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Abstract: At present, there is an increasing need to mimic the in vivo micro-environment in the culture
of cells and tissues in micro-tissue engineering. Concave microwells are becoming increasingly
popular since they can provide a micro-environment that is closer to the in vivo environment
compared to traditional microwells, which can facilitate the culture of cells and tissues. Here, we
will summarize the fabrication methods of concave microwells, as well as their applications in micro-
tissue engineering. The fabrication methods of concave microwells include traditional methods, such
as lithography and etching, thermal reflow of photoresist, laser ablation, precision-computerized
numerical control (CNC) milling, and emerging technologies, such as surface tension methods, the
deformation of soft membranes, 3D printing, the molding of microbeads, air bubbles, and frozen
droplets. The fabrication of concave microwells is transferring from professional microfabrication
labs to common biochemical labs to facilitate their applications and provide convenience for users.
Concave microwells have mostly been used in organ-on-a-chip models, including the formation
and culture of 3D cell aggregates (spheroids, organoids, and embryoids). Researchers have also
used microwells to study the influence of substrate topology on cellular behaviors. We will briefly
review their applications in different aspects of micro-tissue engineering and discuss the further
applications of concave microwells. We believe that building multiorgan-on-a-chip by 3D cell
aggregates of different cell lines will be a popular application of concave microwells, while integrating
physiologically relevant molecular analyses with the 3D culture platform will be another popular
application in the near future. Furthermore, 3D cell aggregates from these biosystems will find more
applications in drug screening and xenogeneic implantation.

Keywords: lithography; etching; photoresist reflow; CNC milling; 3D printing; surface tension;
spheroid; organoid; embryoid; cellular behavior

1. Introduction

As an emerging technology, organ-on-a-chip has attracted increasing attention from
researchers in different fields [1]. Organ-on-a-chip technology can help researchers to better
understand the physiology of different organs, and also greatly benefit the process of drug
development by saving both time and cost in drug testing [2]. Huh et al. built a lung
model on a chip to investigate the influence of respiration on alveolus cells and mimic their
responses to nanoparticulates [3]. Agarwal et al. developed a microfluidic heart model
on a chip to study the effect of drug on cardiac contractility in a high-throughput way [4].
Deng et al. established a microfluidic liver model to explore the hepatoprotective effect of
three hepatoprotectants (tiopronin, bifendatatum, and glycyrrhizinate) [5]. Kim et al. used
a microfluidic gut model to study the combined influence of peristalsis and microbiome on
the growth and inflammation of bacteria in the human intestine [6]. A microfluidic human

Micromachines 2022, 13, 1555. https://doi.org/10.3390/mi13091555 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13091555
https://doi.org/10.3390/mi13091555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-2444-6771
https://doi.org/10.3390/mi13091555
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13091555?type=check_update&version=4


Micromachines 2022, 13, 1555 2 of 32

kidney model was used to investigate the nephrotoxicity of gentamicin [7]. A microfluidic
model was developed to mimic the drug (glyburide–a gestational diabetes drug) trans-
portation through the human placental barrier [8]. At present, researchers are trying to
build a multiorgan-on-a-chip model or even a human-on-a-chip model to deepen the under-
standing of organ functions and the relation between different organs [9–11]. Bovard et al.
established a liver/lung model, which can be used to assess the toxicity of drugs or aerosols
to the human lung system [12]. Theobald et al. built a liver/kidney model to evaluate the
metabolic response and toxicity of two drugs (Aflatoxin B1 and Benzoalphapyrene) [13].
Esch et al. used a body model composed of gastrointestine, liver, fat, kidney and bone
marrow for the evaluation of the interaction between ingested nanoparticles and human
tissues [14]. Oleaga et al. developed a four-organ model of the heart, liver, skeletal muscle,
and nervous system, which can function well for 28 days and allow for the monitoring of
mechanical and electrical activities of different cells in the long term [15].

Compared with traditional 2D cell culture, the culture of cells and tissues in a 3D
environment is crucial for decent organ-on-a-chip models, since 3D culture can mimic the
in vivo environment more closely by providing cell-to-cell and cell-to-extracellular matrix
(ECM) communication [16]. With the advancement of microfabrication technologies, it is
possible to build delicate 3D structures to mimic the in vivo environment. Gumuscu et al.
made a microfluidic 3D culture platform with around 500 hydrogel compartments, which
was used to investigate interaction between human intestine cells and intestinal bacteria
in a high-throughput way [17]. Marsano et al. cultured cardiac cells in a 3D matrix by
fibrin gel and successfully generated micro-engineered cardiac tissues with physiological
functions [18]. Shim et al. made 3D villi scaffolds for the culture of Caco-2 cells to mimic the
human intestine, and found that cells in 3D culture showed a more active metabolism [19].
Lee et al. used cell-printing technology to develop a 3D ECM microenvironment for a liver
model [20]. Huang et al. used gelatin methacryloyl (GelMA) to build a 3D porous hydrogel
structure and established an alveoli model on a chip based on the 3D hydrogel [21]. Dorn-
hof et al. integrated 3D cell cultures and multiple electrochemical chemo- and biosensors
on a microfluidic chip, and monitored culture conditions and multiple metabolites [22].

Microwells are commonly used as separated chambers for the formation and culture of
3D cell aggregates (spheroids, organoids, and embryoids) [23–25]. These 3D cell aggregates
(spheroids, organoids, and embryoids) can help researchers to better understand cancer
growth, organogenesis, and disease progression in the human body [26]. Lee et al. used
poly(ethylene glycol) (PEG) hydrogel microwells to form tumor spheroids for drug screen-
ing [27]. Fukuda et al. formed hepatocyte spheroids in a microwell array, which can be
used to evaluate drug metabolism efficiently [28]. Hu et al. used hydrophobic microwells
to generate lung cancer organoids, which were used to predict the patient’s response to
specific anti-cancer drugs [29]. Lee et al. cultured kidney organoids in microwells and
provided shear stress using microfluidic flow, which was proved to be able to increase
organoids’ vascular structures [30]. Karp et al. generated embryoid bodies in PEG mi-
crowells, and controlled their size and shape by adjusting the geometry of microwells [31].
Moeller et al. improved embryoids’ homogeneity by optimizing the microwell materials,
cell seeding procedures and retrieval methods [25]. In general, the spheroids, organoids,
and embryoids formed in these microwells have a diameter between 100 and 1000 µm.
However, the microwells fabricated by traditional methods have a cuboid or cylinder
shape, which is not optimized for the formation and culture of cell aggregates. Therefore,
researchers have been seeking new approaches for concave microwell fabrication.
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Reviews of microwell fabrication and its applications in different aspects of biomedical
engineering have been provided by other researchers [32–34]. In this paper, we present
a review of the fabrication methods of concave microwells specifically, and discuss their
advantages or limitations. We will also review the applications of microwells in modeling
different organs, and briefly discuss their further applications in micro-tissue engineering.

2. Fabrication of Concave Microwells
2.1. Photoresist Reflow

Researchers have often used photoresists AZ and SU-8 to fabricate the mold for
microfluidic chips using photolithography. Here, the thermal reflow of AZ and SU-8
is utilized to prepare molds for concave microwells. After the polymer photoresist was
patterned on the silicon or glass substrate using standard photolithography, it can be melted
at a high temperature to form a convex or concave profile. Then, it can be used as a mold to
fabricate concave microwells or microchannels using polydimethylsiloxane (PDMS) replica
molding. Photoresists AZ and SU-8 are compatible with this protocol [35–37], as shown in
Figure 1. This protocol is traditional and mature, but cleanroom facilities are necessary.

Figure 1. Thermal reflow of photoresist for fabrication of concave microwells. (A) Thermal reflow
of photoresist AZ4620: at first AZ4620 and AZ5214E were patterned on a silicon wafer using stan-
dard photolithography (a,b); then, AZ4620 was melted by heating to form a convex profile (c) [35],
which can be used to fabricate concave microwells with PDMS replica molding. Reprinted (adapted)
from [35]. Copyright (2014) with permission from Elsevier. (B) The thermal reflow of photoresist
SU-8 3035: at first, SU-8 3035 was patterned on a glass substrate (a), and then melted by heat-
ing (b). After that, it can be used as a mold to fabricate the concave microwells using PDMS
double-replication (c,d) [37]. Reprinted (adapted) from [37]. Copyright (2015) with permission from
John Wiley and Sons.
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2.2. Lithography and Etching

By adjusting the exposure setup or mode, it is possible to fabricate concave microwells
with single-step photolithography. Bonabi et al. fabricated concave microwells using the
inorganic–organic hybrid polymer Ormocomp® with UV exposure in proximity mode [38],
as shown in Figure 2A. The dimensions of these concave microwells can easily be adjusted
by controlling the exposure dose and gap between the mask and Ormocomp® [38,39],
as shown in Figure 2B. With an optical diffuser, SU-8 domes can be fabricated using backside
lithography [40], as shown in Figure 2C. It is also possible to control the dimensions of SU-8
domes by adjusting the exposure dose. After that, PDMS replicas with concave microwells
can be fabricated using the SU-8 molds.

As a widely used technique for microfabrication, etching has often been used for the
fabrication of concave microwells. By combining Bosch etching and lithography, silicon
U-shaped microwells can be fabricated, and used to make concave microwells on hydrogel,
as shown in Figure 3A,B [41]. Dry etching methods are well-developed, but require
cleanroom facilities. Wet etching can be also used for the fabrication of concave microwells
(such as the example shown in Figure 3C,D) [42–44], and generally has lower requirements
for the equipment or experimental conditions.

Figure 2. Lithography in proximity mode or backside lithography for the fabrication of concave
microwells. (A) UV exposure of polymer Ormocomp® in proximity mode: first, a thin layer of
Ormocomp® was coated on a glass substrate; then, another Ormocompe® layer was coated and
exposed to UV in proximity mode. After development, concave microwells were formed [38].
Reprinted (adapted) from [38]. Copyright (2017) with permission from AIP Publishing. (B) SEM
pictures of concave microwells fabricated by the method described in (A) [39]. Scale bars: 20 µm.
Reprinted (adapted) from [39] under the terms of the Creative Commons CC BY license. (C) The
schematic view of SU-8 backside lithography: a glass diffuser was used, together with a glass mask,
to diffuse the collimated UV light and crosslink dome-like SU-8 microstructures [40]. Reprinted
(adapted) from [40]. Copyright (2019) with permission from the Royal Society of Chemistry.
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Figure 3. Dry etching and wet etching for the fabrication of concave microwells. (A) Fabrication
of concave microwells on hydrogel using a silicon mold [41]. First, a silicon mold with concave
microwells was used for PDMS casting. Then, the PDMS piece was used as a stamp for molding
hydrogel to make concave microwells on hydrogel. (B) An SEM picture of the PDMS stamp. Scale
bar: 100 µm. Reprinted (adapted) from [41]. Copyright (2020) with permission from Springer
Nature. (C) The procedures of an array of perforated concave microwells using dry etching and wet
etching [42]. (D) The SEM pictures of concave microwells using the method illustrated in (C) [42].
Reprinted (adapted) from [42]. Copyright (2014) with permission from Royal Society of Chemistry.

2.3. Surface Tension Methods

According to Young’s Laplace equation, when placing a liquid drop on a flat substrate,
the profile of the liquid drop will be convex above the substrate. When placing a liquid
drop into a hydrophilic microwell, the liquid profile will be concave. By using these
properties, we can fabricate concave microwells in a facile way. As in Figure 4A,B, a PDMS
plate with cylinder microwells is fabricated using soft lithography, PDMS prepolymer is
filled into these microwells and the excess PDMS is raked out. Due to the surface tension,
the remaining PDMS will have a meniscus profile. After being fully cured, the concave
microwells will be formed on the PDMS plate [45–52], as shown in Figure 4C. Kuo et al.
patterned liquid on the hydrophilic regions of a glass substrate, and used it as a mold for
PDMS casting [53], as shown in Figure 4D. This method can be used to fabricate concave
microwells and microchannels with different dimensions by controlling the contact angle
of the liquid sample, as shown in Figure 4E. This method can also be used to fabricate such
microstructures using other polymers, such as Off-Stoichiometry Thiol-Ene (OSTE) [54].
Bao et al. used poly-acrylic acid (PAA) solution as a sacrificial ink, and inkjet-imprinted it
on precured PDMS [55]. The interaction between these two immiscible liquids can be used
to fabricate concave microwells and microchannels [55]. Usually, the concave microwells
fabricated using this method have a smooth surface since the contact face between two
liquid phases is smooth. However, the repeatability of this method is lower than other
methods since some key steps are handled with manual operation.
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Figure 4. Examples of concave microwell fabrication using surface tension methods. (A) PDMS
prepolymer was poured on a cured PDMS plate with cylinder microwells, and raked out to form
a solid meniscus [46]. Reprinted (adapted) from [46]. Copyright (2013) with permission from
Royal Society of Chemistry. (B) PDMS prepolymer was poured on a cured PDMS plate to form
concave microfluidic well-channel networks [47], and (C) SEM pictures of concave microwells and
fluidic networks using this method [45,47,50]. Reprinted (adapted) from [47]. Copyright (2014) with
permission from Springer Nature. Reprinted (adapted) from [45]. Copyright (2012) with permission
from John Wiley and Sons. Reprinted (adapted) from [50] under the terms of the Creative Commons
Attribution License. (D) Liquid was patterned on glass with wax patterns, and covered by a PDMS
prepolymer to form concave wells and channels [53]. (E) Concave wells and channels with different
dimensions are fabricated using the method described in (D) [53]. Scale bar (left): 200 µm, scale bar
(right): 100 µm. Reprinted (adapted) from [53]. Copyright (2018) with permission from Royal Society
of Chemistry.

2.4. Replica Molding of Frozen Droplets

Although it is easy and fast to fabricate concave microwells using surface tension
methods, sometimes it is difficult to fix the liquid pattern on the substrate, since it may
be pushed away due to gravity or surface tension. Researchers developed methods for
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concave microwell fabrication by the replica molding of frozen liquid droplets. The frozen
droplets will act as a rigid mold, similar to an SU-8 mold. The shape of the droplets can
be adjusted by controlling the surface hydrophobicity. Therefore, concave microwells can
be fabricated with different dimensions. Park et al. condensed water vapor on a rigid
substrate, froze the water droplets and used them for PDMS replica molding [56], as shown
in Figure 5A. The method can be used to achieve massive microwell fabrication. Using the
same working principle, Liu et al. patterned a droplet array on a hydrophobic substrate
using a non-contact spotting system and used it for microwell fabrication [57], as shown
in Figure 5B,C. The contact angle of the droplet (which can be as large as 150◦) can be
controlled by surface hydrophobicity and the volume of the droplet can be controlled
by the spotting system [57]. Functionalized PDMS microwells can be prepared when
frozen NaOH solution (10%) is used as the template for replica molding [58], as shown in
Figure 5D,E. Ling et al. used a mixture of gelatin and cells to build a hydrogel array to mold
a UV-curable polymer, PEG-dimethacrylate (PEG-DMA) [59], as shown in Figure 5F. In
addition to PDMS and PEG-DMA in the previous examples, we believe that this technique
is also compatible with some other thermocurable and photocurable polymers.

Figure 5. Replica molding of frozen liquid droplets. (A) Water vapor was condensed on a rigid sub-
strate to form droplets. PDMS was poured on the substrate after the droplets were frozen. PDMS with
concave microwells was ready after curing and lift-off [56]. Reprinted (adapted) from [56]. Copyright
(2008) with permission from Springer Nature. (B) A water droplet array was printed on a superhy-
drophobic substrate and frozen, and then used as a mold for PDMS replica molding [57]. (C) Pictures
of a water droplet, frozen droplet and the corresponding wells using the method illustrated in (B) [57].
Reprinted (adapted) from [57]. Copyright (2014) with permission from Elsevier. (D) 10% w/w NaOH
solution was deposited on a petri dish substrate with plasma polymer coating, frozen and used as a
mold for PDMS replica molding to fabricate concave microwells [58]. (E) Concave microwells with
different dimensions were formed on different substrates using the method described in (D) [58].
Scale bars: 200 µm. Reprinted (adapted) from [58] under the terms of the Creative Commons CC BY
license. (F) A mixture of cell and gelatin was printed on a petri dish substrate, and cooled down to
form hydrogel. Then, the substrate with a hydrogel array was used to mold UV-curable PEG-DMA
to obtain concave microwells [59]. Reprinted (adapted) from [59] under the terms of the Creative
Commons CC BY license.
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2.5. Replica Molding of Air Bubbles

When an air bubble is trapped in liquid, the shape of the bubble is similar to a sphere
due to surface tension. Researchers have used this phenomenon to fabricate concave
microwells by PDMS [60–62]. At first, a polymethyl methacrylate (PMMA) or PDMS
base with micro-cavities was fabricated. Then, PDMS was poured onto the base, with air
trapped in these micro-cavities. The air trapped in micro-cavities expanded under a high
temperature and PDMS was cured at the same time. Concave microwells with different
diameters and aspect ratios can be fabricated using this protocol [60], as shown in Figure 6A.
It is possible to fabricate Omega-shaped or Sigma-shaped microwells by adjusting the
topography of the base surface or the position of the base during curing [61,62], as shown
in Figure 6B–D. Although this protocol can be used to fabricate microwells with complex
shapes, it has some tricky steps, which require careful handling of the experimental setup.

Figure 6. Replica molding of air bubbles. (A) Micro-cavities were fabricated on a PMMA base,
and PDMS was poured on it. With heating, the volume of air bubbles increased and PDMS cured
at the same time [60]. Reprinted (adapted) from [60]. Copyright (2012) with permission from AIP
Publishing. (B) Low-temperature PDMS was poured onto a volcanic mountain-like PDMS mold,
and placed on an inclined stand. Air bubbles expanded and PDMS cured at the same time to form
Sigma-shaped microwells [62]. (C) Pictures of Sigma-shaped microwells using inclined stands of
different angles [62]. Scale bar: 350 µm. Reprinted (adapted) from [62]. Copyright (2021) with
permission from Royal Society of Chemistry. (D) The procedures of fabrication of Omega-shaped
microwells (i–iv), and an SEM image of a microwell (v) [61]. Reprinted (adapted) from [61]. Copyright
(2018) with permission from IOP Publishing.

2.6. Replica Molding of Microbeads

Microbeads are very suitable for the molding of concave microwells because of their
3D sphere shape. To ensure the uniform distribution of microwells, researchers need to
form a regular pattern of microbeads on a flat substrate. Li et al. used through-hole stainless
steel meshes with dual adhesive tapes to prepare a regular microbead array [63], as shown
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in Figure 7A,B. Lee et al. used a through-hole plate together with a magnetic field to form
a regular microbead array [64,65], as shown in Figure 7C,D. After a regular microbead
array was ready on a solid substrate, it could be used for PDMS soft lithography to obtain
concave microwells.

Figure 7. Replica molding of micro-beads. (A) At first, a microsphere array was formed on a glass
plate utilizing a through-hole stainless steel mesh and dual adhesive tape; then, it was used for the
replica molding of PDMS [63]. (B) A picture of a PDMS piece with concave microwells (left), an SEM
picture of concave microwells (middle), and an SEM picture of a single microwell (right) [63]. The
scale bar in the left picture is 1500 µm, and scale bar in the middle picture is 300 µm. Reprinted
(adapted) from [63]. Copyright (2020) with permission from John Wiley and Sons. (C) At first,
a magnetic bead array was formed using a through-hole plate under a magnetic field. After that,
PDMS was poured, cured and lifted from the bead array. After removing the magnetic beads, concave
microwells were ready on PDMS [65]. (D) Pictures of concave microwells in different magnifications
prepared by the method illustrated in (C) [64]. Reprinted (adapted) from [64]. Copyright (2016) with
permission from Royal Society of Chemistry.
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2.7. Deformation of Soft Membranes

Due to the flexibility of PDMS, thin PDMS membranes were used to assist in the
fabrication of concave microwells. Nishijima et al. used a setup to prepare PDMS mi-
crowells by bending thin PDMS membranes, of which the depths can be controlled by the
value of negative pressure [66]. This strategy also applies to some other polymer (such
as Cyclic Olefin coPolymer (COP) and polycarbonate) films for the fabrication of concave
microwells [67,68], as shown in Figure 8A. Park et al. used a similar setup to deform a thin
PDMS membrane, and added SU-8 to prepare a convex SU-8 mold [69], which can be used
to fabricate concave microwells of different dimensions [70,71], as shown in Figure 8B–D.

Figure 8. Concave microwells fabricated by methods utilizing deformed PDMS membranes.
(A) A thin polycarbonate film was deformed by pressure and heat, and then was cooled down
and demoulded (a) to obtain an array of concave microwells (b) [68]. Reprinted (adapted) from [68]
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License. (B) The
fabrication of convex SU-8 mold: at first the PDMS membrane was deformed by vacuum, and then
SU-8 was filled on the membrane and crosslinked. After that, the convex SU-8 mold was used to
prepare PDMS replicas with concave microwells [71]. Reprinted (adapted) from [71]. Copyright
(2011) with permission from Springer Nature. (C) SEM pictures of the convex SU-8 mold and concave
microwells fabricated by a similar method as that described in (B) [69]. Scale bars: 100 µm. Reprinted
(adapted) from [69]. Copyright (2009) with permission from Royal Society of Chemistry. (D) SEM
pictures of the concave microwells of different dimensions fabricated by a similar method as that
described in (B) [70]. Scale bars: 500 µm. Reprinted (adapted) from [70]. Copyright (2010) with
permission from Elsevier.

2.8. Laser Ablation

Laser ablation was widely used to create microstructures on polymer materials includ-
ing PMMA, polystyrene (PS) and polyimide [72]. Since the energy distribution of a CO2
laser is similar to a Gaussian distribution [73], the laser drilling on a solid substrate can
create a groove with a Gaussian profile. Tu et al. has fabricated concave microwells on a
PMMA, PDMS and PS substrate using this method [74], as shown in Figure 9. The depth
and shape of these microwells can be controlled by adjusting the power, pulse and focal
plane position of the laser [75,76]. Although laser ablation can quickly manufacture concave
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microwells, the surface roughness is bigger than that of other methods (as there are usually
some polymer fragments generated by the ablation remaining on the surface) and the
microwell profile is more similar to a Gaussian profile than a circular arc.

Figure 9. Fabrication of concave microwells by laser ablation [74]. (A) The schematic of the working
principle of laser ablation for microwell fabrication. (B) The SEM pictures of concave microwells
fabricated on PMMA, PDMS, and PS substrates by laser ablation. Scale bars: 100 µm. Reprinted
(adapted) from [74]. Copyright (2013) with permission from John Wiley and Sons.

2.9. Milling

CNC milling is an option for the large-scale fabrication of polymer microfluidic chips
at a low cost [77]. With a high-precision drilling head, CNC milling can be used to fabricate
a mold with microstructures with a convex dome or concave bottom. Using these structures
as a mold for single casting or double casting, researchers successfully fabricated concave
microwells on PDMS or agarose substrate. Metal (such as aluminum alloy) or polymer (such
as PMMA) molds with micro-dome-like structures can be fabricated by advanced CNC
milling, and then used for the single casting of PDMS to obtain concave microwells [78–80],
as shown in Figure 10A,C. Polymer (such as polyoxymethylene (POM), acrylic, or PMMA)
molds with microstructures having a concave bottom were fabricated by precise CNC
milling, and then used for double casting to obtain concave microwells on PDMS or agarose
base [81–83], as shown in Figure 10B,D. CNC milling can be used to fabricate such molds
with much higher efficiency compared to photolithography. However, limited by the
resolution of milling itself, the surface of the mold obtained by milling is not as smooth
as that obtained by other techniques (such as photolithography), which will influence the
surface roughness of microwells.
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Figure 10. Fabrication of concave microwells by milling. (A) Firstly, a metallic mold was fabricated
by precise CNC micromachining, and its surface was coated with polytetrafluoroethylene (PTFE)-like
plasma. After that, the metallic mold was used for PDMS soft lithography to obtain the concave
microwells [78]. (B) At first, a POM mold was prepared by CNC micromachining, and then used
for double replica moldings of PDMS and agarose, respectively [81]. Reprinted (adapted) from [81].
Copyright (2018) with permission from Royal Society of Chemistry. (C) Pictures of a cross-section of
concave microwells fabricated by the method illustrated in (A) [78]. Scale bars: 200 µm. Reprinted
(adapted) from [78]. Copyright (2014) with permission from American Chemical Society. (D) Pictures
of concave microwells fabricated by a similar method as that described in (B) [82]. The scale bar in
the left picture shows 1 mm, and scale bar in the right picture shows 500 µm. Reprinted (adapted)
from [82] under the terms of the Creative Commons CC BY license.

2.10. 3D Printing

With the development of 3D printing technology, the resolution of 3D printing has
become comparable with traditional lithography technology. Moreover, there are a variety
of materials for choosing, and some of them are suitable for biomedical applications.
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3D printing has been extensively used for constructing scaffolds with complex shapes
and 3D patterning cells or tissues [84,85]. Chen et al. used direct light processing 3D
printing and inkjet 3D printing to fabricate a solid mold for the following replica molding
of PDMS [86], as shown in Figure 11A,B. Seyfoori et al. used dynamic light projection 3D
printing to fabricate a mold with a photocurable resin, which was used to mold microwells
in agarose gel [87], as shown in Figure 11C. The molds can be fabricated quickly, and it
is also possible to achieve a fast iteration of mold design using 3D printing. A decent
investment in the 3D printer is needed if researchers want to obtain delicate microwells
with low surface roughness.

Figure 11. 3D printing for the fabrication of concave microwells. (A) At first a rigid mold was
prepared by 3D printing and then used for PDMS soft lithography to fabricate concave microwells [86].
(B) CAD views (upper) and SEM images (lower) of the concave microwells fabricated by the method
illustrated in (A) [86]. Scale bars: 1 mm. Reprinted (adapted) from [86] under the terms of the
Creative Commons CC BY-NC-ND license. (C) At first a mold was fabricated by 3D printing of a
photocurable resin, and then the mold was used for the replica molding of agarose gel [87]. Reprinted
(adapted) from [87]. Copyright (2018) with permission from Royal Society of Chemistry.
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Table 1 provides a summary of the methods used for concave microwell fabrication.
The majority of these methods need to use a bulky machine, such as a lithography machine,
etching system, CNC milling machine, 3D printer or droplet dispenser. For the materials of
mold, various kinds of materials are used depending on the specific methods, including
polymer (such as photoresist, resin and PMMA), metal and glass. For the materials of
microwells, PDMS is the most popular, followed by agarose.

Table 1. Summary of fabrication methods for concave microwells.

Fabrication Method Equipment/Tools Materials of the Mold Materials of the Microwells Ref.

Photoresist reflow Lithography machine AZ or SU-8 photoresist PDMS [35,37]

Lithography Lithography machine N.A. Polymer Ormocomp [38,39]

SU-8 PDMS [40]

Etching
Dry etching - Etching system SU-8 PDMS, Hydrogel [41]

Wet etching - N.A. N.A. Glass [43]

Surface tension methods
Lithography machine SU-8 PDMS [46]

Droplet dispenser Glass, water PDMS [53]

Replica molding of
frozen droplets

Automated non-contact
spotting system

Hydrophobic PDMS,
frozen water PDMS [57]

Pressure-assisted
value-based
bioprinting system

Petri dish, gelatin PEG-DMA [59]

Replica molding of
air bubbles

Computer-controlled
milling machine PMMA, air bubble PDMS [60]

N.A. CPU pin array, PDMS,
air bubble PDMS [61]

Replica molding of
microbeads

Through-hole steel mesh,
dual adhesive tape Glass, microsphere array PDMS [63]

Through-hole plate,
magnet array Microsphere array PDMS [64,65]

Deformation of
soft membranes Lithography machine SU-8 PDMS [69,70]

Laser ablation CO 2 laser N.A. PMMA, PDMS and PS [74]

Milling CNC milling machine Metal PDMS [78]

POM, PDMS Agarose [81]

3D printing 3D printer 3D printing resin PDMS, agarose [86,87]

N.A. means not applicable for that method. Ref. column only provides representative citation sources.

3. Applications of Concave Microwells in Micro-Tissue Engineering
3.1. Formation of Spheroids, Organoids and Embryoids

Concave microwells were often used to form cancer spheroids. When cancer cells
are seeded into concave microwells, of which the surfaces resist cell adhesion, cancer cells
will adhere to each other and form a multicellular aggregate (cancer spheroid). Cancer
spheroids can be used as a more suitable model than the 2D cell monolayer for investigating
the cell behavior and drug screening. The size of cancer spheroids can be controlled
by the seeding amount of cells and the size of concave microwells [37,63,81], as shown
in Figure 12A–C. Traditional tools (bright field microscope and fluorescent microscope)
can be used to monitor the status of spheroids, and cancer spheroids can be stained
with fluorophores to observe the cell cytoskeleton [37,63,78,81], as shown in Figure 12D.
After cancer spheroids are formed, they can be used to screen a single drug or a combination
of different drugs [53,87–90]. The effect of the drugs can be reflected by the viability,
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cytoskeleton, and migration rate of cells in the spheroids [53,87], as shown in Figure 13.
During cancer metastasis, the interaction between cancer cells and other types of cells in
the micro-environment is important. Lee et al. generated cancer spheroids by co-culture of
human lung cancer cells and vascular endothelial cells, and tri-culture of human lung cancer
cells, vascular endothelial cells and fibroblasts [89], as shown in Figure 14. It was found
that, with fibroblasts, cell aggregates tended to form rounder and tighter spheroids [89].
Chen et al. formed cancer spheroids using a co-culture of mouse hepatoma cells (Hepa1-6)
and mouse hepatic stellate cells (JS-1), and found that the expression of transforming
growth factor beta (TGF-β1) of spheroids by co-culture was higher than that by mono-
culture of Hepa1-6 [90]. Moreover, the expression of alpha-smooth muscle actin (α-SMA)
of spheroids by co-culture was significantly higher than that by mono-culture of JS-1 [90].

In addition to cancer spheroids, researchers have also used concave microwells for
the generation of spheroids by cells from various organs. Shi et al. formed chondrocyte
spheroids in PDMS microwells under a hypoxia environment, and compared the gene
expression of collagen I, collagen II and aggrecan of cells in 2D and 3D culture mode [91],
as shown in Figure 15. The expressions of collagen I and aggrecan of 3D spheroids were
significantly higher than those of 2D monolayer [91]. No et al. formed four hepatic
spheroids using the mono-culture of hepatocytes alone, dual-culture of hepatocytes and
hepatic stellate cells, dual-culture of hepatocytes and sinusoidal endothelial cells, and tri-
culture of hepatocytes, hepatic stellate cells and sinusoidal endothelial cells [92]. Albumin
and urea secretion were used as indicators of hepatic functions [92,93]. It was found
that spheroids formed by tri-culture secreted the most albumin and urea while spheroids
formed by mono-culture secreted the least [92], as shown in Figure 16. Chen et al. formed
human cerebral organoids using human embryonic stem cells (hESCs; H9), which showed
advanced characteristics, including wrinkling, lumens and neuronal layers [86]. Choi et al.
generated neurospheres by co-culturing neuronal cells from four different layers of the
cortical region of prenatal rats, and these neurospheres can mimic the in vivo cerebral cortex
with different horizontal layers [94], as shown in Figure 17. Jeong et al. formed neural
spheroids with a neural bundle connecting them, and characterized the function of the
bundle by applying electrical stimulation [49]. Neurospheres formed in concave microwells
have the potential to serve as an in vitro model of brain diseases, such as Alzheimer’s
disease [94,95]. Jun et al. generated purified islet spheroids by co-culturing islet single
cells and adipose-derived stem cells (ADSCs) [96]. With the time of co-culturing, ADSCs
gradually detached from the spheroids and the final islet spheroids formed had higher
viability and more secretion of insulin than spheroids by mono-culture [96], as shown in
Figure 18. Lee et al. investigated the influence of oxygen permeability on the formation
of pancreatic islet spheroids, and showed that spheroids formed with sufficient oxygen
supply had a better performance on the stability, viability and hormone secretion [51].
Spheroids by cells from different organs with a close relationship can be also generated in
concave microwells. Jun et al. formed spheroids by culturing hepatocytes and islet single
cells together, and found that cells in spheroids formed by co-culture had a higher viability
than cells in spheroids formed by mono-culture [97], as shown in Figure 19.



Micromachines 2022, 13, 1555 16 of 32

Figure 12. Formation of cancer spheroids in concave microwells. (A) Glioma spheroids of different
diameters can be formed in concave microwells of different sizes [37]. Reprinted (adapted) from [37].
Copyright (2015) with permission from John Wiley and Sons. (B) The size of breast cancer spheroids
can be controlled by the seeding density (of MDA-MB-231 cells) [81]. Reprinted (adapted) from [81]
under the terms of the Creative Commons CC BY license. (C) Schematic view of HepG2 spheroid
formation, and experimental pictures of HepG2 spheroids formed in concave microwells of different
diameters [63]. Reprinted (adapted) from [63]. Copyright (2020) with permission from John Wiley and
Sons. (D) Fluorescent images of an EMT-6 (mammary carcinoma cell line) spheroid of diameter above
400 µm, stained by DAPI and rhodamine phalloidin [78]. Scale bar: 100 µm. Reprinted (adapted)
from [78]. Copyright (2014) with permission from American Chemical Society.
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Figure 13. Cancer spheroids for drug screening. (A) The status of MCF-7 (human breast adenocar-
cinoma cells) spheroids was monitored after they were treated with doxorubicin (DOX). The size
of these spheroids was monitored by a bright field microscope, and the uptake of DOX and the
live/dead status of MCF-7 cells were monitored by a fluorescent microscope. After 3 days of DOX
treatment, spheroids with nucleus and F-actin stained were compared with control groups. The influ-
ences of DOX concentration and treating time on the cell viability of spheroids and monolayers were
investigated [87]. * p < 0.05. Scale bars: 500 µm. Reprinted (adapted) from [87]. Copyright (2018) with
permission from Royal Society of Chemistry. (B) The schematic view of applying a 2D drug com-
bination to SK-N-DZ (human neuroblastoma cell line) spheroids (upper), the influence of cisplatin
and MG132 (a kind of proteasome inhibitor) on the cell viability of 2D and 3D culture mode (left
below) respectively, and the influence of drug combination on the cell viability in spheroids after 24-h
treatment (right below) [53]. ** p < 0.01. (C) The schematic view of investigating SK-N-DZ spheroid
migration after drug treatment (upper), and the experimental pictures of SK-N-DZ spheroids with
different drug treatments (control, cisplatin alone, MG132 alone, and a combination of cisplatin and
MG132) (left below), and a comparison of the migration rate (right below) [53]. *** p < 0.001. Scale
bar: 200 µm. Reprinted (adapted) from [53]. Copyright (2018) with permission from Royal Society
of Chemistry.
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Figure 14. Cancer spheroids formed by co-culture of A549 (human lung cancer cells) and MRC-5
(fibroblasts), and tri-culture of A549, MRC-5, and human umbilical vein endothelial cells (HU-
VECS) [89]. (A) The schematic view of the formation of cancer spheroids by co-culture and tri-
coculture. (B) Bright-field pictures and SEM pictures of cancer spheroids by co-culture and tri-culture
in concave microwells. (C) Fluorescent pictures of cell aggregates, in which the MRC-5 cells were
labeled by a red cell tracker. Comparison of circularity (D), diameter (E) and area (F) of cancer
spheroids by co-culture and tri-culture. * p < 0.05 and ** p < 0.005. Reprinted (adapted) from [89]
under the terms of the Creative Commons Attribution License.
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Figure 15. The formation of chondrocyte spheroids under a hypoxia environment in concave microw-
ells. (A) Schematic view of the experimental setup for chondrocyte spheroid culture. (B) Fluorescent
images of chondrocyte cells in 2D and 3D culture mode (i), and the comparison of gene (collagen
II, collagen I, and aggrecan) expression in different culture modes (ii) [91]. ** p < 0.01. Reprinted
(adapted) from [91]. Copyright (2015) with permission from Oxford University Press.

Figure 16. Formation of hepatic spheroids by different culture modes, and the comparison of their
secretion of albumin and urea [92]. (A) Culture of spheroids by mono-culture of hepatocytes, co-
culture of hepatocytes and hepatic stellate cells, tri-culture of hepatocytes, hepatic stellate cells and
sinusoidal endothelial cells over time. Black scale bars: 100 µm, red scale bars: 50 µm. (B) Different
spheroids with serum albumin (red), CYP450 reductase (green) and nuclei (blue) stained (left), and the
secretion of albumin (middle) and urea with time (right). * p < 0.05, ** p < 0.01, *** p < 0.001. Scale
bars: 50 µm. Reprinted (adapted) from [92]. Copyright (2014) with permission from Elsevier.
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Figure 17. Formation of neurosphere and neural network [94]. (A) The schematic view showing the
different layers of cortical region of prenatal rat (left), the procedures of neurosphere formation in
concave microwells (right: a), the schematic of the network of neurospheres (right: b), and the pictures
of neurospheres stained with calcein AM (right: c). Scale bar: 300 µm. (B) Fluorescent pictures of
three-dimensional neurosphere and cryosectioned neurosphere stained against various transcription
factors. Different transcription factors are specific to different layers of the cortical region: Brn2 and
Satb2 corresponded to layers II-IV, CTIP2 corresponded to layer V, and Tbr1 corresponded to layer VI.
Scale bar: 100 µm. Reprinted (adapted) from [94]. Copyright (2013) with permission from Elsevier.
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Figure 18. Formation of functional islet spheroids by co-culturing islet cells and ADSCs [96].
(A) Bright-field and fluorescent pictures of cell aggregates by mono-culture and co-culture of islet
cells and ADSCs. Scale bar: 200 µm. (B) Morphology change of co-cultures of islet cells and ADSCs
(upper) which is indicated by ’+’ and ’−’, and the schematic of the detachment of ADSCs from cell
aggregates of islet cells and ADSCs (lower). (C) Intact islets and spheroids formed by mono-culture
and co-culture, which were stained by live/dead assay. Scale bars: 100 µm. (D) Comparison of
cell viability of intact islets and spheroids by mono-culture and co-culture. * p < 0.01, ** p < 0.001.
Reprinted (adapted) from [96]. Copyright (2014) with permission from Elsevier.
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Figure 19. Formation of hybrid spheroids by culturing hepatocytes and islet single cells together [97].
(A) The schematic view of the formation of hybrid spheroids by hepatocytes and islet single cells.
(B) Pictures of mono-culture of islet single cells (left), hepatocytes (right) and co-culture of islet single
cells and hepatocytes (middle), in which the green fluorescence indicates the live cells. Scale bars:
500 µm. (C) SEM pictures of spheroids of mono-culture of islet single cells (left), hepatocytes (right)
and co-culture of islet single cells and hepatocytes (middle). Scale bars: 20 µm. (D) Results of Cell
Counting Kit-8 (CCK-8) applied to spheroids with different mixing ratios of hepatocytes and islet
single cells on day 1 and day 7 (left), and normalized viability of cells in different spheroids on day 7
versus day 1 (right). * p < 0.05, ** p < 0.01, *** p < 0.001. Reprinted (adapted) from [97]. Copyright
(2013) with permission from Elsevier.

Concave microwells can also be used to generate stem cell spheroids by 3D culturing
stem cells. Researchers have generated embryoid bodies using embryoid stem cells in
concave microwells of different dimensions, before harvesting them and studying their
differentiation by staining specific proteins [45,98,99], as shown in Figure 20. Lee et al.
formed spheroids by culturing human adipose-derived stem cells (hASCs) and studied their
differentiation by checking the gene expression related to chondrogenic differentiation [64].
The relevant gene expression of cells in spheroids is significantly higher than that of cells by
2D culture [64]. Park et al. generated different types of spheroids by culturing tonsil-derived
mesenchymal stem cells (TMSCs), and implanted them in parathyroidectomized (PTX) rats
to study their applications in parathyroid tissue engineering [100], as shown in Figure 21. It
was found that PTX rats with differentiated spheroids implanted had a higher survival rate
than that of PTX rats with undifferentiated spheroids. The optimization of differentiation
conditions (size of microwells and concentration of mesoderm inducer BMP4) of H9- and
CHA15-human embryonic stem cells (hESCs) was achieved [48], as shown in Figure 22.
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From the previous examples about spheroids/organoids/embryoids, generally cells by
3D culture can show more physiologically relevant characteristics than cells by 2D culture,
which is closer to those of the in vivo organs. Therefore spheroids/organoids/embryoids
formed in concave microwells have a high potential for use in drug screening and thera-
nostics. As shown in Table 2, cancer spheroids are mostly generated for drug screening or
studies of irradiation effects. Organoids are usually harvested for xenogeneic implantation
or used as a model for some specific disease. Researchers often use embryoids to investigate
differentiation conditions.

Table 2. Spheroids, organoids, and embryoids by various cell lines and their applications in
tissue engineering.

Spheroids,
Organoids,
Embryoids

Cell Lines Applications Ref.

Cancer
spheroids

Human astrocytoma cell line U87 Drug screening (hypoxia-inducible factors(HIFs) inhibitors),
the influence of hypoxia [37]

Pancreatic cancer cells MIA PaCa-2 Effect of combined chemotherapy (cisplatin) and irradiation [81]

Human liver cancer cell line HepG2 Drug screening (doxorubicin hydrochloride) [63]

Mammary carcinoma cell line EMT-6 Drug screening (curcumin) [78]

Mono-culture of human breast cancer cell line MCF-7,
Mono-culture of human astrocytoma cell line U87 Drug screening (doxorubicin) [87]

Human neuroblastoma cell line SK-N-DZ Combined effect of cisplatin and MG132 [53]

Tri-culture of human lung cancer cells A549,
human lung fibroblasts MRC-5,
and human umbilical vein endothelial cells

Combined effect of paclitaxel + Gemcitabine,
paclitaxel alone, Gemcitabine alone [89]

Mono-culture of mouse hepatoma Hepa1-6 cells,
mono-culture of mouse hepatic stellate JS-1 cells,
co-culture of Hepa1–6 cells and JS-1 cells

Drug screening (paclitaxel) [90]

Organoids

Rat chondrocytes Drug screening (HIFs inhibitors),
the influence of hypoxia [91]

Mono-culture (hepatocytes alone),
co-culture of hepatocytes + hepatic stellate cells (HSCs),
co-culture of hepatocytes + sinusoidal endothelial cells (SECs),
tri-culture (hepatocytes + HSCs + SECs)

Xenogeneic implantation [92]

Prenatal rat cortical neurons Neurotoxicity study of amyloid beta [94]

Primary rat neural progenitor cells Neuronal signal transmission through neurite bundles [49]

Mono-culture of islet single cells,
co-culture of islet single cells and ADSCs Xenogeneic implantation [96]

Co-culture of rat pancreatic islet cell
and rat primary hepatocyte Xenogeneic implantation [97]

Embryoids

Murine R1 ES cell line Validation of differentiation capabilities [45,98]

Human adipose-derived stem cells Validation of differentiation capabilities [64]

Human tonsil-derived mesenchymal stem cells Xenogeneic implantation [100]

Human embryonic stem cells (H9- and CHA15-hESCs) Optimization of differentiation conditions [48]
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Figure 20. Formation of embryoid bodies in deep concave microwells [98]. (A) Cross-section view
of embryoid stem cell aggregates in concave microwells (i), and top view of embryoid stem cell
aggregates (ii). Scale bars: 400 µm. (B) Fluorescent images of embryoid bodies with green indicating
the live cells (a), the relation of embryoid body size with the width of microwell and the seeding
density (b), fluorescent images of embryoid bodies with sarcomeric a-actinin and nucleus stained
to show the cardiac differentiation (c), fluorescent images of embryoid bodies with neurofilament,
nestin, and nucleus stained to show the neuroepithelial differentiation (d). ** p < 0.01. Scale bar
in (a) shows 300 µm, and scale bars in (c) and (d) show 400 µm. Reprinted (adapted) from [98].
Copyright (2012) with permission from Royal Society of Chemistry.
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Figure 21. Formation of tonsil-derived mesenchymal stem cells (dTMSC) spheroids and their appli-
cation in parathyroid tissue engineering [100]. (A) The schematic view of experimental procedures:
at first, TMSCs were isolated from tonsils and then cultured in concave microwells; secondly, three
different types of TMSC spheroids were formed under different culture conditions; thirdly, two types
of TMSC spheroids were implanted into PTX rats to check their potential in hypoparathyroidism.
(B) Three different types of TMSC spheroids: SP1 refers to the spheroids formed by culturing TMSCs
in control medium for 14 days, SP2 refers to the spheroids formed by culturing TMSCs in control
medium for the first 7 days and differentiation medium for the second 7 days, and SP3 refers to the
spheroids formed by culturing TMSCs in differentiation medium for 14 days. (C) The viability of
TMSCs in SP1, SP2, and SP3, respectively. (D) Fluorescent pictures of SP1 (left), SP2 (middle), and SP3
(right) stained by a live/dead assay, in which the green indicates the live cells and the red indicates
the dead cells. (E) The comparison of survival rate (left), body weight change (middle) and serum
iCa2+ concentration (right) of PTX rats implanted with SP1 and SP2 in 90 days. PBS served as a
negative control. Sham refers to rats with sham operation but no spheroid implantation.
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Figure 22. Formation of embryoid bodies and procedures of determination of optimal induction
condition [48]. At first, hESCs were seeded into concave microwells to form embryoids. Then, these
embryoids were treated by mesoderm inducer BMP4 after mesoderm lineage induction. Lastly,
the distribution of platelet endothelial cell adhesion molecule (PECAM) was checked to evaluate the
effect of BMP4.

3.2. Study of Cellular Behavior

The surface topography of the culture substrate has an influence on the behavior
of cells growing on it, including the viability, alignment, and migration velocity [101].
Park et al. found that L929 mouse fibroblast cells preferred to grow on the flat surface,
and the cells inside the microwells showed a decline after three-day culture [69], as shown
in Figure 23A,B. The migration velocity of cells in concave microwells is higher than cells
cultured on flat surfaces [69]. Howard et al. cultured primary human colonic epithelial
cells on collagen microwells with flat, concave, and convex bottom surfaces, and found that
curvature of the culture substrate had an effect on the cell proliferation [102], as shown in
Figure 23C.
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Figure 23. The behavior of cells in concave microwells. (A) 4 h after the seeding of L929 cells on
the PDMS substrate with concave microwells (a), fluorescent images of L929 cells after three days
of culture (b), the distribution of cells inside and outside of concave microwells in 4 h and 3 days
after seeding (c), fluorescent images of human mesenchymal stem cells (hMSCs) cultured on PDMS
substrate with concave microwells, of which the focus plane is on the flat plane (d) and concave
microwells (e) respectively, the pattern of cells close to the microwells (f), and the status of L929 cells
after three-day culture on the substrate with concave microwells (g) [69]. * p < 0.01. Scale bars: 100 µm.
(B) Comparison of cell velocity on concave and flat surfaces [69]. ‘*’ indicates a significant difference
(p = 0.034). Reprinted (adapted) from [69]. Copyright (2009) with permission from Royal Society
of Chemistry. (C) Schematic side view (a) and top view (b) of primary human colonic epithelial
cell culture in microwells with different shapes, fluorescent images of cells cultured on different
bases (c–e), and the comparison of 5-ethynyl-2′-deoxyuridine (EdU) fluorescence of cells cultured on
different bases (f) [102]. * p < 0.001. Reprinted (adapted) from [102]. Copyright (2021) with permission
from IOP Publishing.

4. Conclusions

We briefly summarized the current methods used to fabricate concave microwells, as well
as their applications in micro-tissue engineering. Among these options for microwell fabrication,
some need to have cleanroom facilities or expensive tools/equipment, while some do not. Re-
searchers can choose a suitable method according to their available lab resources for fabrication.
In addition, the materials of microwells also need to be considered from the perspectives of
fabrication and application. In general, there is an obvious trend that the location of concave
microwell fabrication is transferring from professional microfabrication labs to common bio-
chemical labs. Similarly, the equipment or machines used for fabrication are changing from
bulky microfabrication tools in cleanroom to benchtop tools. Such a transition will facilitate
the application of concave microwells in micro-tissue engineering and provide convenience to
the end-users. For applications in micro-tissue engineering, concave microwells have already
found successful applications in spheroid/organoid/embryoid formation and cellular behavior
study. For future applications, on the one hand, more multiorgan-on-a-chip models will be
built using the spheroids/organoids/embryoids formed in concave microwells, and on the
other hand, more analyses at the molecular level will be integrated into the 3D culture platform.
Furthermore, the spheroids/organoids/embryoids harvested from these culture platforms



Micromachines 2022, 13, 1555 28 of 32

will find more applications in drug screening and xenogeneic implantation. We believe that
spheroid/organoid/embryoid formation in concave microwells and their following applications
in theranostics will last as a hot research topic for a while.

Author Contributions: Conceptualization, W.G. and X.C.; investigation, W.G., Z.C. and Z.F.; writing,
W.G., Z.C., Z.F., H.L., M.Z., H.Z. and X.C.; supervision, W.G. and X.C.; funding acquisition, W.G. and
X.C. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge financial support from Shantou University (STU Scientific Research Foun-
dation for Talents: NTF20034), Natural Science Foundation of Guangdong Province (2021A1515011167,
2020A1515010332), and Open Fund of Key Laboratory of Biomaterials of Guangdong Higher Educa-
tion Institutes and Guangdong Provincial Engineering and Technological Research Center for Drug
Carrie Development.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Chu Lok Ting from City University of Hong Kong for grammar
checking of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, B.; Korolj, A.; Lai, B.F.L.; Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 2018, 3, 257–278.

[CrossRef]
2. Skardal, A.; Shupe, T.; Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug

Discov. Today 2016, 21, 1399–1411. [CrossRef] [PubMed]
3. Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions

on a chip. Science 2010, 328, 1662–1668. [CrossRef] [PubMed]
4. Agarwal, A.; Goss, J.A.; Cho, A.; McCain, M.L.; Parker, K.K. Microfluidic heart on a chip for higher throughput pharmacological

studies. Lab Chip 2013, 13, 3599–3608. [CrossRef] [PubMed]
5. Deng, J.; Cong, Y.; Han, X.; Wei, W.; Lu, Y.; Liu, T.; Zhao, W.; Lin, B.; Luo, Y.; Zhang, X. A liver-on-a-chip for hepatoprotective

activity assessment. Biomicrofluidics 2020, 14, 064107. [CrossRef] [PubMed]
6. Kim, H.J.; Li, H.; Collins, J.J.; Ingber, D.E. Contributions of microbiome and mechanical deformation to intestinal bacterial

overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. 2016, 113, E7–E15. [CrossRef]
7. Kim, S.; LesherPerez, S.C.; Yamanishi, C.; Labuz, J.M.; Leung, B.; Takayama, S. Pharmacokinetic profile that reduces nephrotoxicity

of gentamicin in a perfused kidney-on-a-chip. Biofabrication 2016, 8, 015021. [CrossRef]
8. Blundell, C.; Yi, Y.S.; Ma, L.; Tess, E.R.; Farrell, M.J.; Georgescu, A.; Aleksunes, L.M.; Huh, D. Placental drug transport-on-a-chip:

A microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier. Adv. Healthc. Mater. 2018,
7, 1700786. [CrossRef]

9. Satoh, T.; Sugiura, S.; Shin, K.; Onuki-Nagasaki, R.; Ishida, S.; Kikuchi, K.; Kakiki, M.; Kanamori, T. A multi-throughput
multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 2018,
18, 115–125. [CrossRef]

10. Picollet-D’hahan, N.; Zuchowska, A.; Lemeunier, I.; Le Gac, S. Multiorgan-on-a-chip: A systemic approach to model and decipher
inter-organ communication. Trends Biotechnol. 2021, 39, 788–810. [CrossRef]

11. Luni, C.; Serena, E.; Elvassore, N. Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotechnol.
2014, 25, 45–50. [CrossRef]

12. Bovard, D.; Sandoz, A.; Luettich, K.; Frentzel, S.; Iskandar, A.; Marescotti, D.; Trivedi, K.; Guedj, E.; Dutertre, Q.; Peitsch, M.C.;
others. A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab Chip 2018, 18, 3814–3829. [CrossRef]

13. Theobald, J.; Ghanem, A.; Wallisch, P.; Banaeiyan, A.A.; Andrade-Navarro, M.A.; Taskova, K.; Haltmeier, M.; Kurtz, A.; Becker, H.;
Reuter, S.; et al. Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater. Sci. Eng. 2018, 4, 78–89. [CrossRef]

14. Esch, M.B.; Mahler, G.J.; Stokol, T.; Shuler, M.L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests
that ingested nanoparticles have the potential to cause liver injury. Lab Chip 2014, 14, 3081–3092. [CrossRef]

15. Oleaga, C.; Lavado, A.; Riu, A.; Rothemund, S.; Carmona-Moran, C.A.; Persaud, K.; Yurko, A.; Lear, J.; Narasimhan, N.S.;
Long, C.J.; et al. Long-term electrical and mechanical function monitoring of a human-on-a-chip system. Adv. Funct. Mater. 2019,
29, 1805792. [CrossRef]

16. Haycock, J.W. 3D cell culture: A review of current approaches and techniques. 3D Cell Cult. 2011, 1–15.

http://doi.org/10.1038/s41578-018-0034-7
http://dx.doi.org/10.1016/j.drudis.2016.07.003
http://www.ncbi.nlm.nih.gov/pubmed/27422270
http://dx.doi.org/10.1126/science.1188302
http://www.ncbi.nlm.nih.gov/pubmed/20576885
http://dx.doi.org/10.1039/c3lc50350j
http://www.ncbi.nlm.nih.gov/pubmed/23807141
http://dx.doi.org/10.1063/5.0024767
http://www.ncbi.nlm.nih.gov/pubmed/33312328
http://dx.doi.org/10.1073/pnas.1522193112
http://dx.doi.org/10.1088/1758-5090/8/1/015021
http://dx.doi.org/10.1002/adhm.201700786
http://dx.doi.org/10.1039/C7LC00952F
http://dx.doi.org/10.1016/j.tibtech.2020.11.014
http://dx.doi.org/10.1016/j.copbio.2013.08.015
http://dx.doi.org/10.1039/C8LC01029C
http://dx.doi.org/10.1021/acsbiomaterials.7b00417
http://dx.doi.org/10.1039/C4LC00371C
http://dx.doi.org/10.1002/adfm.201970049


Micromachines 2022, 13, 1555 29 of 32

17. Gumuscu, B.; Albers, H.J.; Van Den Berg, A.; Eijkel, J.C.; Van Der Meer, A.D. Compartmentalized 3D tissue culture arrays under
controlled microfluidic delivery. Sci. Rep. 2017, 7, 3381 . [CrossRef]

18. Marsano, A.; Conficconi, C.; Lemme, M.; Occhetta, P.; Gaudiello, E.; Votta, E.; Cerino, G.; Redaelli, A.; Rasponi, M. Beating heart
on a chip: A novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 2016, 16, 599–610. [CrossRef]

19. Shim, K.Y.; Lee, D.; Han, J.; Nguyen, N.T.; Park, S.; Sung, J.H. Microfluidic gut-on-a-chip with three-dimensional villi structure.
Biomed. Microdevices 2017, 19, 1–10. [CrossRef]

20. Lee, H.; Chae, S.; Kim, J.Y.; Han, W.; Kim, J.; Choi, Y.; Cho, D.W. Cell-printed 3D liver-on-a-chip possessing a liver microenviron-
ment and biliary system. Biofabrication 2019, 11, 025001. [CrossRef]

21. Huang, D.; Liu, T.; Liao, J.; Maharjan, S.; Xie, X.; Pérez, M.; Anaya, I.; Wang, S.; Tirado Mayer, A.; Kang, Z.; et al. Reversed-
engineered human alveolar lung-on-a-chip model. Proc. Natl. Acad. Sci. 2021, 118, e2016146118. [CrossRef]

22. Dornhof, J.; Kieninger, J.; Muralidharan, H.; Maurer, J.; Urban, G.A.; Weltin, A. Microfluidic organ-on-chip system for multi-
analyte monitoring of metabolites in 3D cell cultures. Lab Chip 2022, 22, 225–239. [CrossRef]

23. Nichol, J.W.; Khademhosseini, A. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter
2009, 5, 1312–1319. [CrossRef]

24. Gevaert, E.; Dolle, L.; Billiet, T.; Dubruel, P.; van Grunsven, L.; van Apeldoorn, A.; Cornelissen, R. High throughput micro-well
generation of hepatocyte micro-aggregates for tissue engineering. PLoS ONE 2014, 9, e105171. [CrossRef]

25. Moeller, H.C.; Mian, M.K.; Shrivastava, S.; Chung, B.G.; Khademhosseini, A. A microwell array system for stem cell culture.
Biomaterials 2008, 29, 752–763. [CrossRef]

26. The promise of organoids and embryoids. Nat. Mater. 2021, 20, 121. [CrossRef]
27. Lee, J.M.; Park, D.Y.; Yang, L.; Kim, E.J.; Ahrberg, C.D.; Lee, K.B.; Chung, B.G. Generation of uniform-sized multicellular tumor

spheroids using hydrogel microwells for advanced drug screening. Sci. Rep. 2018, 8, 17145. [CrossRef]
28. Fukuda, J.; Nakazawa, K. Hepatocyte spheroid arrays inside microwells connected with microchannels. Biomicrofluidics 2011,

5, 022205. [CrossRef]
29. Hu, Y.; Sui, X.; Song, F.; Li, Y.; Li, K.; Chen, Z.; Yang, F.; Chen, X.; Zhang, Y.; Wang, X.; et al. Lung cancer organoids analyzed on

microwell arrays predict drug responses of patients within a week. Nat. Commun. 2021, 12, 2581. [CrossRef]
30. Lee, H.N.; Choi, Y.Y.; Kim, J.W.; Lee, Y.S.; Choi, J.W.; Kang, T.; Kim, Y.K.; Chung, B.G. Effect of biochemical and biomechanical

factors on vascularization of kidney organoid-on-a-chip. Nano Converg. 2021, 8, 35. [CrossRef]
31. Karp, J.M.; Yeh, J.; Eng, G.; Fukuda, J.; Blumling, J.; Suh, K.Y.; Cheng, J.; Mahdavi, A.; Borenstein, J.; Langer, R.; et al. Controlling

size, shape and homogeneity of embryoid bodies using poly (ethylene glycol) microwells. Lab Chip 2007, 7, 786–794. [CrossRef]
[PubMed]

32. Kim, S.H.; Lee, G.H.; Park, J.Y. Microwell fabrication methods and applications for cellular studies. Biomed. Eng. Lett. 2013,
3, 131–137. [CrossRef]

33. Lee, G.H.; Lee, J.S.; Wang, X.; Hoon Lee, S. Bottom-up engineering of well-defined 3D microtissues using microplatforms and
biomedical applications. Adv. Healthc. Mater. 2016, 5, 56–74. [CrossRef] [PubMed]

34. Manzoor, A.A.; Romita, L.; Hwang, D.K. A review on microwell and microfluidic geometric array fabrication techniques and its
potential applications in cellular studies. Can. J. Chem. Eng. 2021, 99, 61–96. [CrossRef]

35. Lian, Z.J.; Hung, S.Y.; Shen, M.H.; Yang, H. Rapid fabrication of semiellipsoid microlens using thermal reflow with two different
photoresists. Microelectron. Eng. 2014, 115, 46–50. [CrossRef]

36. Sun, B.; Xie, K.; Chen, T.H.; Lam, R.H. Preferred cell alignment along concave microgrooves. RSC Adv. 2017, 7, 6788–6794.
[CrossRef]

37. Ma, J.; Zhang, X.; Liu, Y.; Yu, H.; Liu, L.; Shi, Y.; Li, Y.; Qin, J. Patterning hypoxic multicellular spheroids in a 3D matrix–a
promising method for anti-tumor drug screening. Biotechnol. J. 2016, 11, 127–134. [CrossRef]

38. Bonabi, A.; Cito, S.; Tammela, P.; Jokinen, V.; Sikanen, T. Fabrication of concave micromirrors for single cell imaging via controlled
over-exposure of organically modified ceramics in single step lithography. Biomicrofluidics 2017, 11, 034118. [CrossRef]

39. Järvinen, P.; Bonabi, A.; Jokinen, V.; Sikanen, T. Simultaneous culturing of cell monolayers and spheroids on a single microfluidic
device for bridging the gap between 2D and 3D cell assays in drug research. Adv. Funct. Mater. 2020, 30, 2000479. [CrossRef]

40. Fenech, M.; Girod, V.; Claveria, V.; Meance, S.; Abkarian, M.; Charlot, B. Microfluidic blood vasculature replicas using backside
lithography. Lab Chip 2019, 19, 2096–2106. [CrossRef]

41. Brandenberg, N.; Hoehnel, S.; Kuttler, F.; Homicsko, K.; Ceroni, C.; Ringel, T.; Gjorevski, N.; Schwank, G.; Coukos, G.; Turcatti, G.;
others. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 2020,
4, 863–874. [CrossRef]

42. Choi, J.S.; Bae, S.; Kim, K.H.; Kim, J.Y.; Sim, S.J.; Seo, T.S. Capture and culturing of single microalgae cells, and retrieval of colonies
using a perforated hemispherical microwell structure. RSC Adv. 2014, 4, 61298–61304. [CrossRef]

43. Ma, Z.; Hong, Y.; Ma, L.; Ni, Y.; Zou, S.; Su, M. Curved Microwell Arrays Created by Diffusion-Limited Chemical Etching of
Artificially Engineered Solids. Langmuir 2009, 25, 643–647. [CrossRef]

44. Lee, W.H.; Park, Y.D. Inkjet etching of polymers and its applications in organic electronic devices. Polymers 2017, 9, 441. [CrossRef]
45. Jeong, G.S.; Song, J.H.; Kang, A.R.; Jun, Y.; Kim, J.H.; Chang, J.Y.; Lee, S.H. Surface tension-mediated, concave-microwell arrays

for large-scale, simultaneous production of homogeneously sized embryoid bodies. Adv. Healthc. Mater. 2013, 2, 119–125.
[CrossRef]

http://dx.doi.org/10.1038/s41598-017-01944-5
http://dx.doi.org/10.1039/C5LC01356A
http://dx.doi.org/10.1007/s10544-017-0179-y
http://dx.doi.org/10.1088/1758-5090/aaf9fa
http://dx.doi.org/10.1073/pnas.2016146118
http://dx.doi.org/10.1039/D1LC00689D
http://dx.doi.org/10.1039/b814285h
http://dx.doi.org/10.1371/journal.pone.0105171
http://dx.doi.org/10.1016/j.biomaterials.2007.10.030
http://dx.doi.org/10.1038/s41563-021-00926-3
http://dx.doi.org/10.1038/s41598-018-35216-7
http://dx.doi.org/10.1063/1.3576905
http://dx.doi.org/10.1038/s41467-021-22676-1
http://dx.doi.org/10.1186/s40580-021-00285-4
http://dx.doi.org/10.1039/b705085m
http://www.ncbi.nlm.nih.gov/pubmed/17538722
http://dx.doi.org/10.1007/s13534-013-0105-z
http://dx.doi.org/10.1002/adhm.201500107
http://www.ncbi.nlm.nih.gov/pubmed/25880830
http://dx.doi.org/10.1002/cjce.23875
http://dx.doi.org/10.1016/j.mee.2013.10.025
http://dx.doi.org/10.1039/C6RA26545F
http://dx.doi.org/10.1002/biot.201500183
http://dx.doi.org/10.1063/1.4985653
http://dx.doi.org/10.1002/adfm.202000479
http://dx.doi.org/10.1039/C9LC00254E
http://dx.doi.org/10.1038/s41551-020-0565-2
http://dx.doi.org/10.1039/C4RA09730K
http://dx.doi.org/10.1021/la803343t
http://dx.doi.org/10.3390/polym9090441
http://dx.doi.org/10.1002/adhm.201200070


Micromachines 2022, 13, 1555 30 of 32

46. Lee, S.A.; Kang, E.; Ju, J.; Kim, D.S.; Lee, S.H. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte–hepatic
stellate cell interactions and flow effects. Lab Chip 2013, 13, 3529–3537. [CrossRef]

47. Jeong, G.S. Networked neuro-spheres formed by topological attractants for engineering of 3-dimensional nervous system. Tissue
Eng. Regen. Med. 2014, 11, 297–303. [CrossRef]

48. Moon, S.H.; Ju, J.; Park, S.J.; Bae, D.; Chung, H.M.; Lee, S.H. Optimizing human embryonic stem cells differentiation efficiency by
screening size-tunable homogenous embryoid bodies. Biomaterials 2014, 35, 5987–5997. [CrossRef]

49. Jeong, G.S.; Chang, J.Y.; Park, J.S.; Lee, S.A.; Park, D.; Woo, J.; An, H.; Lee, C.J.; Lee, S.H. Networked neural spheroid by
neuro-bundle mimicking nervous system created by topology effect. Mol. Brain 2015, 8, 17. [CrossRef]

50. Lee, G.; Lee, J.; Oh, H.; Lee, S. Reproducible construction of surface tension-mediated honeycomb concave microwell arrays for
engineering of 3D microtissues with minimal cell loss. PLoS ONE 2016, 11, e0161026. [CrossRef]

51. Lee, G.; Jun, Y.; Jang, H.; Yoon, J.; Lee, J.; Hong, M.; Chung, S.; Kim, D.H.; Lee, S. Enhanced oxygen permeability in membrane-
bottomed concave microwells for the formation of pancreatic islet spheroids. Acta Biomater. 2018, 65, 185–196. [CrossRef]
[PubMed]

52. Choi, Y.Y.; Seok, J.I.; Kim, D.S. Flow-based three-dimensional co-culture model for long-term hepatotoxicity prediction. Microma-
chines 2019, 11, 36. [CrossRef] [PubMed]

53. Kuo, C.T.; Lu, S.R.; Chen, W.M.; Wang, J.Y.; Lee, S.C.; Chang, H.H.; Wo, A.M.; Chen, B.P.; Lee, H. Facilitating tumor spheroid-based
bioassays and in vitro blood vessel modeling via bioinspired self-formation microstructure devices. Lab Chip 2018, 18, 2453–2465.
[CrossRef] [PubMed]

54. Feng, Z.; Xiao, Z.; Sun, L.; Yang, Y.; Guo, W. Fast Prototyping of Off-Stoichiometry Thiol-Ene (Oste) by Aqueous Replica Molding.
2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January
2022; pp. 931–934.

55. Bao, B.; Jiang, J.; Li, F.; Zhang, P.; Chen, S.; Yang, Q.; Wang, S.; Su, B.; Jiang, L.; Song, Y. Fabrication of patterned concave
microstructures by inkjet imprinting. Adv. Funct. Mater. 2015, 25, 3286–3294. [CrossRef]

56. Park, J.Y.; Hwang, C.M.; Lee, S.H. Ice-lithographic fabrication of concave microwells and a microfluidic network. Biomed.
Microdevices 2009, 11, 129–133. [CrossRef]

57. Liu, T.; Winter, M.; Thierry, B. Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular
spheroids and high throughput assays. Biomaterials 2014, 35, 6060–6068. [CrossRef]

58. Forget, A.; Burzava, A.; Delalat, B.; Vasilev, K.; Harding, F.; Blencowe, A.; Voelcker, N. Rapid fabrication of functionalised poly
(dimethylsiloxane) microwells for cell aggregate formation. Biomater. Sci. 2017, 5, 828–836. [CrossRef]

59. Ling, K.; Huang, G.; Liu, J.; Zhang, X.; Ma, Y.; Lu, T.; Xu, F. Bioprinting-based high-throughput fabrication of three-dimensional
MCF-7 human breast cancer cellular spheroids. Engineering 2015, 1, 269–274. [CrossRef]

60. Xu, Y.; Xie, F.; Qiu, T.; Xie, L.; Xing, W.; Cheng, J. Rapid fabrication of a microdevice with concave microwells and its application
in embryoid body formation. Biomicrofluidics 2012, 6, 016504. [CrossRef]

61. Kim, K.; Kim, S.H.; Lee, G.H.; Park, J.Y. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins
of a commercial CPU to minimize cell loss and crosstalk. Biofabrication 2018, 10, 045003. [CrossRef]

62. Kim, D.; Kim, K.; Park, J.Y. Novel microwell with a roof capable of buoyant spheroid culture. Lab Chip 2021, 21, 1974–1986.
[CrossRef]

63. Li, Z.; Guo, X.; Sun, L.; Xu, J.; Liu, W.; Li, T.; Wang, J. A simple microsphere-based mold to rapidly fabricate microwell arrays for
multisize 3D tumor culture. Biotechnol. Bioeng. 2020, 117, 1092–1100. [CrossRef]

64. Lee, G.H.; Park, Y.E.; Cho, M.; Park, H.; Park, J.Y. Magnetic force-assisted self-locking metallic bead array for fabrication of
diverse concave microwell geometries. Lab Chip 2016, 16, 3565–3575. [CrossRef]

65. Lee, G.H.; Suh, Y.; Park, J.Y. A paired bead and magnet array for molding microwells with variable concave geometries. JoVE (J.
Vis. Exp.) 2018, e55548. [CrossRef]

66. Nishijima, T.; Ikeuchi, M.; Ikuta, K. Pneumatically actuated spheroid culturing Lab-on-a-Chip for combinatorial analysis of
embryonic body. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS),
Paris, France, 29 January–2 February 2012; pp. 92–95.

67. Vrij, E.; Espinoza, S.; Heilig, M.; Kolew, A.; Schneider, M.; Van Blitterswijk, C.; Truckenmüller, R.; Rivron, N. 3D high throughput
screening and profiling of embryoid bodies in thermoformed microwell plates. Lab Chip 2016, 16, 734–742. [CrossRef]

68. Kakni, P.; Hueber, R.; Knoops, K.; López-Iglesias, C.; Truckenmüller, R.; Habibovic, P.; Giselbrecht, S. Intestinal Organoid Culture
in Polymer Film-Based Microwell Arrays. Adv. Biosyst. 2020, 4, 2000126. [CrossRef]

69. Park, J.Y.; Lee, D.H.; Lee, E.J.; Lee, S.H. Study of cellular behaviors on concave and convex microstructures fabricated from elastic
PDMS membranes. Lab Chip 2009, 9, 2043–2049. [CrossRef]

70. Choi, Y.Y.; Chung, B.G.; Lee, D.H.; Khademhosseini, A.; Kim, J.H.; Lee, S.H. Controlled-size embryoid body formation in concave
microwell arrays. Biomaterials 2010, 31, 4296–4303. [CrossRef]

71. Hwang, J.W.; Lee, B.R.; Jung, M.J.; Jung, H.S.; Hwang, Y.H.; Kim, M.J.; Lee, S.H.; Lee, D.Y. Functional clustering of pancreatic islet
cells using concave microwell array. Macromol. Res. 2011, 19, 1320–1326. [CrossRef]

72. Becker, H.; Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophor. Int. J. 2000,
21, 12–26. [CrossRef]

73. Alda, J. Laser and Gaussian beam propagation and transformation. Encycl. Opt. Eng. 2003, 999–1013.

http://dx.doi.org/10.1039/c3lc50197c
http://dx.doi.org/10.1007/s13770-014-4047-z
http://dx.doi.org/10.1016/j.biomaterials.2014.04.001
http://dx.doi.org/10.1186/s13041-015-0109-y
http://dx.doi.org/10.1371/journal.pone.0161026
http://dx.doi.org/10.1016/j.actbio.2017.10.045
http://www.ncbi.nlm.nih.gov/pubmed/29101017
http://dx.doi.org/10.3390/mi11010036
http://www.ncbi.nlm.nih.gov/pubmed/31892214
http://dx.doi.org/10.1039/C8LC00423D
http://www.ncbi.nlm.nih.gov/pubmed/30019734
http://dx.doi.org/10.1002/adfm.201500908
http://dx.doi.org/10.1007/s10544-008-9216-1
http://dx.doi.org/10.1016/j.biomaterials.2014.04.047
http://dx.doi.org/10.1039/C6BM00916F
http://dx.doi.org/10.15302/J-ENG-2015062
http://dx.doi.org/10.1063/1.3687399
http://dx.doi.org/10.1088/1758-5090/aad7d3
http://dx.doi.org/10.1039/D0LC01295E
http://dx.doi.org/10.1002/bit.27257
http://dx.doi.org/10.1039/C6LC00661B
http://dx.doi.org/10.3791/55548
http://dx.doi.org/10.1039/C5LC01499A
http://dx.doi.org/10.1002/adbi.202000126
http://dx.doi.org/10.1039/b820955c
http://dx.doi.org/10.1016/j.biomaterials.2010.01.115
http://dx.doi.org/10.1007/s13233-012-1202-4
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7


Micromachines 2022, 13, 1555 31 of 32

74. Tu, T.Y.; Wang, Z.; Bai, J.; Sun, W.; Peng, W.K.; Huang, R.Y.J.; Thiery, J.P.; Kamm, R.D. Rapid prototyping of concave microwells
for the formation of 3D multicellular cancer aggregates for drug screening. Adv. Healthc. Mater. 2014, 3, 609–616. [CrossRef]

75. Chen, Y.W.; Chen, M.C.; Wu, K.W.; Tu, T.Y. A facile approach for rapid prototyping of microneedle molds, microwells and
micro-through-holes in various substrate materials using CO2 laser drilling. Biomedicines 2020, 8, 427. [CrossRef]

76. Wu, K.W.; Kuo, C.T.; Tu, T.Y. A Highly Reproducible Micro U-Well Array Plate Facilitating High-Throughput Tumor Spheroid
Culture and Drug Assessment. Glob. Chall. 2021, 5, 2000056. [CrossRef]

77. Lee, L.J.; Madou, M.J.; Koelling, K.W.; Daunert, S.; Lai, S.; Koh, C.G.; Juang, Y.J.; Lu, Y.; Yu, L. Design and fabrication of CD-like
microfluidic platforms for diagnostics: Polymer-based microfabrication. Biomed. Microdevices 2001, 3, 339–351. [CrossRef]

78. Liu, T.; Chien, C.C.; Parkinson, L.; Thierry, B. Advanced micromachining of concave microwells for long term on-chip culture of
multicellular tumor spheroids. ACS Appl. Mater. Interfaces 2014, 6, 8090–8097. [CrossRef]

79. Lee, D.; Pathak, S.; Jeong, J.H. Design and manufacture of 3D cell culture plate for mass production of cell-spheroids. Sci. Rep.
2019, 9, 13976. [CrossRef]

80. Behroodi, E.; Latifi, H.; Bagheri, Z.; Ermis, E.; Roshani, S.; Salehi Moghaddam, M. A combined 3D printing/CNC micro-milling
method to fabricate a large-scale microfluidic device with the small size 3D architectures: An application for tumor spheroid
production. Sci. Rep. 2020, 10, 22171. [CrossRef] [PubMed]

81. Thomsen, A.R.; Aldrian, C.; Bronsert, P.; Thomann, Y.; Nanko, N.; Melin, N.; Rücker, G.; Follo, M.; Grosu, A.L.; Niedermann, G.;
others. A deep conical agarose microwell array for adhesion independent three-dimensional cell culture and dynamic volume
measurement. Lab Chip 2018, 18, 179–189. [CrossRef] [PubMed]

82. Lee, S.; Kim, S.; Ahn, J.; Park, J.; Ryu, B.Y.; Park, J.Y. Membrane-bottomed microwell array added to Transwell insert to facilitate
non-contact co-culture of spermatogonial stem cell and STO feeder cell. Biofabrication 2020, 12, 045031. [CrossRef] [PubMed]

83. Ma, L.D.; Wang, Y.T.; Wang, J.R.; Wu, J.L.; Meng, X.S.; Hu, P.; Mu, X.; Liang, Q.L.; Luo, G.A. Design and fabrication of a
liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip 2018,
18, 2547–2562. [CrossRef]

84. Lee, H.; Cho, D.W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab
Chip 2016, 16, 2618–2625. [CrossRef]

85. Rahmani Dabbagh, S.; Rezapour Sarabi, M.; Birtek, M.T.; Mustafaoglu, N.; Zhang, Y.S.; Tasoglu, S. 3D bioprinted organ-on-chips.
Aggregate 2022, e197. [CrossRef]

86. Chen, C.; Rengarajan, V.; Kjar, A.; Huang, Y. A matrigel-free method to generate matured human cerebral organoids using
3D-Printed microwell arrays. Bioact. Mater. 2021, 6, 1130–1139. [CrossRef]

87. Seyfoori, A.; Samiei, E.; Jalili, N.; Godau, B.; Rahmanian, M.; Farahmand, L.; Majidzadeh-A, K.; Akbari, M. Self-filling microwell
arrays (SFMAs) for tumor spheroid formation. Lab Chip 2018, 18, 3516–3528. [CrossRef]

88. Yeon, S.E.; No, D.Y.; Lee, S.H.; Nam, S.W.; Oh, I.H.; Lee, J.; Kuh, H.J. Application of concave microwells to pancreatic tumor
spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model. PLoS ONE 2013, 8, e73345. [CrossRef]

89. Lee, S.W.; Jeong, S.Y.; Shin, T.H.; Min, J.; Lee, D.; Jeong, G.S. A cell-loss-free concave microwell array based size-controlled
multi-cellular tumoroid generation for anti-cancer drug screening. PLoS ONE 2019, 14, e0219834. [CrossRef]

90. Chen, Y.; Sun, W.; Kang, L.; Wang, Y.; Zhang, M.; Zhang, H.; Hu, P. Microfluidic co-culture of liver tumor spheroids with stellate
cells for the investigation of drug resistance and intercellular interactions. Analyst 2019, 144, 4233–4240. [CrossRef]

91. Shi, Y.; Ma, J.; Zhang, X.; Li, H.; Jiang, L.; Qin, J. Hypoxia combined with spheroid culture improves cartilage specific function in
chondrocytes. Integr. Biol. 2015, 7, 289–297. [CrossRef]

92. No, D.Y.; Jeong, G.S.; Lee, S.H. Immune-protected xenogeneic bioartificial livers with liver-specific microarchitecture and
hydrogel-encapsulated cells. Biomaterials 2014, 35, 8983–8991. [CrossRef]

93. Wong, S.F.; No, D.Y.; Choi, Y.Y.; Kim, D.S.; Chung, B.G.; Lee, S.H. Concave microwell based size-controllable hepatosphere as a
three-dimensional liver tissue model. Biomaterials 2011, 32, 8087–8096. [CrossRef]

94. Choi, Y.J.; Park, J.; Lee, S.H. Size-controllable networked neurospheres as a 3D neuronal tissue model for Alzheimer’s disease
studies. Biomaterials 2013, 34, 2938–2946. [CrossRef]

95. Park, J.; Lee, B.K.; Jeong, G.S.; Hyun, J.K.; Lee, C.J.; Lee, S.H. Three-dimensional brain-on-a-chip with an interstitial level of flow
and its application as an in vitro model of Alzheimer’s disease. Lab Chip 2015, 15, 141–150. [CrossRef]

96. Jun, Y.; Kang, A.R.; Lee, J.S.; Park, S.J.; Lee, D.Y.; Moon, S.H.; Lee, S.H. Microchip-based engineering of super-pancreatic islets
supported by adipose-derived stem cells. Biomaterials 2014, 35, 4815–4826. [CrossRef]

97. Jun, Y.; Kang, A.R.; Lee, J.S.; Jeong, G.S.; Ju, J.; Lee, D.Y.; Lee, S.H. 3D co-culturing model of primary pancreatic islets and
hepatocytes in hybrid spheroid to overcome pancreatic cell shortage. Biomaterials 2013, 34, 3784–3794. [CrossRef]

98. Jeong, G.S.; Jun, Y.; Song, J.H.; Shin, S.H.; Lee, S.H. Meniscus induced self organization of multiple deep concave wells in a
microchannel for embryoid bodies generation. Lab Chip 2012, 12, 159–166. [CrossRef]

99. Kang, E.; Choi, Y.Y.; Jun, Y.; Chung, B.G.; Lee, S.H. Development of a multi-layer microfluidic array chip to culture and replate
uniform-sized embryoid bodies without manual cell retrieval. Lab Chip 2010, 10, 2651–2654. [CrossRef]

100. Park, Y.S.; Hwang, J.Y.; Jun, Y.; Jin, Y.M.; Kim, G.; Kim, H.Y.; Kim, H.S.; Lee, S.H.; Jo, I. Scaffold-free parathyroid tissue engineering
using tonsil-derived mesenchymal stem cells. Acta Biomater. 2016, 35, 215–227. [CrossRef]

http://dx.doi.org/10.1002/adhm.201300151
http://dx.doi.org/10.3390/biomedicines8100427
http://dx.doi.org/10.1002/gch2.202000056
http://dx.doi.org/10.1023/A:1012469017354
http://dx.doi.org/10.1021/am500367h
http://dx.doi.org/10.1038/s41598-019-50186-0
http://dx.doi.org/10.1038/s41598-020-79015-5
http://www.ncbi.nlm.nih.gov/pubmed/33335148
http://dx.doi.org/10.1039/C7LC00832E
http://www.ncbi.nlm.nih.gov/pubmed/29211089
http://dx.doi.org/10.1088/1758-5090/abb529
http://www.ncbi.nlm.nih.gov/pubmed/32975217
http://dx.doi.org/10.1039/C8LC00333E
http://dx.doi.org/10.1039/C6LC00450D
http://dx.doi.org/10.1002/agt2.197
http://dx.doi.org/10.1016/j.bioactmat.2020.10.003
http://dx.doi.org/10.1039/C8LC00708J
http://dx.doi.org/10.1371/journal.pone.0073345
http://dx.doi.org/10.1371/journal.pone.0219834
http://dx.doi.org/10.1039/C9AN00612E
http://dx.doi.org/10.1039/C4IB00273C
http://dx.doi.org/10.1016/j.biomaterials.2014.07.009
http://dx.doi.org/10.1016/j.biomaterials.2011.07.028
http://dx.doi.org/10.1016/j.biomaterials.2013.01.038
http://dx.doi.org/10.1039/C4LC00962B
http://dx.doi.org/10.1016/j.biomaterials.2014.02.045
http://dx.doi.org/10.1016/j.biomaterials.2013.02.010
http://dx.doi.org/10.1039/C1LC20619B
http://dx.doi.org/10.1039/c0lc00005a
http://dx.doi.org/10.1016/j.actbio.2016.03.003


Micromachines 2022, 13, 1555 32 of 32

101. Ross, A.M.; Jiang, Z.; Bastmeyer, M.; Lahann, J. Physical aspects of cell culture substrates: Topography, roughness, and elasticity.
Small 2012, 8, 336–355. [CrossRef]

102. Howard, R.L.; Wang, Y.; Allbritton, N.L. Use of liquid lithography to form in vitro intestinal crypts with varying microcurvature
surrounding the stem cell niche. J. Micromech. Microeng. 2021, 31, 125006. [CrossRef]

http://dx.doi.org/10.1002/smll.201100934
http://dx.doi.org/10.1088/1361-6439/ac2d9c

	Introduction
	Fabrication of Concave Microwells
	Photoresist Reflow
	Lithography and Etching
	Surface Tension Methods
	Replica Molding of Frozen Droplets
	Replica Molding of Air Bubbles
	Replica Molding of Microbeads
	Deformation of Soft Membranes
	Laser Ablation
	Milling
	3D Printing

	Applications of Concave Microwells in Micro-Tissue Engineering
	Formation of Spheroids, Organoids and Embryoids
	Study of Cellular Behavior

	Conclusions
	References

