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Abstract: Vitrified bond cubic boron nitride (CBN) grinding wheel specimens with controllable
porosity were prepared by regulating the pore former dextrin content and varying the forming
pressure, and the performance of the grinding camshaft was studied. The porosity of the specimens
increases with the increase in dextrin content, and decreases first and then increases with the increase
in the forming pressure. The grinding experiments show that the dextrin content is negatively
correlated with the grinding force and grinding temperature, while the grinding force and grinding
temperature of the specimens increase and then decrease with the increase in the forming pressure.
When we observe and measure the grinding surface of the specimen and workpiece, we see that the
surface roughness of the specimen after grinding is smaller than that before grinding. In addition,
the greater the porosity of the specimen, the rougher the surface of the workpiece after grinding.

Keywords: vitrified bond CBN grinding wheel specimens; controllable porosity; grinding force;
grinding temperature; surface roughness

1. Introduction

The camshaft, as one of the key engine components, serves to control the opening and
closing of the intake and exhaust valves [1,2]. Camshafts usually operate at high speeds and
under complex force conditions, and need to withstand certain torques and periodic shock
loads [3]. Therefore, high demands are placed on the machining process of camshafts.

The vitrified bond cubic boron nitride (CBN) grinding wheel is one of the most promis-
ing abrasive tools because of its low grinding force, good heat resistance, self-sharpening,
and long life [4–6]. It has been widely used in the grinding of difficult workpieces such as
steel, cast iron and alloy, ranging from high-efficiency grinding to high-precision grind-
ing [7–9]. Compared with the metal and resin grinding CBN wheel, the vitrified bond
CBN wheel exhibits higher bond strength and better self-dressing capabilities [5,10]. In
addition, the vitrified bond grinding wheel can be adjusted in a wide range of porosities
by changing the formulation and manufacturing process [11]. Pores play a key role in
the grinding process, especially the interconnected pores [12]. First, they can provide
channels for a coolant flow to the work area and reduce the heat generated during grinding,
which contributes to the quality of workpiece machining as well as the life of the grinding
wheel [13]. Secondly, they can additionally provide space for debris to be removed from the
work area and prevent clogging of the grinding wheel [14]. In addition, pores have a direct
impact on the strength, hardness, and grinding efficiency of the vitrified bond grinding
wheel, which can be effectively adjusted to meet the demands of different machining
conditions [15,16]. Therefore, in this paper, a vitrified bond CBN grinding wheel was used
to grind the camshaft.

Pores in a vitrified bond wheel can be controlled either by adjusting the forming
pressure or by adding the pore former [17]. In the absence of a pore former, the porosity in
the vitrified bond wheel is changed by changing the size of the forming volume. In this way,
a larger porosity cannot be obtained, although it is not easy to obtain a large pore size. If the
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pore former is used, the number, morphology and distribution of pores in the vitrified bond
wheel are controlled by varying the amount and size of the added pore former and the way
it is added [18]. Different pore formers have been reported by different researchers, such as
polymethyl methacrylate (PMMA) [19], aluminum powder [20], dextrin [21], granulated
sugar [22] and graphite [23]. In this paper, dextrin was chosen as the pore former due
to its low ash content and its ability to reduce the contamination of ceramic materials by
alkali and trace element ions. Firstly, the effect of the dextrin content and forming pressure
on the porosity of vitrified bond CBN grinding wheels was investigated. Subsequently,
experiments were carried out to obtain the effect of the dextrin addition and forming
pressure on the grinding force and grinding temperature when grinding camshafts, and
then verified and analyzed by observing the surface morphology of the vitrified bond CBN
grinding wheels after grinding. In addition, the surface morphology of the vitrified bond
CBN grinding wheels before and after grinding was analyzed, as well as a comparison of
their surface roughness. Similarly, the surface morphology of the grinding camshaft was
analyzed, and the surface roughness was compared.

2. Experimental Details

For the convenience of research, the relevant experimental analysis was performed
by making a vitrified bond CBN grinding wheel specimen instead of a grinding wheel in
this paper.

2.1. Preparation of Vitrified Bond

A R2O–RO–B2O3–Al2O3–SiO2 glass system was selected to prepare the vitrified bond.
The composition of the vitrified bond is shown in Table 1. The raw materials were mixed
and fritted in an alumina crucible at 1400 ◦C for 60 min, then the frit was put into water
for quenching. The frit was subsequently crushed, and ball milled with a ball mill. After
the ball milling was completed, the glass powder was taken out and passed through a
120-mesh sieve.

Table 1. Composition of vitrified bond.

Composition SiO2 Al2O3 B2O3 Na2O Li2O ZnO MgO

wt% 55 15 10 7 3 5 5

2.2. Preparation of Vitrified Bond CBN Grinding Wheel Specimens

The preparation process of the vitrified bond CBN grinding wheel specimens is shown
in Figure 1. The operation is as follows: 120/140 mesh CBN abrasive grains (single crystal,
Zhongnan Jiete Superabrasives Co., Ltd., Zhengzhou, China) were taken and cleaned in
hydrochloric acid to remove impurities on the surface. The vitrified bond, CBN abrasive
grains and dextrin were divided into four groups according to the ratio in Table 2. The
materials in each group were mixed well with an automatic machine and then pressed into
the mold (20 mm × 10 mm × 10 mm), and three blanks were made in each group. The
blanks were then sintered in a tube atmosphere furnace, and the sintering curve is shown
in Figure 2. As can be seen from the figure, these blanks were first heated to 100 ◦C and
held for 10min. They were subsequently heated to 750 ◦C and kept for 10 min. Finally, they
were cooled to room temperature. The constant temperature processes are set at 100 ◦C
and 750 ◦C, respectively. The purpose of the constant temperature at 100 ◦C is to remove
the moisture from the vitrified bond, which prevents a large porosity due to the violent
vaporization of moisture during the subsequent temperature increase. The purpose of
the constant temperature at 750 ◦C is to liquefy the vitrified bond sufficiently so that it
can better encapsulate the CBN abrasive particles. After the sintering was completed, the
specimens were taken out and the appearance of the morphology is shown in Figure 3.
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Figure 1. Manufacturing process of vitrified bond CBN grinding wheel specimen.

Table 2. Vitrified bond CBN grinding wheel specimens with different dextrin contents.

Sample Vitrified Bond/g CBN Abrasive/g Dextrin/g

1 2 0.6 0
2 2 0.6 0.8
3 2 0.6 0.16
4 2 0.6 0.24
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Figure 3. Appearance of vitrified bond CBN grinding wheel specimen.

According to experimental requirements, the amount of dextrin added was fixed and
the production of specimens under different forming pressures was carried out. The blanks
were pressed and formed according to the forming pressures shown in Table 3. Three
blanks were made for each of the different forming pressures and the sintering process was
the same as above.

Table 3. Vitrified bond CBN grinding wheel specimens with different forming pressures.

Sample Vitrified Bond/g CBN Abrasive/g Forming Pressure/MPa

5 2 0.6 0.5
6 2 0.6 1
7 2 0.6 1.5
8 2 0.6 2

2.3. Test Experiment

The porosity was measured as follows: using distilled water as the medium, we
measured the porosity of the specimens by the Archimedes drainage method and took the
average value of the porosity of three identical specimens.

The grinding experiment was carried out as follows: as shown in Figure 4, an angle
grinder with a speed of 11,000 r/min was fixed on the grinding machine, and a camshaft
grinding disc of 100 mm diameter made of 40 Cr alloy steel was then installed on the angle
grinder. The clamp was installed on the force sensor KISTLER 9129AA (Kistler Instrumente
AG, Winterthur, Switzerland), and the specimen was fixed using the fixture. The measuring
end of the armored thermocouple was fixed at the grinding position, and the other end of
the thermocouple was connected to the UT320A thermometer. During the experiment, the
grinding disc was rotated in contact with the specimen and the grinding temperature and
grinding force were measured by the thermocouple and the force sensor. A large depth
of field digital optical microscope OLYMPUS-1000 (Olympus, Shinjuku, Japan) was used
to observe the surface morphology of the specimen before and after grinding and of the
grinding workpiece, and their surface roughness was also measured.
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3. Results and Discussion
3.1. Effects of Dextrin Addition and Forming Pressure on Porosity of Vitrified Bond CBN Grinding
Wheel Specimens

As shown in Figure 5a, the porosity of the vitrified bond CBN grinding wheel speci-
mens increases from 17.2% to 24.5% with the increasing dextrin content. The reason for
this situation is mainly due to the gradual carbonization of dextrin under high temperature
conditions and the reaction with oxygen to produce gas. This causes the dextrin itself to
shrink continuously, and the expansion and escape of the gas eventually contribute to the
formation of pores. Therefore, the dextrin content increases as does the porosity.
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Figure 5. Effects of (a) dextrin content and (b) forming pressure on the porosity of the vitrified bond
CBN grinding wheel specimens.

To obtain the relationship between the forming pressure and porosity of the specimens,
the dextrin addition was fixed at 8 wt% and analysis of the porosity variation pattern was
carried out. As shown in Figure 5b, the porosity of the vitrified bond CBN grinding wheel
specimens decreases from 21.8% to 17.2% in the range of the forming pressure from 0.5 MPa
to 1.5 MPa. However, when the forming pressure is increased to 2 MPa, the porosity of the
specimens increases from 17.2% to 18.1%. The reason for this phenomenon is that as the
forming pressure increases initially, the specimen becomes denser, reducing the size of the
pores in the specimen while the porosity of the specimen decreases. When the vitrified
bond CBN specimen blank is too tight, the gas generated in the sintering is blocked in the
specimen and cannot initially escape. As the gas content increases, the internal pressure
exceeds the tolerance limit of the surrounding vitrified bond, resulting in increased porosity
and even damage to the nearby vitrified bond such as cracks. The porosity of the specimen
also increases.
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3.2. Effect of Dextrin Content on Grinding Force and Grinding Temperature of Vitrified Bond CBN
Grinding Wheel Specimens

During the experiment, there was an obvious vibration phenomenon at the beginning
and end of the grinding. In order to ensure the stability of the measured values, the grinding
force values in the 10–30 s interval were taken for graphing and smoothed. Because the
tangential force and normal force can better reflect the change in grinding force in the
grinding process, the tangential force and normal force are selected as the research objects.
Figure 6 shows the graph of the influence of the dextrin addition on the grinding force. As
can be seen from the figure, the overall grinding force of the specimen is larger without
the addition of dextrin, and gradually decreases with the increase in the dextrin content.
Figure 7 shows the graph of the grinding temperature variation between 10 s and 30 s
during the experiment. It can be seen from the figure that the grinding temperature of
the specimen is relatively high when no dextrin is added, while the grinding temperature
shows a decreasing trend as the amount of dextrin addition increases.
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Figure 7. Effect of dextrin addition on the grinding temperature of vitrified bond CBN grinding
wheel specimens.

The reason for the above changes in the grinding force and temperature is that the
addition of the dextrin increases the porosity of the specimen, which helps to contain and
dissipate the chips and reduces the load and resistance during grinding. As a result, the
grinding force and grinding temperature gradually decrease with the addition of dextrin.

Figure 8 shows the surface morphology of the specimens after grinding the camshaft
grinding disc with 0 wt% and 12 wt% dextrin added. As can be seen from Figure 8a, the
surface of the specimen without the addition of dextrin produces larger cracks and a wider
range of narrow bands of black burns. In contrast, in Figure 8b, it can be seen that only
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minor cracks exist on the surface of the specimen with the addition of dextrin, and the black
range of the burns is narrower. The difference mentioned above is due to the poor heat
dissipation ability of the specimens when no dextrin is added. When the grinding wheel is
grinding, the speed relative to the workpiece is high, generating intense external friction
with the surface of the workpiece as well as heat. Because the cutting of each abrasive is
instantaneous, the heat generation is also instantaneous and cannot be dissipated in time;
therefore, the instantaneous temperature in the grinding area is high. If the heat dissipation
capacity is not good, it will easily cause burns on the grinding surface and the burned area
will appear black. The more severe the burn, the greater will be the ability to damage the
tissue and the greater the cracks produced will be. This also indicates that the grinding
temperature of the specimen with the addition of dextrin is lower than when we were
grinding camshaft grinding discs without the addition of dextrin.
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Figure 9. Grinding force of vitrified bond CBN grinding wheel specimens under different forming 

pressures. 

Figure 8. Morphology of grinding surfaces of vitrified bond CBN grinding wheel specimens with
different dextrin additions (a) 0 wt% (b) 12 wt%.

3.3. Effect of Forming Pressure on Grinding Force and Grinding Temperature of Vitrified Bond
CBN Grinding Wheel Specimens

Because the grinding force and grinding temperature are lowest when 12 wt% dextrin
is added, a vitrified bond CBN grinding wheel specimen with 12 wt% dextrin was chosen
in the selection for the related research into the forming pressure.

Figure 9 shows the trend of the grinding force when we were grinding camshaft
grinding discs with vitrified bond CBN grinding wheel specimens prepared under different
forming pressures. It can be seen that when the forming pressure is 0.5 MPa, the grinding
force is at its minimum. As the forming pressure increases to 1.5 MPa, the grinding
force generally tends to be increased despite the crossover phenomenon of the grinding
force signal. However, when the forming pressure increases to 2 MPa, the grinding force
decreases. Figure 10 shows the graph of the grinding temperature variation between 10 s
and 30 s during the experiment. It can be seen from the figure that the grinding temperature
is at its lowest when the forming pressure is 0.5 MPa. As the forming pressure increases to
1.5 MPa, the grinding temperature generally shows an increasing trend. However, when
the forming pressure increases to 2 MPa, the grinding temperature decreases relatively.
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Figure 10. Grinding temperature of vitrified bond CBN grinding wheel specimens under different
forming pressures.

The reason why the grinding force and grinding temperature are mentioned above
is: the lower the forming pressure, the lower the density of the sintered specimen and the
larger the porosity of the specimen, resulting in a lower grinding force and lower grinding
temperature. Therefore, when the forming pressure is between 0.5 MPa and 1.5 MPa, the
grinding test shows that the grinding force and grinding temperature increase with the
increasing forming pressure. However, when the forming pressure is increased to 2 MPa,
first of all, the elastic deformation between the vitrified bond and dextrin particles leads
to a higher residual stress in the blank, which causes swelling and microcrack damage in
the sample during sintering; secondly, the blank is so compact that the gas formed by the
dextrin at a high temperature cannot easily escape, and remains inside and increases the
volume of the pores due to gas expansion. On the other hand, the gas that fails to escape
increases the internal stress on the specimen, making it more susceptible to developing
microcracks. Therefore, too large a forming pressure increases the porosity of the specimen,
which in turn reduces the grinding force and grinding temperature of the vitrified bond
CBN grinding wheel specimen against the camshaft grinding discs.

Figure 11 shows the surface morphology of the specimens prepared by grinding
camshaft grinding discs at forming pressures of 0.5 MPa and 1.5 MPa. Under the forming
pressure of 0.5 MPa, small cracks appear on the grinding surface, and there are small-scale
lumpy burns. However, under the forming pressure of 1.5 MPa, large cracks appear on
the grinding surface with breakage and extensive burns. It was additionally proved that
the grinding force and grinding temperature of the vitrified bond CBN grinding wheel
specimen decrease with the increase in the forming pressure in the range of 0.5 MPa to
1.5 MPa.
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Figure 11. Morphology of grinding surfaces of vitrified bond CBN grinding wheel specimens under
different forming pressures (a) 0.5 MPa (b) 1.5 MPa.

3.4. Surface Morphology of Vitrified Bond CBN Grinding Wheel Specimens and Camshaft
Grinding Discs
3.4.1. Surface Morphology of Vitrified Bond CBN Grinding Wheel Specimens before and
after Grinding

Figure 12 is a morphology comparison diagram of the specimen before and after
grinding. Before grinding, the CBN abrasive grains maintain their original shape, the
vitrified bond holds the CBN abrasive grains, and the abrasive grains are evenly distributed
with the pores. After grinding, some pores on the surface of the specimen are covered
by debris, and some CBN abrasive grains are flattened to reveal almost the same height,
with the result that the surface of the specimen is flatter. Figure 13 shows the height of
the three-dimensional morphology of the specimen before and after grinding. It can be
seen that the original surface height of the specimen is higher, while the height between
the surface after grinding is lower compared with that before grinding, and the surface is
flatter. Figure 14 shows the surface roughness of the specimens before and after grinding.
Figure 14a shows the surface roughness values of the specimens before and after grinding
with different dextrin contents, while Figure 14b shows the surface roughness values of the
specimens before and after grinding with different forming pressures. It can be seen that
the surface roughness of the specimens after grinding is smaller than that before grinding,
regardless of the grinding of the specimens with different dextrin content or the grinding of
the specimens with different forming pressures. At the same time, the additional amount
of dextrin and the forming pressure have little influence on the surface roughness of the
specimens before and after grinding, and the values of the surface roughness are in the
range of 2–12 µm.
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Figure 12. Surface morphology of the vitrified bond CBN grinding wheel specimen (a) before
grinding (b) after grinding.
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Figure 13. Three-dimensional morphology height of the vitrified bond CBN grinding wheel specimen
(a) before grinding (b) after grinding.
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3.4.2. Surface Morphology of Camshaft Grinding Discs

Figure 15 shows the surface morphology of the camshaft grinding disc after the
grinding of vitrified bond CBN grinding wheel specimens subject to different dextrin
additions. It can be seen in the figure that with the addition of dextrin, the range of burns
on the surface of the camshaft grinding disc becomes smaller, while the surface wear scars
are deeper. When we measure the surface roughness of the grinding surface, we see that the
surface roughness without the addition of dextrin is 0.056 µm, while the surface roughness
of the grinding surface with the addition of 12 wt% dextrin is 0.12 µm. It shows a smoother
surface without the addition of dextrin. Figure 16 shows the surface morphology of the
camshaft grinding disc after the grinding of vitrified bond CBN grinding wheel specimens
under different forming pressures. As can be seen in the figure, when the forming pressure
is 0.5 MPa, the wear scars on the grinding surface are deeper, but the surface burns are
less extensive. As the forming pressure increases to 1 MPa, the wear scar depth on the
grinding surface becomes shallow, while the surface burn area expands. When the forming
pressure is increased to 2 MPa, the wear scar depth deepens slightly and the surface burn
range decreases. The surface roughness of the grinding surface at a forming pressure of
0.5 MPa is measured to be 0.156 µm. As the forming pressure increases to 1.5 MPa, the
surface roughness changes to 0.042 µm, while at a forming pressure of 2 MPa, the surface
roughness is 0.069 µm. As a result, the surface is smoother at a forming pressure of 1.5 MPa.
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Figure 15. Surface morphology of camshaft grinding discs after grinding of vitrified bond CBN
grinding wheel specimens with different dextrin additions (a) 0 wt% dextrin (b) 12 wt% dextrin.
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Figure 16. Surface morphology of camshaft grinding discs after grinding of vitrified bond CBN
grinding wheel specimens with different forming pressures (a) 0.5 MPa (b) 1.5 MPa (c) 2 MPa.

The reason for the above phenomenon is related to the porosity. When the porosity
increases, it is easier for the abrasives to be exposed and to have more space to hold the
chips, while it is less likely that the abrasives involved in grinding will be buried by the
chips. As a result, the workpiece has deeper wear scars and a larger surface roughness.
The reason for the reduced burn is that the increased porosity helps to dissipate heat. In
summary, it can be concluded that the greater the porosity, the rougher the grinding surface.

4. Conclusions

In conclusion, we proposed a method for changing the porosity of a vitrified bond
CBN grinding wheel by adding dextrin and adjusting the forming pressure. Firstly, the
relationship between the dextrin content, forming pressure and porosity of the specimens
was investigated. The porosity increased with the increase in dextrin content, and first
decreased and then increased with the increase in forming pressure. Subsequently, the
effects of the dextrin content and forming pressure on the grinding force and grinding
temperature of the specimens for the grinding of camshaft grinding discs were investigated.
With the increase in dextrin content, the grinding force and grinding temperature of the
specimens gradually decreased. With the increase in forming pressure, the grinding force
and grinding temperature of the specimens first increased and then decreased. When the
forming pressure was 1.5 MPa, the grinding force and grinding temperature reached their
maximum. Finally, the surface morphology of the specimens before and after grinding and
the camshaft grinding discs after grinding were investigated. The surface roughness of the
specimens after grinding was smaller than that before grinding. The greater the porosity,
the rougher the camshaft grinding disc.
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