Multi-Grid Capacitive Transducers for Measuring the Surface Profile of Silicon Wafers
Abstract
:1. Introduction
2. Design
3. Results
3.1. Calculation, Simulation and Calibration
3.2. Surface Profile Measurements
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, K.E. Silicon as a Mechanical Material. Proc. IEEE 1982, 70, 420–457. [Google Scholar] [CrossRef]
- Yeap, K.H.; Nisar, H.; Dakulagi, V. Warpage Reduction for Power Mosfet Wafers. Electrica 2021, 21, 173–179. [Google Scholar] [CrossRef]
- Chu, W.; Rashidi, S.E.E.; Zhang, Y.; Alsmeier, J.; Sega, T. An Analytical Model for Thin Film Pattern-Dependent Asymmetric Wafer Warpage Prediction. In Proceedings of the 2022 IEEE International Memory Workshop, Dresden, Germany, 15–18 May 2022; pp. 2–5. [Google Scholar]
- Cheng, G.; Xu, G.; Gai, W.; Luo, L. Reduce the Wafer Warpage Introduced by Cu in RDL Through Adjusting the Cooling Temperatures. In IEEE 68th Electronic Components and Technology Conference, San Diego, CA, USA, 29 May 2018; pp. 669–674. [Google Scholar] [CrossRef]
- Li, H.; Zhu, C.; Xu, G.; Luo, L. Experimental Identification of Thermal Induced Warpage in Polymer-Metal Composite Films. Microelectron. Reliab. 2016, 62, 141–147. [Google Scholar] [CrossRef]
- Yeon, S.; Park, J.; Lee, H.J. Compensation Method for Die Shift Caused by Flow Drag Force in Wafer-Level Molding Process. Micromachines 2016, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, S.A.F.F.; Garavaglia, M.; Ghisi, A.; Corigliano, A. A New Approach for the Control and Reduction of Warpage and Residual Stresses in Bonded Wafer. Micromachines 2021, 12, 361. [Google Scholar] [CrossRef] [PubMed]
- Marks, M.R.; Hassan, Z.; Cheong, K.Y. Characterization Methods for Ultrathin Wafer and Die Quality: A Review. IEEE Trans. Compon. Packaging Manuf. Technol. 2014, 4, 2042–2057. [Google Scholar] [CrossRef]
- Wu, X.; Tay, A. Influence of Wafer Warpage on Photoresist Film Thickness and Extinction Coefficient Measurements. Metrol. Insp. Process Control. Microlithogr. XXI 2007, 6518, 1446–1453. [Google Scholar] [CrossRef]
- Zhu, C.; Lee, H.; Ye, J.; Xu, G.; Luo, L. A New Designed Trench Structure to Reduce the Wafer Warpage in Wafer Level Packaging Process. In Proceedings of the Electronic Packaging Technology Conference, Chengdu, China, 12–15 August 2014; pp. 606–609. [Google Scholar] [CrossRef]
- Zhu, C.; Ning, W.; Xu, G.; Luo, L. Stress Evolution during Thermal Cycling of Copper/Polyimide Layered Structures. Mater. Sci. Semicond Process. 2014, 27, 819–826. [Google Scholar] [CrossRef]
- Zhu, C.; Ning, W.; Lee, H.; Ye, J.; Xu, G.; Luo, L. Experimental Identification of Warpage Origination during the Wafer Level Packaging Process. In Proceedings-Electronic Components and Technology Conference, Orlando, FL, USA, 27–30 May 2014; pp. 815–820. [Google Scholar] [CrossRef]
- Tay, A.; Ho, W.K.; Hu, N.; Chen, X. Estimation of Wafer Warpage Profile during Thermal Processing in Microlithography. Rev. Sci. Instrum. 2005, 76, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ku, Y.S.; Shyu, D.M.; Chang, P.Y.; Hsu, W.T. In-Line Metrology of 3D Interconnect Processes. Metrol. Insp. Process. Control. Microlithogr. XXVI 2012, 8324, 1–8. [Google Scholar] [CrossRef]
- Tahara, K.; Matsuoka, H.; Morioka, N.; Kannaka, M. Site Flatness Measurement System with Accuracy of Sub-Nanometer Order for Silicon Wafer. Kobelco Technol. Rev. 2016, 34, 59–64. [Google Scholar]
- Riedel, F.; Gerber, H.A.; Wagner, P. Impact of Filtering on Nanotopography Measurement of 300 Mm Silicon Wafers. Mater. Sci. Semicond. Process. 2002, 5, 465–472. [Google Scholar] [CrossRef]
- Galas, J.; Litwin, D.; Sitarek, S.; Surma, B.; Piatkowski, B.; Miros, A. Interferometric and Confocal Techniques for Testing of Silicon Wafers. In Proceedings of the Optical Micro- and Nanometrology in Microsystems Technology; SPIE, Strasbourg, France, 21 April 2006; pp. 1–8. [Google Scholar]
- Yang, K.H. Optical Imaging Method for Wafer Warpage Measurements. Electrochem. Soc. Ext. Abstr. 1985, 132, 1214. [Google Scholar] [CrossRef]
- Wu, W.; Zheng, P.; Liu, J.; Li, Z.; Fan, J.; Liu, H.; Tu, L. High-Sensitivity Encoder-like Micro Area-Changed Capacitive Transducer for a Nano-g Micro Accelerometer. Sensors 2017, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, P.; Cai, B.; Zhu, T.; Yu, L.; Wu, W.; Tu, L. Multi-Grid Capacitive Transducers for Measuring the Surface Profile of Silicon Wafers. Micromachines 2023, 14, 122. https://doi.org/10.3390/mi14010122
Zheng P, Cai B, Zhu T, Yu L, Wu W, Tu L. Multi-Grid Capacitive Transducers for Measuring the Surface Profile of Silicon Wafers. Micromachines. 2023; 14(1):122. https://doi.org/10.3390/mi14010122
Chicago/Turabian StyleZheng, Panpan, Bingyang Cai, Tao Zhu, Li Yu, Wenjie Wu, and Liangcheng Tu. 2023. "Multi-Grid Capacitive Transducers for Measuring the Surface Profile of Silicon Wafers" Micromachines 14, no. 1: 122. https://doi.org/10.3390/mi14010122
APA StyleZheng, P., Cai, B., Zhu, T., Yu, L., Wu, W., & Tu, L. (2023). Multi-Grid Capacitive Transducers for Measuring the Surface Profile of Silicon Wafers. Micromachines, 14(1), 122. https://doi.org/10.3390/mi14010122