Wave Processes in Two-Phase Systems; Kutateladze, S.S., Ed.; Inst. Therm. Phys. Sib. Br. USSR Academy of Sciences: Moscow, Russia, 1975; pp. 54–64. [Google Scholar]
- Silberman, E. Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. J. Acoust. Soc. Am. 1957, 29, 925. [Google Scholar] [CrossRef]
- Van Wijngaarden, L. One-dimensional flow of liquids containing small bubbles. Annu. Rev. Fluid Mech. 1972, 4, 369–396. [Google Scholar] [CrossRef]
- Mori, J.; Hijikata, K.; Komine, A. Propagation of pressure waves in two-phase flow. Int. J. Multiph. Flow 1975, 2, 139–152. [Google Scholar] [CrossRef]
- Kalra, S.P.; Zvirin, Y. Shock wave-induced bubble motion. Int. J. Multiph. Flow 1981, 7, 115–119. [Google Scholar] [CrossRef]
- Sytchev, A.I. Strong waves in bubbly liquids. Techn. Phys. 2010, 55, 783–788. [Google Scholar]
- Noordzij, L.V. Shock waves in bubble-liquid mixture. Phys. Commun. Amst. 1971, 3, 51–56. [Google Scholar]
- Burdukov, A.P.; Kuznetsov, V.V.; Kutateladze, S.S.; Nakoryakov, V.E.; Pokusaev, B.G.; Shreiber, I.R. Shock wave in a gas-liquid medium. J. Appl. Math. Tech. Phys. 1973, 3, 65–69. [Google Scholar] [CrossRef]
- Campbell, I.J.; Pitcher, A.S. Shock waves in a liquid containing gas bubbles. Proc. Royal Soc. A 1958, 243, 534–545. [Google Scholar]
- Kutateladze, S.S.; Nakoryakov, V.E. Heat and Mass Transfer and Waves in Gas-Liquid Systems; Nauka Publisher: Novosibirsk, Russia, 1984. [Google Scholar]
- Zhang, X.; Li, S.; Yu, D.; Yang, B.; Wang, N. The evolution of interfaces for underwater supersonic gas jets. Water 2020, 12, 488. [Google Scholar] [CrossRef]
- Wang, C.; Li, N.; Huang, X.; Liu, W.; Weng, C. Shock wave and bubble pulsation characteristics in a field generated by single underwater detonation. Phys. Fluids 2022, 34, 066108. [Google Scholar] [CrossRef]
- Wang, C.; Li, N.; Huang, X.; Weng, C. Investigation of the effect of nozzle on underwater detonation shock wave and bubble pulsation. Energies 2022, 15, 3194. [Google Scholar] [CrossRef]
- Liu, W.; Li, N.; Huang, X.; Kang, Y.; Li, C.; Qiang, W.; Weng, C. Experimental study of underwater pulse detonation gas jets: Bubble velocity field and time–frequency characteristics of pressure field. Phys. Fluids 2021, 33, 083324. [Google Scholar] [CrossRef]
- Liu, W.; Li, N.; Weng, C.; Huang, X.; Kang, Y. Bubble dynamics and pressure field characteristics of underwater detonation gas jet generated by a detonation tube. Phys. Fluids 2021, 33, 023302. [Google Scholar] [CrossRef]
- Van Wijngaarden, L. On equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 1968, 33, 465–474. [Google Scholar] [CrossRef]
- Caflisch, R.E.; Miksis, M.J.; Papanicolaou, G.C.; Ting, L. Effective equations for wave propagation in bubbly liquids. J. Fluid Mech. 1985, 153, 259–273. [Google Scholar] [CrossRef]
- Stuhmiller, J.H. The influence of interfacial pressure forces on the character of two-phase flow model equations. Int. J. Multiph. Flow 1977, 3, 551–560. [Google Scholar] [CrossRef]
- Nigmatulin, R.I. Dynamics of Multiphase Media; Hemisphere, N.Y., Ed.; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Saurel, R.; Lemetayer, O. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 2001, 431, 239–271. [Google Scholar] [CrossRef]
- Radvogin, Y.B.; Posvyanskii, V.S.; Frolov, S.M. Stability of 2D two-phase reactive flows. J. Phys. IV Fr. 2002, 12, 437–444. [Google Scholar] [CrossRef]
- Lidskii, B.V.; Posvyanskii, V.S.; Semenov, I.V.; Tukhvatullina, R.R.; Frolov, S.M. Well-posedness of the mixed evolutionary-boundary value problem and its discrete analog for multiphase flows. Combus. Explos. 2013, 6, 137–144. [Google Scholar]
- Tukhvatullina, R.R.; Frolov, S.M. Shock waves in liquid containing inert and reactive gas bubbles. Combust. Explos. 2017, 10, 52–61. [Google Scholar]
- Tukhvatullina, R.R.; Frolov, S.M. Numerical simulation of shock and detonation waves in bubbly liquids. Shock. Waves 2020, 30, 263–271. [Google Scholar] [CrossRef]
- Ando, K.; Colonius, T.; Brennen, C.E. Numerical simulation of shock propagation in a polydisperse bubbly liquid. Int. J. Multiph. Flow 2011, 37, 596–608. [Google Scholar] [CrossRef]
- Hou, Z.; Li, N.; Huang, X.; Li, C.; Kang, Y.; Weng, C. Three-dimensional numerical simulation on near-field pressure evolution of dual-tube underwater detonation. Phys. Fluids 2022, 34, 033304. [Google Scholar] [CrossRef]
- Avdeev, K.A.; Aksenov, V.S.; Borisov, A.A.; Tukhvatullina, R.R.; Frolov, S.M.; Frolov, F.S. Numerical simulation of momentum transfer from the shock waves to the bubble medium. Combust. Explos. 2015, 8, 57–67. [Google Scholar]
- Avdeev, K.A.; Aksenov, V.S.; Borisov, A.A.; Tukhvatullina, R.R.; Frolov, S.M.; Frolov, F.S. Numerical simulation of momentum transfer from a shock wave to bubbly medium. Russ. J. Phys. Chem. B 2015, 9, 363–374. [Google Scholar] [CrossRef]
- Avdeev, K.A.; Aksenov, V.S.; Borisov, A.A.; Frolov, S.M.; Frolov, F.S.; Shamshin, I.O. Momentum transfer from a shock wave to a bubbly liquid. Russ. J. Phys. Chem. B 2015, 9, 895–900. [Google Scholar] [CrossRef]
- Frolov, S.M.; Avdeev, K.A.; Aksenov, V.S.; Borisov, A.A.; Frolov, F.S.; Shamshin, I.O.; Tukhvatullina, R.R.; Basara, B.; Edelbauer, W.; Pachler, K. Experimental and computational studies of shock wave-to-bubbly water momentum transfer. Int. J. Multiph. Flow 2017, 92, 20–38. [Google Scholar] [CrossRef]
- Frolov, S.; Avdeev, K.; Aksenov, V.; Frolov, F.; Sadykov, I.; Shamshin, I.; Tukhvatullina, R. Pulse-detonation hydrojet. In Scientific-Practical Conference “Research and Development-2016”; Springer: Berlin/Heidelberg, Germany, 2016; p. 709. [Google Scholar]
- Frolov, S.M.; Aksenov, V.S.; Sadykov, I.A.; Avdeev, K.A.; Shamshin, I.O. Testing of experimental models of a hydrojet with pulsed-detonation combustion of liquid fuel. Combust. Explos. 2017, 10, 73–82. [Google Scholar]
- Frolov, S.M.; Aksenov, V.S.; Sadykov, I.A.; Avdeev, K.A.; Shamshin, I.O. Hydrojet engine with pulse detonation combustion of liquid fuel. Dokl. Phys. Chem. 2017, 475, 129–133. [Google Scholar] [CrossRef]
- Frolov, S.M.; Avdeev, K.A.; Aksenov, V.S.; Frolov, F.S.; Sadykov, I.A.; Shamshin, I.O.; Tukhvatullina, R.R. Pulsed detonation hydroramjet: Simulations and experiments. Shock. Waves 2020, 30, 221–234. [Google Scholar] [CrossRef]
- Frolov, S.M.; Avdeev, K.A.; Aksenov, V.S.; Frolov, F.S.; Sadykov, I.A.; Shamshin, I.O. Pulsed detonation hydroramjet: Design optimization. J. Mar. Sci. Eng. 2022, 10, 1171. [Google Scholar] [CrossRef]
- Bykovski, F.A.; Zhdan, S.A. Continuous Spin Detonation; Siberian Branch of RAS: Novosibirsk, Russia, 2013. [Google Scholar]
- Hasegawa, T.; Fujiwara, T. Detonation oxyhydrogen bubbled liquids. Proc. Combust. Inst. 1982, 19, 675–683. [Google Scholar] [CrossRef]
- Sychev, A.I. Shock-wave ignition of liquid–gas bubble system. Combust. Explo. Shock. Waves 1985, 21, 250–254. [Google Scholar] [CrossRef]
- Sychev, A.I. Detonation waves in a liquid–gas bubble system. Combust. Explo. Shock. Waves 1985, 21, 365–372. [Google Scholar] [CrossRef]
- Sychev, A.I.; Pinaev, A.V. Self-sustaining detonation in liquids with bubbles of explosive gas. J. Appl. Mech. Tech. Phys. 1986, 27, 119–123. [Google Scholar] [CrossRef]
- Pinaev, A.V.; Sychev, A.I. Effects of gas and liquid properties on detonation-wave parameters in liquid-bubble systems. Combust. Explo. Shock. Waves 1987, 23, 735–742. [Google Scholar] [CrossRef]
- Tereza, A.M.; Slutskii, V.G.; Severin, E.S. Ignition of acetylene-oxygen mixtures behind shock waves. Russ. J. Phys. Chem. B 2009, 3, 99–108. [Google Scholar] [CrossRef]
- Kedrinskiy, V.K. Hydrodynamics of Explosion: Models and Experiment; Siberian Branch of RAS: Novosibirsk, Russia, 2000. [Google Scholar]
- Mitropetros, K.; Fomin, P.A. Shock-induced ignition of fuel-lean gas bubbles in organic liquids. In Transient Combustion and Detonation Phenomena: Fundamentals and Applications; Roy, G.D., Frolov, S.M., Eds.; Torus Press: Moscow, Russia, 2014; pp. 101–112. [Google Scholar]
α, % | C, m/s | D34, m/s | D45, m/s | D56, m/s |
---|---|---|---|---|
2 | 85 | 180 | 140 | 126 |
4 | 61 | 115 | 92 | 82 |
8 | 44 | 75 | 60 | 55 |
16 | 32 | 50 | 40 | 40 |
α, % | Lp, mm | usc,20-mm, m/s | usc,40-mm, m/s | usc,60-mm, m/s |
---|---|---|---|---|
2 | 66 | 35 | 13 | 3 |
4 | 56 | 39 | 13 | 4 |
8 | 56 | 35 | 20 | 4 |
16 | 57 | 26 | 26 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolov, S.M.; Avdeev, K.A.; Aksenov, V.S.; Sadykov, I.A.; Shamshin, I.O.; Frolov, F.S. Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles. Micromachines 2022, 13, 1553. https://doi.org/10.3390/mi13091553
Frolov SM, Avdeev KA, Aksenov VS, Sadykov IA, Shamshin IO, Frolov FS. Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles. Micromachines. 2022; 13(9):1553. https://doi.org/10.3390/mi13091553
Chicago/Turabian StyleFrolov, Sergey M., Konstantin A. Avdeev, Viktor S. Aksenov, Illias A. Sadykov, Igor O. Shamshin, and Fedor S. Frolov. 2022. "Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles" Micromachines 13, no. 9: 1553. https://doi.org/10.3390/mi13091553
APA StyleFrolov, S. M., Avdeev, K. A., Aksenov, V. S., Sadykov, I. A., Shamshin, I. O., & Frolov, F. S. (2022). Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles. Micromachines, 13(9), 1553. https://doi.org/10.3390/mi13091553